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Abstract: In this paper, first-order and second-order sliding mode controllers for underactuated manipulators are proposed. Sliding

mode control (SMC) is considered as an effective tool in different studies for control systems. However, the associated chattering

phenomenon degrades the system performance. To overcome this phenomenon and track a desired trajectory, a twisting, a super-

twisting and a modified super-twisting algorithms are presented respectively. The stability analysis is performed using a Lyapunov

function for the proposed controllers. Further, the four different controllers are compared with each other. As an illustration, an example

of an inverted pendulum is considered. Simulation results are given to demonstrate the effectiveness of the proposed approaches.
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1 Introduction

Underactuated mechanical systems (UMS) are increas-

ingly present in the robotic field. They have less actuators

than their degrees of freedom. In these systems, we find

manipulators, vehicles and humanoids with several passive

joints. Underactuations arise by deliberate design for the

purpose of reducing the weight of the manipulator or might

be caused by actuator failures. The difficulty in control-

ling underactuated mechanisms is due to the fact that tech-

niques developed for fully actuated systems cannot be di-

rectly used. These systems are not feedback linearizable,

yet they exhibit nonholonomic constraints and nonmini-

mum phase characteristics[1]. Moreover, it has been shown

that it is not difficult to stabilize this class of systems by

continuous controllers. Because of this, the class of under-

actuated mechanical systems presents challenging control

problems. One of the common methods used to control un-

deractuated systems is the SMC based on Lyapunov design.

The SMC has always been considered as an efficient ap-

proach in control systems, due to its high accuracy and

robustness against internal and external disturbances. The

SMC approach consists of two steps. The first is to choose a

manifold in the state space that forces the state trajectories

to remain along it. The second is to design a discontinu-

ous state-feedback capable of forcing the system to reach

the state on the manifold in a finite time. However, the

drawback of the SMC is the presence of the chattering ef-

fect, caused by the switching frequency of the control[2].
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The high frequency components of the control propagat-

ing on the system can excite the unmodeled fast dynamics

and therefore cause undesired oscillations. In fact, this can

degrade the system performance or may even lead to insta-

bility. In the literature, three main approaches have been

presented which help to reduce the chattering effects. The

class of methods consist in the use of the saturation control

instead of the discontinuous one. It ensures the convergence

to a boundary layer of the sliding manifold. Moreover, a

switching function, inside the boundary layer of the sliding

manifold, was approximated by a linear feedback gain[3, 4].

However, the accuracy and the robustness of the sliding

mode were partially lost.

The second class of methods consist in the use of a system

observer-based approach[5]. It can reduce the problem of

robust control to the problem of exact robust estimation.

This can lead to the deterioration of the robustness with

respect to the plant uncertainties or disturbances.

Using high-order sliding mode controllers given by

Levant[6, 7] as a way to reduce the chartering phenomenon

and keep the main advantages of the original approach of

the SMC is another way to eliminate chattering. On the

other hand, the second-order sliding mode control is rel-

atively simple to implement and it gives good robustness

to external disturbances. The second-order sliding mode

control (SSMC) approach can reduce the number of dif-

ferentiator stages in the controller. However, the stability

proofs are based usually on a geometrical or homogeneity

method since the Lyapunov function is a difficult task to

define[7]. The stability and the convergence using SSMC is

challenging and several trials were made to deal with those

difficulties. Recently, Moreno and Osorio[8] constructed a

Lyapunov function that provides a finite time convergence,

a robustness and an estimate of the convergence time for
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super-twisting algorithm. In [9], a multivariable super-

twisting structure was proposed, which analyzed the sta-

bility using the ideas of Lyapunov function given in [8].

