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Abstract: Vision localization methods have been widely used in the motion estimation of unmanned aerial vehicles (UAVs). The

noise of the vision location result is usually modeled as a white Gaussian noise so that this location result could be utilized as the

observation vector in the Kalman filter to estimate the motion of the vehicle. Since the noise of the vision location result is affected

by external environment, the variance of the noise is uncertain. However, in previous researches, the variance is usually set as a fixed

empirical value, which will lower the accuracy of the motion estimation. The main contribution of this paper is that we proposed a

novel adaptive noise variance identification (ANVI) method, which utilizes the special kinematic properties of the UAV for frequency

analysis and then adaptively identifies the variance of the noise. The adaptively identified variance is used in the Kalman filter for more

accurate motion estimation. The performance of the proposed method is assessed by simulations and field experiments on a quadrotor

system. The results illustrate the effectiveness of the method.
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1 Introduction

The unmanned aerial vehicles (UAVs) have become more

and more popular in recent years because of their wide ap-

plications in mobile missions such as surveillance, explo-

ration and recognition in different environments. Fig. 1

shows a flying UAV system. A main problem in applica-

tions of UAVs is the estimation of the motion of the system,

including 3D position and translational speed.

Fig. 1 Unmanned aerial vehicle

Many research works have been done in this field, using

various kinds of location sensors including global position

system (GPS)[1], laser range sensors[2, 3], doppler radars[4],

ultrasonic sensors[5], etc. However, the factors of accuracy,
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weight, cost, and applicable environment limit the applica-

tion of these sensors on aerial vehicles. Vision sensors, with

their advantage in these aspects, have become a popular

choice for providing location results of the system[6].

The Kalman filter model is widely used to obtain ac-

curate, fast updated and reliable motion estimation of the

UAV system[5, 7, 8], which generally consists of two equa-

tions: the observation equation and the state equation. Re-

sults directly provided by the vision localization method are

used to establish the observation equation of the Kalman

filter, and measurements from inertial sensors are usually

used to establish the state equation.

In the Kalman filter, the variance of the noise is needed

for estimation. However, in vision localization methods, es-

pecially in the method without artificial landmarks, which

is utilized in this paper, feature detecting and matching

components are usually included[9]. The location accuracy

is obviously affected by external environments, such as illu-

mination, camera resolution, texture of environment, height

of flight, etc. Therefore, the variance of the noise of the

vision location result is changeable and hard to calibrate

in the beginning. However, so far as we know, no related

work has paid attention to this problem. The variance of

the noise is usually simply set as an empirical parameter

which will probably lower the accuracy of the motion esti-

mation, especially when there is a large deviation between

the empirical parameter and the truth variance.

In this article, some special kinematic properties of the

UAV system, which were barely utilized before, are noticed

and utilized for frequency analysis of the position signal (or

the trajectory) of the vehicle. The derivation shows that

the position signal has some characteristic in the frequency

domain which helps to separate it from the noise and
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therefore the variance of the noise could be identified. An

simplified version of this analysis was discussed in [10].

The rest of the paper is organized as follows. Section 2

introduces the entire system where the adaptive noise vari-

ance identification (ANVI) method is applied, including the

configuration of the UAV system and the principle of the

motion estimation. Section 3 proposes the ANVI method

detailedly. Experiment and results are shown in Section 4

to verify verifies the feasibility and performance of the pro-

posed method. Some conclusions are presented in Section 5.

2 System introduction

2.1 UAV system configuration

The configuration of our system is shown in Fig. 2. The

main sensors onboard are a downward looking monocular

camera, a height sensor and an inertial measurement unit

(IMU), including an accelerometer, a gyroscope and a mag-

netometer. A wireless link is used to share information with

the ground PC, where the vision location algorithm is run-

ning. An attitude estimation algorithm is executed on the

onboard micro controller. Although we do not derive the

attitude estimation in this paper, some qualities of the at-

titude estimation algorithm are indeed utilized for analysis

of the position signal of the system, which will be explained

in Section 3.1.

Fig. 2 The configuration of the vehicle

2.2 Principle of motion estimation

For automatic application, the states of motion need to

be estimated, generally including 3D position p and 3D

translational speed v, which form a 6-dimensional state vec-

tor X = (p, v)T. Fig. 3 shows the entire framework of state

estimation in this paper. The unique component of ANVI

will be derived in Section 3. The other three components,

as general parts of the motion estimation, will be described

here in Section 2.2.

