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Abstract: This paper addresses an iterative learning control (ILC) design problem for discrete-time linear systems with randomly

varying trial lengths. Due to the variation of the trial lengths, a stochastic matrix and an iteration-average operator are introduced

to present a unified expression of ILC scheme. By using the framework of lifted system, the learning convergence condition of ILC

in mathematical expectation is derived without using λ-norm. It is shown that the requirement on classic ILC that all trial lengths

must be identical is mitigated and the identical initialization condition can be also removed. In the end, two illustrative examples are

presented to demonstrate the performance and the effectiveness of the proposed ILC scheme for both time-invariant and time-varying

linear systems.
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1 Introduction

Iterative learning control (ILC), as an effective control

strategy, was initially proposed in 1984[1]. Although it has

been well established in terms of both the underlying theory

and experimental applications[2−18] , there are still several

limitations in traditional ILC that every trial (pass, cycle

and iteration) must end in a fixed duration, and that the

initial state of the objective system must be set to the same

point at the beginning of each iteration, etc. In many appli-

cations of ILC, nevertheless, it would not be the case that

every trial ends in a fixed duration. For instance, as in-

troduced in [19], when stroke patients walk on a treadmill,

depending on their strength and abilities, the steps will be

usually cut short by suddenly putting the foot down. As-

suming that up to this point, the movement of hip and knee

was hardly different from the movement in a full-length

step, the data gathered in these aborted steps should be

used for learning under the framework of ILC. Similarly,

as demonstrated in [20], the gaits problems of humanoid

robots are divided into phases defined by foot strike times,

where the durations of the phases are usually not the same

from cycle to cycle during the learning process. Thus, when

ILC is applied, the non-uniform trial length problem oc-

curs. One more example is the timing belt drive system

that might be used in a copy machine[20]. When the ve-

locity of output shaft varies, the period of rotation changes

accordingly due to the inaccuracies of gearing, thus also
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hinders the application of classic ILC schemes.

In existing literature, there are some works investigat-

ing the ILC design problems for systems with non-uniform

trial lengths. In [21], a non-standard ILC approach is devel-

oped for the systems operating continuously in time. The

ILC algorithm was applied by defining a “trial” in terms

of completion of a single “period” of the output trajectory,

where the actual trial length will likely be different from

the desired trial length. In [19], monotonic convergence of

linear ILC systems with varying pass length is considered

by using the lifting method. While in [19, 20], the identical

initialization condition is one of the fundamental require-

ments for their controller design. Recently, ILC problem

for discrete-time linear systems with randomly varying trial

lengths is investigated in [22], where an ILC scheme based

on the iteration-average operator is proposed. By introduc-

ing a stochastic variable satisfying Bernoulli distribution, a

unified expression of ILC scheme is given for systems with

different trial lengths and the convergence of tracking er-

ror is finally derived in the sense of mathematical expec-

tation. In addition, the identical initialization condition is

removed. It is well known that most of convergence anal-

ysis of ILC are based on λ-norm which sometimes hinders

the applicability of ILC in practice[23−25] . In this work, in

order to avoid using the λ-norm, we reformulate the ILC de-

sign problem with randomly varying trial lengths under the

framework of lifted systems. By introducing a stochastic

matrix and an iteration-average operator, a unified expres-

sion of ILC scheme is proposed and the convergence condi-

tion of tracking error in mathematical expectation is given

for both time-invariant and time-varying linear systems.

The main contributions of the paper are summarized as

follows:



274 International Journal of Automation and Computing 12(3), June 2015

1) A new formulation is presented for ILC of discrete-time

systems with randomly varying trial lengths by defining a

stochastic matrix. Comparing with [22], the introduction

of the stochastic matrix is more straightforward, and the

calculation of its probability distribution is less complex.

2) Different from [22], we investigate ILC for systems

with non-uniform trial lengths under the framework of lifted

system and the utilization of λ-norm is avoided.

3) Instead of being confined to the identical initialization

condition as in [19, 20], the initial states could be randomly

varying.