The inverted pendulum system shown in Fig. 1 is a

typical benchmark of non-linear underactuated mechanical

systems[10]. For this system, the control input is the force u

that moves the cart horizontally and the output is the an-

gular position of the pendulum θ. Therefore, the inverted

pendulum has been a popular candidate to illustrate dif-

ferent control methods. However, despite of its simple me-

chanical structure, this prototype is not easy to control and

requires sufficiently sophisticated control designs. Indeed,

it is proven that the system is not feedback linearizable and

has no corresponding constant relative degree[11]. More-

over, Zhao and Spong[12] have shown that several geometric

properties of the system are lost when the pendulum moves

through horizontal positions. The objective consists of mov-

ing the cart from an initial position to a desired one and

keeping the pendulum in the vertical position with a mini-

mum of its oscillations around this position. In general, the

main difficulty is to swing up the pendulum from the down-

ward vertical position and to keep the cart stable. Numer-

ous control techniques have been employed to stabilize the

inverted pendulum such as proportional-integral-derivative

(PID) controllers where the control gains are adjustable and

updated online with a stable adaptation mechanism[13].

Fig. 1 Inverted pendulum

The objective of this paper is to develop a robust position

tracking controller based on the first-order and the second-

order sliding mode approaches applied to an inverted pen-

dulum. Stability of the closed loop system is carried out

using candidate Lyapunov functions for the proposed con-

trollers. The contributions of this paper are presenting the

stability analysis of twisting and super-twisting controllers.

Further, a modified super-twisting algorithm with simple

stability analysis is proposed. This controller has almost

the same propriety as the super-twisting algorithm. The pa-

per is organized as follows. Section 2 describes the model of

the inverted pendulum and the first sliding mode controller.

Section 3 deals with the sliding mode controllers and the

design of second-order sliding mode controllers. Section 4

discusses the simulation results of the proposed controllers.

2 Dynamic model and control approach

for an inverted pendulum

2.1 Dynamic model

The dynamical behavior of an inverted pendulum can be

described by the differential equations as[12]

(m + M)ÿ + ml(θ̈ cos θ − θ̇2 sin θ) = τ

ÿ cos θ + lθ̈ + g sin θ = 0 (1)

where l is the length of the pendulum, m is the pendulum

mass, M is the cart mass, τ is the horizontal force action,

θ is the angular deviation, and y is the position of the cart

which is moving horizontally.

Let x1 = y, x2 = ẏ, x3 = θ and x4 = θ̇. According to the

canonical form of a class of underactuated systems, we can

transform (1) into the following state space representation

ẋ1 = x2

ẋ2 = f1 + b1τ

ẋ3 = x4

ẋ4 = f2 + b2τ (2)

where x = [x1, x2, x3, x4]
T is the state variable vector, τ

is the control input, f1, f2, b1 and b2 are nominal nonlinear

functions, expressed as

f1 =
mlx2

4 sin x3 − mg sin x3 cos x3

M + m sin2 x3

f2 =
(m + M)g sin x3 − mlx2

4 cos x3

l(M + m sin2 x3)

b1 =
1

M + m sin2 x3

b2 =
− cos x3

l(M + m sin2 x3)
. (3)

Let

τ = M + m sin2 x3u − (mlx2
4 sin x3 − mg sin x3 cos x3).

(4)

Then, (2) becomes

Ẋ =

⎡
⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x2

0

x4

g sin x3
l

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0

1

0
− cos x3

l

⎤
⎥⎥⎥⎦ u

Ẋ = f(x) + g(x)u. (5)

And (5) can be expressed by

⎡
⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 0 0

0 0 0 1

0 0 g sin x3
lx3

0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

1

0
− cos x3

l

⎤
⎥⎥⎥⎦ u.

(6)
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Voytsekhovsky et al.[14, 15] proposed a method that can

approximate the original system with an input-output lin-

earizable control system in new coordinates. This stabi-

lization method of nonlinear system using sliding mode

control is based on coordinate transformation by mapping

T : x �→ ξ defined by

ξi = Li−1
f h(x), i ∈ {1, 2, 3, 4} (7)

with ξ = (ξ1 ξ2 ξ3 ξ4)
T. T is defined as a local diffeomor-

phism with T (0) = 0.