Fig. 3 The framework of motion estimation

2.2.1 Vision location

Markless vision localization methods have been widely

used for navigation of UAVs in unknown environment. Most

of them are accomplished in two steps. First, feature points

are detected and matched between two frames of images

captured in two different camera locations, as shown in

Fig. 4. Secondly, relative transformation of location includ-

ing rotation and translation is calculated with the corre-

sponding points.

Fig. 4 Vision location of UAVs in different environments

As shown in Fig. 5, the vehicle moved from location 1 to

location 2. After feature detecting and matching, a set of

corresponding points was founded. Let m̃1 = (u1, v1, 1) and

m̃2 = (u2, v2, 1) be homogeneous coordinates of one pair of

corresponding points. According to the theory of structure

from motion[11], the relationship between m̃1 and m̃2 could

be presented as

d2m̃2 = R12d1m̃1 + t12 (1)

where d1 and d2 are scale factors, R12 and t12 denote

the relative rotation and translation, respectively. Because

monocular camera could not give an absolute scale, a height

sensor is used to help to recover the scale, as explained in

[12]. Then, the singular value decomposition (SVD) tech-

nique is used to find the best possible R12 and t12 which

relates the set of pairs of corresponding points by (1). Since

the transformation between the camera frame and the body

frame is known accurately when the system is installed, and

the rotation between the body frame and the world frame

could be obtained by the IMU[13], R12 and t12 can provide

the relative location of the vehicle in the world frame.
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Fig. 5 Vision location

Notice that two frames of images could be matched only

when the vehicle moves in a limited range of area. To obtain

location results in a large area, the relative location results

calculated above will be utilized in a so called “SLAM” al-

gorithm that consists of “location” and “mapping”. The

main idea is that the small displacements obtained from

the localization methods above are accumulated to obtain

a large displacement, so the UAV could locate itself in a

large area. Besides, key frames of images are stored to reg-

ulate the accumulated error. With the entire “location” and

“mapping” solution, the UAV could accomplish automatic

missions in a large range of space. For more details of the

vision slam algorithm, one should refer to [6, 9, 14]. What

we are concerned about more in this paper is the uncertain

noise of the location result.

The location result provided here by the vision localiza-

tion method will be used as the observation vector Z in the

Kalman filter. Note that this observation contains noise,

which is denoted as ξ and usually modeled as the white

Gaussian noise. The variance of ξ is needed in the Kalman

filter for estimation.

2.2.2 Dynamic of the system

Let w and b denote the world frame and the body frame,

respectively. Axes xw, yw, zw in the world frame correspond

to the east, the north, and the upright directions, respec-

tively. Axes xb, yb, zb in the body frame are attached to the

vehicle body and the center of the body frame is the center

of mass of the system.

Therefore, the dynamic equation of the system motion is

given by
ṗw = vw

v̇w = aw
(2)

where pw = (xw, yw, zw) denotes the position in the world

frame. vw, aw denotes the velocity and acceleration in the

world frame, respectively. Rw
b is defined as the rotation

matrix from the body frame to the world frame. Then, the

acceleration in the world frame could be obtained from

aw = Rw
b ab

ab = am − na −−→g
(3)

where ab and am denote the acceleration in the body frame

and the acceleration measured by the accelerometer sen-

sor attached to the body frame, respectively. −→g denotes

the gravity vector. na denotes the Gaussian noise of the

accelerometer.

Substituting (3) into (2), the dynamic model of the sys-

tem is obtained as

ṗw = vw

v̇w = Rw
b (am − na −−→g )

(4)

which could be transformed into the discrete form
[

pw

vw

]

k+1

=

[

1 Δt
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pw
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k
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]

(5)

where Δt denotes the update cycle of the accelerometer.