The rest of the paper is organized as follows. Section 2

formulates the ILC problems with randomly varying trial

lengths. In Section 3, controller design and convergence

analysis are presented. Further, the proposed ILC law is

extended to time-varying systems in Section 4. Section 5

gives two illustrative examples. Throughout this paper, ‖·‖
denotes the Euclidean norm or any consistent norm. N
denotes the set of natural numbers, and I is the identity

matrix. Moreover, define Id � {1, 2, · · · , Td}, where Td

is the desired trial length, and Ii � {1, 2, · · · , Ti}, where

Ti, i ∈ N is the trial length of the i-th iteration. When

Ti < Td, it follows that Ii ⊂ Id. We define Id/Ii � {t ∈
Id : t /∈ Ii} as the complementary set of Ii in Id. We

give two integers N1 and N2 satisfying 0 ≤ N1 < Td and

N2 ≥ 0, respectively. Set IN � {1, 2, · · · , Td−N1, Td−N1+

1, · · · , Td + N2} and it may be divided into two subsets:

Ia � {1, 2, · · · , Td −N1 − 1} and Ib � {Td −N1, Td −N1 +

1, · · · , Td + N2}. Ia is the set that is not affected by the

randomly varying factor, whereas Ib is the set that accounts

for the randomly varying duration. Define τm � Td −N1 +

m, m ∈ {0, 1, · · · , N1 + N2}, which implies τm ∈ Ib.

2 Problem formulation

Consider a class of linear discrete-time systems

{
xi(k + 1) = Axi(k) + Bui(k)

yi(k) = Cxi(k)
(1)

where k ∈ {0, 1, 2, · · · , Ti} denotes discrete time. Mean-

while, xi(k) ∈ Rn, ui(k) ∈ R and yi(k) ∈ R denote state,

input and output of the system (1), respectively. Further,

A, B and C are constant matrices with appropriate dimen-

sions, and CB �= 0. This state-space system is equivalent

to

yi(k) = C(qI − A)−1B︸ ︷︷ ︸
P (q)

ui(k) + CAkxi(0)︸ ︷︷ ︸
di(k)

, k ∈ Ii (2)

where q is the forward time-shift operator qx(k) = x(k+1).

This system can be written equivalently as the Ti × Ti-

dimensional lifted system:⎡
⎢⎢⎢⎢⎢⎣

yi(1)

yi(2)
...

yi(Ti)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

p1 0 · · · 0

p2 p1 · · · 0
...

...
. . .

...

pTi pTi−1 · · · p1

⎤
⎥⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎢⎣

ui(0)

ui(1)
...

ui(Ti − 1)

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

di(1)

di(2)
...

di(Ti)

⎤
⎥⎥⎥⎥⎥⎦ (3)

where pk = CAk−1B, k ∈ Ii, are Markov parameters.

Let yd(k), k ∈ {0, 1, 2, · · · , Td} be the desired output tra-

jectory. Assume that, for any realizable output trajectory

yd(k), there exists a unique control input ud(k) such that{
xd(k + 1) = Axd(k) + Bud(k)

yd(k) = Cxd(k).
(4)

In addition, system (4) can be rewritten as⎡
⎢⎢⎢⎢⎢⎣

yd(1)

yd(2)
...

yd(Td)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Yd

=

⎡
⎢⎢⎢⎢⎢⎣

p1 0 · · · 0

p2 p1 · · · 0
...

...
. . .

...

pTd pTd−1 · · · p1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P

×

⎡
⎢⎢⎢⎢⎢⎣

ud(0)

ud(1)
...

ud(Td − 1)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ud

+

⎡
⎢⎢⎢⎢⎢⎣

dd(1)

dd(2)
...

dd(Td)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
dd

(5)

where dd(k) = CAkxd(0), k ∈ Id.

The main difficulty in designing ILC scheme for the sys-

tem (1) is that the actual trial length Ti is iteration-varying

and different from the desired trial length Td.

Before addressing the ILC design problem with non-

uniform trial lengths, let us give some notations and as-

sumptions that would be useful in the derivation of our

main result.

Definition 1. E(f) stands for the mathematical expec-

tation of the stochastic variable f . P [f ] means the occur-

rence probability of the event f .

Assumption 1. Assume that Ti ∈ Ib is a stochastic

variable with P [Ti = τm] = qm, τm ∈ Ib, where 0 ≤ qm < 1

is a known constant.

Assumption 2. E(xi(0)) = xd(0).

Remark 1. The contraction mapping based ILC usually

requires the identical initial condition in each iteration. In

Assumption 2, the condition is extended clearly. The initial

states of system could change randomly with E(xi(0)) =

xd(0) and there are no limitations to the variance of xi(0).
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If the control process (1) repeats with the same trial

length Td, i.e., Ti = Td, and under the identical initial con-

dition, a simple and effective ILC[26] for the linear system

(1) is

Ui+1 = Ui + Lei (6)

where Ui � [ui(0), ui(1), · · · , ui(Td−1)]T, L is an appropri-

ate learning gain matrix, and the tracking error is defined

as

⎡
⎢⎢⎢⎢⎢⎣

ei(1)

ei(2)
...

ei(Td)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ei

�

⎡
⎢⎢⎢⎢⎢⎣

yd(1)

yd(2)
...

yd(Td)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Yd

−

⎡
⎢⎢⎢⎢⎢⎣

yi(1)

yi(2)
...

yi(Td)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Yi

. (7)

However, when the trial length Ti is iteration-varying,

which corresponds to a non-standard ILC process, the

learning control scheme (6) has to be re-designed.