The dynamical system in the new coordinates can be

approximated by the system model

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ξ4

ξ̇4 = L4
f (T−1(ξ)) + LgL3

fh(T−1(ξ))u (8)

where Lfh(x) is the Lie derivative of h(x) along the vector

f(x).

Consider the output system function defined by[15]

z = h(x) = x1 + l ln

(
1 + sin x3

cos x3

)
(9)

with ξ = T (x) and T1(x) = h(x) = ξ1. Define the transfor-

mation T : x �→ ξ by

T (x) =

⎡
⎢⎢⎢⎣

h(x)

Lfh(x)

L2
fh(x)

L3
fh(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ξ1 = T1(x)

ξ2 = T2(x)

ξ3 = T3(x)

ξ4 = T4(x)

⎤
⎥⎥⎥⎦ = ξ. (10)

Then,

T (x) =

⎡
⎢⎢⎢⎢⎢⎣

x1 + l ln
(

1+sin x3
cos x3

)

x2 + lx4
cos x3

tanx3

(
g + lx4

cos x3

)
(

2
cos3 x3

− 1
cos x3

)
lx3

4 +
(

3g
cos2 x3

− 2g
)

x4

⎤
⎥⎥⎥⎥⎥⎦

.

(11)

Differentiating ξ, we obtain

ξ̇1 = z(1) = x2 + ln

(
lx4

cos x3

)

ξ̇2 = z(2) = tan x3

(
g +

lx4

cos x3

)

ξ̇3 = z(3) =

(
2

cos3 x3
− 1

cos x3

)
lx3

4+

(
3g

cos2 x3
− 2g)x4 − 2x4 tan x3u

ξ̇4 = z(4) = fe(x) + ge(x)u (12)

where

fe(x) =

(
6 sin x3

cos4 x3
− sin x3

cos2 x3

)
l4x4 +

6g sin x3

cos3 x3
x2

4+

(
2g sin x3

cos3 x3
− g sin x3

cos x3

)
3x2

4+

(
3g

cos2 x3
− 2g

)
g sin x3

l

ge(x) =
−6x2

4

cos2 x3
+ 3x2

4 − 3g

l cos x3
+

2g cos x3

l
. (13)

By neglecting 2x4 tan(x3) because this term is o(x3, x4)
2,

we obtain a feedback linearizable nonlinear system in the

state ξ with

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ξ4

ξ̇4 = fe(ξ) + ge(ξ)u

z = ξ1. (14)

2.2 First-order sliding mode controller

Define the surface, s = {ξ ∈ R4 | s(ξ) = 0} , for λ > 0,

s(ξ) =

(
d

dt
+ λ

)3

(z − zd). (15)

We choose zd = [2 0 0 0]T. The time derivative of s along

the system trajectory ξ is equal to

ṡ(ξ) = ξ(4) + 3λξ(3) + 3λ2ξ(2) + λ3ξ(1) =

fe(ξ) + ge(ξ)u + 3λz(3) + 3λ2z(2) + λ3z(1). (16)

The sliding mode control is expressed by

u = ueq + usw (17)

where usw is the switching control, ueq is the equivalent

control yielded from ṡ(ξ) = 0 , and

ueq = −fe(z) + 3λz(3) + 3λz(3) + λ3z

ge(ξ)

usw = ηsgn(s) + ks (18)

where η and K are positive constants.

It is notable that for small deviations, we have ge(ξ) <

−3 − g
l

< 0. Choosing the Lyapunov candidate as

V =
1

2
s2 (19)

and differentiating V along the trajectories of (14) yields

V̇ = sṡ = −η|s| − ks2 ≤ 0. (20)

Then, the system is stable and the convergence of the

sliding mode is guaranteed.
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3 Second-order sliding mode controller

The drawback of the first-order sliding mode control is

the chattering phenomenon. As a solution to resolve this

problem, a higher-order sliding mode (HOS) is proposed.