2.2.3 Kalman filter model of the system

A popular model to fuse information from multiple sen-

sors is the Kalman filter model, which consists of a state

equation and an observation equation. The vision location

results from Section 2.2.1 help to establish the observation

equation, and the dynamic model of (5) helps to establish

the state equation. A classic Kalman filter model is estab-

lished to combine these two equations
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(6)

where X = (pw, vw)T denotes the state vector to be esti-

mated. The observation vector Zk is the vision location

result obtained in Section 2.2.1. ξ is the white Gaussian

noise of the observation. Qξ is defined as the variance of

ξ. In the Kalman filter, Qξ is needed for processing. How-

ever, as mentioned before, since the accuracy of the vision

location algorithm strongly depends on the external envi-

ronment, Qξ is uncertain, which is a common problem in

many kinds of vision-assisted navigation systems. There-

fore, adaptively identifying Qξ will certainly improve the

accuracy of motion estimation.

3 Adaptive noise variance identifica-

tion

The discrete observation signal Z(k) is provided by the

vision location algorithm at every 150 ms in our system. It

consists of the real position signal p(k) and the white Gaus-

sian noise ξ(k).

Z(k) = p(k) + ξ(k). (7)

The purpose of the ANVI is to identify Qξ from the ob-

servation signal Z(k). First, some characteristic of p(k) in

the frequency domain will be derived. Then, it will be used

to separate p(k) and ξ(k) so that Qξ could be identified.
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Note that Z(k), p(k) and ξ(k) are all actually 3-

dimensional vectors in the x axis, y axis and z axis, but

we only analyze one dimension of them because the quality

in the other two dimensions are symmetry and quite the

same.

3.1 Characteristic of position signal in fre-
quency domain

To simplify the derivation, we first analyze p(t) instead

of p(k), which is the continuous form of the position.

Before the derivation of the characteristic of p(t) in the

frequency domain, some kinematic properties of the vehicle

need to be explained, i.e., the magnitude of the kinematic

acceleration of the vehicle is upper-limited.

Firstly, in our experience, acceleration with a certain up-

per limit is enough for the vehicle to accomplish most of the

automatic missions. During aerobatics, the aerial vehicle

needs to fly rapidly, but for most of the common applica-

tions, such as hovering, following a certain trajectory, the

vehicle flies gently.

Secondly, the limit of acceleration is actually a neces-

sary condition for accurate attitude estimation. There are

several kinds of methods for obtaining the measurement of

attitude with onboard sensors. The sky line captured by the

onboard camera was used to calculate the attitude[6], but

the condition that the sky line needs to be unblocked and

legible is strict. Yang et al.[15] used relative rotation calcu-

lated from image frames to update the attitude, but there

will be accumulated error over time when the first reference

image is out of view. In our system, we choose the tradi-

tional strap-down inertial attitude estimation method[16],

which is popularly used in arial vehicles.

In strap-down inertial attitude estimation, the relation-

ship between the gravity vector and the measurement of the

3-dimensional accelerometer provides an equation to calcu-

late the direct cosine matrix of the attitude (the measure-

ment of the magnetometer provides the other equation), as

shown in (8).

A ×−→g = −→a (8)

where A denotes the direct cosine matrix, −→g is the gravity

vector, and −→a is the measurement vector of the accelerom-

eter.

However, (8) is correct only when the kinematic accelera-

tion of the system could be ignored, because the accelerome-

ter could measure both the gravity and the kinematic accel-

eration. Therefore, the kinematic acceleration will disturb

the onboard algorithm which uses (8) for attitude estima-

tion. The larger the acceleration of the vehicle is, the less

accurate the attitude estimation result will be, which was

explained in detail in [16].

Generally, by setting upper limits of the throttle, the roll

angle and the pitch angle of the vehicle, the acceleration of

the vehicle could be easily limited to

|−→a | < 0.2|−→g |. (9)

Now the position signal p(t) will be analyzed by the short-

time Fourier transform (STFT). The speed signal v(t) and

the acceleration signal a(t) will be also processed for the

following derivation.

First, in the STFT, signals need to be intercepted with a

window. As shown in Fig. 6, ã(t), ṽ(t) and p̃(t) denote the

signals intercepted from a(t), v(t) and p(t) from t1 to t2,

respectively.

Fig. 6 Interception of signals

According to kinematic laws, the relationship between

ã(t), ṽ(t) and p̃(t) is described as

p̃(t) =

∫ t

−∞
ṽ(t)dt + p1(u(t1) − u(t2))

ṽ(t) =

∫ t

−∞
ã(t)dt + v1(u(t1) − u(t2)) (10)

where v1 and p1 denote the initial speed and position at

time t1, and u(t) denotes the unit step function.

Then, using qualities of the Fourier transform (FT), one

obtains

˜P (jω) =
˜V (jω)

jω
+ p1 × G(jω) =

−
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ω2
+

(
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v1
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)

× G(jω)

G(jω) =

√

π

2
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(

1

jωπ
+ δ(ω)

)

. (11)

where ˜P (jω), ˜V (jω) and ˜A(jω) denote the FT of p̃(t), ṽ(t)

and ã(t), or the STFT of p(t), v(t) and a(t), respectively.

δ(ω) denotes the unit impulse function.

According to (9),
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Before practical STFT processing of the position signal,

the signal could be shifted so that the initial value p1 = 0.
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This will not affect the reconstruction of the signal in the

time domain. Therefore, we obtain

∣

∣

∣
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In (13) and (14), the derivation of the inequalities is quite

loose, which means the left-hand side part of the inequal-

ity is much smaller than the right-hand side part. And it

is clear that when |ω| gets larger, the right-hand side part

of inequality (14) will get smaller rapidly. In other words,

the energy of the position signal in the frequency domain

mostly distributes at the low frequency part.

The conclusion above is only qualitative. To make it

quantitative, we collected sufficient position data during

daily flight for frequency analysis experiment, and the re-

sults confirmed the conclusion and indicated that the energy

of the position signal mostly distributes below 2 Hz. Details

about the experiment will be described in Section 4.

In our system, the processing cycle of the vision algo-

rithm is 150 ms. In other words, the sampling frequency

from p(t) to p(k) is 6.66 Hz. According to the Nyquist-

Shannon sampling theorem, the energy of the discrete sig-

nal p(k) distributes mostly below 2Hz and above 4.66 Hz,

which is shown in Fig. 7.

Fig. 7 Affected frequency spectrum by sampling

3.2 Identification of variance

According to the analysis in Section 3.1, we can select a

finite impulse response (FIR) bandpass digital filter H(jω),

whose pass band is between 2Hz and 4.66 Hz (or included

by this block). Let h(k) denote the unit impulse response

of the FIR filter H(jω), whose length is n. When we let the

observation signal Z(k) pass through this filter, the position

signal p(k) will be filtered out, the result signal is affected

only by the noise signal ξ(k).

n−1
∑

k=0

(h(k) × Z(k + k0)) =

n−1
∑

k=0

(h(k) × (p(k + k0) + ξ(k + k0))) =

n−1
∑

k=0

(h(k) × ξ(k + k0)) (15)

where k0 denotes the start of the signal sequence. As ex-

plained above, ξ(k) is the white Gaussian noise, so

E{ξ(k1) × ξ(k2)} =

{

Qξ, k1 = k2

0, k1 �= k2

(16)

where E{·} denotes the expected value of the signal.

Then,
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n−1
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Therefore, we could obtain Qξ from

Qξ =

E

{

(

n−1
∑

k=0

(h(k) × Z(k + k0))

)2
}

n−1
∑

k=0

h2(k)

(18)

where
∑n−1

k=0 h2(k) is a known value when we select a known

digital filter. (
∑n−1

k=0 (h(k)×Z(k+k0)))
2 is the square of the

the filtered result, which could be calculated. The expected

value of the filtered result E{(∑n−1
k=0 (h(k) × Z(k + k0)))

2}
could be estimated by averaging a length of sample data.

The length of the sample data is empirically selected. In

practical, when the length is selected longer, the estimation

of the expected value will be more accurate, but also cause

a heavier computation burden.

4 Experiments and results

4.1 Frequency analysis of position signal

To prove the conclusion derived in Section 3.1 that the

energy of the position signal mostly distributes in the low

frequency part, and to make it quantitative, we collected

sufficient position signals for frequency analysis.

An independent assistant visual system consisting of sev-

eral fixed cameras is installed to collect pure position signal

without noise (or nearly without noise). The position signal

provided by this assistant system is highly accurate because

heavy high definition cameras could be used here and the

cameras don′t suffer the dynamic of the vehicle. Motion

information provided by this assistant system is regarded

as the ground truth data for comparison.