In fact, HOS appears as an effective application to counter-

act the chattering phenomenon and the switching control

signals, with higher relative degrees in a finite time[8, 16].

The HOS has been introduced in [6], with the goal to

get a finite time on the sliding set of order r defined by

s = ṡ = s̈ =
...
s = · · · = s(r−1) = 0. s defines the sliding

variable with the r-th order sliding and with its (r − 1)-th

first time derivatives depending only on the state x. The

first-order sliding mode tries to keep s = 0. In the case

of second-order sliding mode control, which only needs its

measurement or evaluation of s, the relation should be ver-

ified as

s(x) = ṡ(x) = 0. (21)

In the following, a twisting algorithm, a super-twisting algo-

rithm and a modified super-twisting algorithm with a pre-

scribed convergence law are used.

3.1 Twisting controller

3.1.1 Controller approach

Consider the sliding surface

s1 =

(
d

dt
+ λ1

)2

ξ. (22)

Differentiating (22) twice gives

s̈1 = fe(ξ) + ge(ξ)u + 2λ1z
(3) + λ2

1z
(2)

s̈1 = Ψ(ξ) + ϕu (23)

where Ψ(ξ) = fe(ξ) + 2λz(3) + λ2z(2) and ϕ(ξ) = ge(ξ) .

We assume that functions Ψ and ϕ are bounded such

that

|Ψ| ≤ Ψd, 0 < ϕm ≤ ϕ ≤ ϕM (24)

where Ψd, ϕm, ϕM and ϕd are positive scalars. Then, we

have

|Ψ
ϕ
| <

Ψd

ϕM
. (25)

By imposing s̈1 = 0, the equivalent control can be ex-

pressed as ueq = −Ψ
ϕ

.

3.1.2 Stability analysis

The dynamic control law using the twisting algorithm is

given by[8]

usw =
K

ge(ξ)
(s1 + βsgn(ṡ1)) (26)

with β > 0, 0 < K ≤ KM and KM > 1
1−β

Ψd
ϕM

. The total

control is defined by

u = ueq + usw. (27)

The Lyapunov function can be chosen as

V1 =
1

2
λ2s1

2 +
1

2
ṡ2
1. (28)

Differentiating (28) yields

V̇1 = λ2s1ṡ1 + ṡ1s̈1 =

λ2s1ṡ1 + ṡ1(Ψ(ξ) + ge(ξ)u) =

ṡ1[λ2s1 − Ks1 − Kβsgn(ṡ1)] =

ṡ1sgn(ṡ1)[λ2s1sgn(ṡ1) − Ks1sgn(ṡ1) − Kβ] =

|s1| [(λ2|s1| − K|s1|)sgn(ṡ1s1) − Kβ)] ≤
|ṡ1| [(λ2 − K)|s1| − Kβ] ≤ 0. (29)

Therefore, the system is stable if λ2 − K < 0.

3.2 Super twisting controller

SSMC controllers require the of values of the derivatives

except for the super twisting algorithm (STW). The STW is

a continuous sliding mode algorithm ensuring main proper-

ties of the first-order sliding mode control for systems with

Lipschitz continuous matched uncertainties or disturbances

with bounded gradients[7]. It has been developed to control

systems with a relative degree equal to one in order to avoid

chattering.

Trajectories on the two sliding planes are characterized

by twisting around the origin, but the continuous control

law u(t) is constituted by two terms. The first is defined

by the discontinuous time derivative and the second is a

continuous function of the available sliding variable[2].

3.2.1 Controller approach

The derivative of the sliding surface is given as

ṡ = fe(ξ) + ge(ξ)u + 3λz(3) + 3λ2z(2) + λ3z(1) (30)

which can be expressed as

ṡ = Ψ1(ξ) + ϕ(ξ)u (31)

where Ψ1(ξ) = fe(ξ)+3λz(3)+3λ2z(2)+λ3z(1). The control

law can be expressed by[16]

u =
u1 − Ψ1(ξ)

ϕ(ξ)
(32)

where the super twisting controller is

u1 = −k1sgn(s)|s| 12 − k2s + σ. (33)

Variations of the term σ are described by

σ̇ = −k3sgn(s) − k4s (34)

where k1, · · · , k4 are positive scalars.

Substituting (32) and (33) into (31) gives

ṡ = −k1sgn(s)|s| 12 − k2s + σ. (35)
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3.2.2 Stability analysis

We want to prove the stability of the system with the use

of Lyapunov function candidate define by

V2(s, z) = 2k3|s| + k4s
2 +

k5

2
σ2 + γ2 (36)

where k5 is a positive scalar and

γ = k1sgn(s)|s| 12 + k2s − σ. (37)

We introduced the positive scalar k5 for more flexible stabil-

ity conditions and for more generalization of the expression

of V2. Substituting (37) into (36) gives

V2(s, σ)=2k3|s| + k4s
2 +

k5

2
σ2 +

(
k1

s√|s| + k2s − σ

)2

=

1

2|s| (4k3|s|2 + 2k4s
2|s| + k5σ

2|s| + 2k2
1s2+

4k1k2s
2
√

|s| − 4k1sσ
√

|s| + 2k2
2s2|s|−

4k2s|s|σ + 2σ2|s|). (38)

Define the subspace as

κ = {(s, σ) ∈ R2/s = 0}. (39)

Differentiating (38) with respect to time gives

V̇2(s, σ) =
∂V 2

∂s

ds

dt
+

∂V 2

∂σ

dσ

dt
=

∂V 2

∂s
ṡ +

∂V 2

∂σ
σ̇ =

−ṡ

|s| 52
(− 2k3|s| 52 sgn(s) − 2k4s|s| 52 −

2k2
1s|s| 32 − 4k1k2s|s|2 + k1k2s

2|s|sgn(s)+

2k1σ|s|2 − k1σ|s|2s − 2k2
2s|s| 52 +

2k2|s| 52 + k2
1s

2sgn(s)
√

|s|)−
σ̇

|s|
( − k5σ|s| + 2k1s

√
|s| + 2k2s|s| − 2σ|s|). (40)

Substituting (34) and (35) into (40) yields

V̇2(s, σ) =
−6k2

1k2s
2

|s| +
4k2

1σs

|s| +
k3
1s4

|s| 72
− 6k1k

2
2s2

√|s| +

4k2
2sσ − 2k3

1s2

|s| 32
− 2k1σ

2

√|s| − 2k3
2s2−

2k2σ
2 +

2k2
1k2s

4

|s|3 − 2k2
1s3σ

|s|3 +
8k1k2sσ√|s| −

k3k5sσ

|s| − k5k4sσ − 2k1k2s
3σ

|s| 52
+

k1k
2
2s4

|s| 52
+

k1s
2σ2

|s| 52
. (41)

Define X = (|s| 12 s σ)T. Then, it is easy to show that

V̇2(s, σ) ≤ − 1

|s| 12
XTΨX − XTΥX (42)

where

Ψ =

⎡
⎢⎣

Ψ11 0 Ψ13

0 Ψ22 Ψ23

Ψ31 Ψ23 Ψ33

⎤
⎥⎦

Υ =

⎡
⎢⎣

Υ11 0 Υ13

0 Υ22 Υ23

Υ31 Υ23 Υ33

⎤
⎥⎦ (43)

with

Ψ11 = k3
1

Ψ22 = 5k1k
2
2

Ψ13 =
s

|s|
(

k1k5

2
− k2

1

)

Ψ23 = −2k1k2

Ψ31 = Ψ13

Ψ32 = Ψ23

Ψ33 = k1 (44)

and

Υ11 = 4k2
1k2

Υ22 = 2k3
2

Υ13 = −k1k2
s

|s|
Υ23 =

1

2
k4k5 − 2k2

2

Υ32 = Υ23

Υ33 = 2k2. (45)

Matrices Ψ and Υ are positives definite if

k2
1 =

5

8
k3k5

k2
2 = 2k4k5. (46)

So matrices Ψ and Υ are positive definite and consciously

V̇2(s, σ) ≤ 0. Thus, we can conclude that the system is

stable.