The analysis of collected signals supported the conclu-

sion and indicated that the energy of the position signal
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distributes mostly below 2Hz. A result of the analysis is

shown in Fig. 8.

Fig. 8 Frequency spectrum of the position signal

4.2 Simulation of adaptive noise variance
identification

To verify the effectiveness of the ANVI method, we add

the position signal provided by the assistant visual sys-

tem with white Gaussian noise whose variance is known.

The position signal in Fig. 8 was mixed with different kinds

of white Gaussian noises whose variance were 5 cm, 10 cm,

15 cm and 20 cm, respectively. Fig. 9 shows the estimation

results of the variance with the proposed method, which is

reliable and this result is practical for further motion esti-

mation.

Fig. 9 Simulation: identification of the variance

In practical applications, the variance of the noise does

not generally change very fast. So, to lower the computa-

tional burden of the system, the estimation of the variance

is not executed in each data sample cycle as shown in Fig. 9,

but every 5–10 s.

4.3 Improvement of motion estimation

The identified variance Qξ of the observation noise is then

used in the motion estimation based on the Kalman filter

model in (6). As shown in Fig. 10, the adaptively identi-

fied variance is displayed in the top picture. Additionally,

the motion estimation results with this adaptively identified

variance are displayed in the next two pictures.

Fig. 10 Motion estimation results with identified variance

Two groups of motion estimation experiments with

fixed variance were done for comparison. The first

group of comparative experiments was done with fixed

variance that is smaller than the true variance (vari-

ance = 0.01 m and variance = 0.03 m), with the re-

sults shown in Fig. 11. The second group of compar-

ative experiments was done with fixed variance that is

larger than the true variance (variance = 0.15 m and vari-

ance = 0.2 m), with the results shown in Fig. 12. The

root-mean-square errors of all the estimated results com-

pared with the ground truth data are shown in Table 1.

Fig. 11 Motion estimation results with fixed variance smaller

than true variance
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Fig. 12 Motion estimation results with fixed variance larger

than true variance

As shown in Table 1, the motion estimation results with

ANVI obtained the highest accuracy. During the experi-

ment, the adaptively identified variance was about 0.05 m

to 0.1 m. A larger deviation between the empiric variances

and the truth variance caused a larger error in the results,

no matter the empiric variances are larger (refer to the truth

that results with Qξ = 0.2 m suffered bigger error than re-

sults with Qξ = 0.15 m) or smaller (refer to the truth that

results with Qξ = 0.01 m suffered bigger error than results

with Qξ = 0.03 m) than the truth variance. Besides, in

general, when an empiric variance gets much larger than

the real variance, the estimation result will be mainly af-

fected by the state equation, therefore the accumulated er-

ror could not be bounded effectively, which will cause big

error in the position estimation (refer to the results with

Qξ = 0.2 m). On the contrary, when the empiric variance

gets much smaller than the real one, the estimation result

will be mainly affected by the observation equation, which

caused unsmooth of the results and lowered the accuracy of

the velocity (refer to the results with Qξ = 0.01 m).

Table 1 Root-mean-square (RMS) errors of the estimation

results

RMS error Position (m) Velocity (m/s)

Qξ = 0.2m 0.273 0.176

Qξ = 0.15m 0.152 0.158

ANVI 0.034 0.117

Qξ = 0.03m 0.046 0.119

Qξ = 0.01m 0.081 0.207

5 Conclusions

A novel adaptive variance identification method is pro-

posed in this paper. Experiment shows that with this

method, the variance of the noise could be identified reli-

ably. With the ANVI method, the results of the motion es-

timation will basically be optimal. On the contrary, results

will become worse when there is a large deviation between

the empirical variance value and the truth value. In some

application environments, the empirical variance value is

really hard to choose, and the ANVI therefore becomes a

necessary component for motion estimation.

The method is especially suitable for the vision-assisted

motion estimation of UAVs. Because firstly, the noise of vi-

sion location results is changeable and needs adaptive iden-

tification. Secondly, the validity of the ANVI method is

based on the special kinematic property of UAVs, as ex-

plained in the derivation. However, in our experience, many

kinds of robots working on ground, in water or underwater

may share the same kinematic properties that the kinematic

acceleration has a upper limit. Therefore, the application

of the proposed method could be expanded.
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