3.3 A modified super twisting controller

To simplify the stability analysis, we propose a modified

super twisting controller (MSTW).

3.3.1 Controller approach

ṡ can be expressed as

ṡ = Ψ1(ξ) + ϕ(ξ)u = −k6s + σ1. (47)

The total controller can be expressed by

u = ueq + Δu (48)

where

Δu = ϕ(ξ)−1(k6s + σ1). (49)

Variations of σ1 are given by

σ̇1 = −k7(s − k8σ1 − k9sgnσ1). (50)

Parameters k6, k7, k8 and k9 are positive scalars.
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3.3.2 Stability analysis

For the stability proof, the Lyapunov function candidate

is given by

V3(s, σ1) =
1

2
s2 +

1

2k7
σ2

1 . (51)

Differentiating (51) with respect to time gives

V̇3(s, σ1) = sṡ +
1

k7
σ1σ̇1 =

s(−k6s + σ1) + σ1(s +
1

k7
σ̇1). (52)

Substituting (50) into (52) gives

V̇2(s, σ1) = −k6s
2 − k8σ

2
1 − k9|σ| < 0. (53)

4 Simulation results and discussions

Parameters of the inverted pendulum system are set as

M = 20 kg, m0 = 1.8 kg, l = 0.3 m, g = 9.8N/kg. The

initial conditions of the cart pendulum are (y0, ẏ0) = (0, 0),

(θ0, θ̇0) = (0.1, 0) and the desired position is set as yd = 2,

θd = 0 and ẏd = θ̇d = 0.

Fig. 2 Evolution of the position of θ for the uncertain system

Fig. 3 Evolution of the position of y for the uncertain system

Fig. 4 Evolution of sliding surface and control by SMC

Fig. 5 Evolution of the sliding surface and the control using TW

Fig. 6 Evolution of the sliding surface and the control using

STW

Fig. 7 Evolution of the sliding surface and the control using

MSTW

Simulations are done using λ = 1 and k = 20 for the

SMC, k1 = 40 and k2 = 90 for the twisting controller.

In Figs. 2 and 3, the simulation results for the four con-

trollers are shown. The convergence of state variables has

been established for all controllers. Furthermore, the state

variables for STW and MSTW controllers converge faster

than those of TW and SMC. 20% of mass uncertainties,

have been considered for the pendulum and cart. We can

notice the robust behaviors of the controllers with respect

to parametric uncertainties. Figs. 4–7 show that the pro-

posed SSMC is able to compensate effectively the chatter-
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ing phenomenon better than the first-order sliding mode.

Moreover, with the super-twisting controller and modified

super-twisting controller, the chattering is eliminated.

For more comparisons between these approaches, we con-

sider the following criteria

J =

∫ 20

0

u2dt

which is proportional to the energy delivered to the system.

It is clear from Table 1 that STW gives the least delivered

energy, while the MSTW delivers the second compared to

other approaches.

Table 1 Comparison of the energy criterion (×104 J)

SMC TW STW MSTW

3.6954 1.5798 1.2624 1.3056

5 Conclusions

In this paper, a second-order sliding mode controller has

been designed for underactuated manipulators. This con-

troller keep the main advantages of the original sliding mode

approach and removes the chattering caused by the slid-

ing mode approach. Simulation results of the twisting, the

super-twisting and the modified super-twisting controllers

show that these controllers give better performance com-

pared to the first-order sliding mode controller. It has been

shown that the proposed modified super-twisting controller

have almost the same properties of the super-twisting with

a simple stability analysis. Moreover, the second-order

sliding-mode controller is an effective tool for the control

of uncertain nonlinear systems since it overcomes the main

drawback of the classical sliding-mode control approach.
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