3 ILC design and convergence analysis

In this section, based on the assumptions and notations

that are given in Section 2, ILC design and convergence

analysis are addressed, respectively.

In practice, for one scenario that the i-th trial ends before

the desired trial length, i.e., Ti < Td, both the output yi(k)

and the tracking error ei(k) on the time interval Id/Ii are

missing, i.e., unavailable for learning. For the other scenario

that the i-th trial is still running after the time instant we

want it to stop, i.e., Ti > Td, the signals yi(k) and ei(k) after

the time instant Td are redundant and useless for learning.

In order to cope with those missing signals or redundant

signals in different scenarios, we define a stochastic matrix.

By using the stochastic variables, a newly defined tracking

error e∗i is introduced to facilitate the modified ILC design.

The main procedure for deriving a modified ILC scheme

can be described as follows:

1) Define a stochastic matrix Γi.

Let Γi be a stochastic matrix with possible values

D(τm) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

diag

Td︷ ︸︸ ︷
{1, · · · , 1︸ ︷︷ ︸

τm

, 0, · · · , 0}, τm < Td

ITd×Td , τm ≥ Td.

(8)

The relationship Γi = D(τm) represents the event that the

i-th trial length of control process (1) is τm, which occurs

with a probability of qm, where 0 < qm ≤ 1, is a prespecified

constant as shown in Assumption 1.

2) Compute the mathematical expectation E(Γi).

The mathematical expectation of the stochastic matrix

Γi is

E(Γi) =

N1+N2∑
m=0

D(τm)qm =

N1−1∑
m=0

D(τm)qm + ITd×Td (

N1+N2∑
m=N1

qm) =

diag{1, 1, · · · , 1︸ ︷︷ ︸
Td−N1

,

N1+N2∑
m=1

qm, · · · ,

N1+N2∑
m=N1

qm} � D. (9)

3) Define a modified tracking error. Denote

e∗i � Γiei (10)

as a modified tracking error, which renders to

e∗i =

{
[e1(1), · · · , ei(Ti), 0, · · · , 0]T, Ti < Td

ei, Ti ≥ Td.
(11)

Remark 2. Since the absent signals are unavailable,

and the redundant signals are useless for learning, it is rea-

sonable to define a modified tracking error e∗i as in (11) or

equivalently (10). In the modified tracking error e∗i , the

redundant signals are cut off when Ti > Td, and the un-

available signals are set as zero when Ti < Td.

4) The modified ILC scheme.

Introduce an iteration-average operator A(·)[14] as

A(fi(·)) � 1

i + 1

i∑
j=0

fj(·) (12)

for a sequence f0(·), f1(·), · · · , fi(·), which plays a pivotal

role in the proposed controller. The modified ILC scheme

is given as

Ui+1 = A(Ui) +
i + 2

i + 1
L

i∑
j=0

e∗j (13)

for all i ∈ N , where the learning gain matrix L will be

determined in the following.

Theorem 1 presents the first main result of the paper.

Theorem 1. For the discrete-time linear system (1) and

the ILC scheme (13), choose the learning gain matrix L

such that, for any constant 0 ≤ ρ < 1,

sup
k∈Id

‖I − LDP‖ ≤ ρ (14)

then the mathematical expectation of the error,

E(ei(k)), k ∈ Id, will converge to zero asymptotically as

i → ∞.

Remark 3. In practice, the probability distribution of

the trial length Ti could be estimated in advance based on

previous multiple experiments or by experience. In con-

sequence, the probability qm in Assumption 1 is known.

Finally, D̄ can be calculated by (9), thus is available for

controller design.

Proof. The proof consists of two parts. Part 1 proves

the convergence of the input error in iteration-average and
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mathematical expectation by using contraction mapping.

Part 2 proves the convergence of the tracking error in math-

ematical expectation.

Part 1. Let 
Ui � Ud − Ui be the input error. By the

definition of iteration-average operator (12), we can rewrite

A(
Ui+1) as

A(
Ui+1) =
1

i + 2
[
Ui+1 + (i + 1)A{
Ui}]. (15)

In addition, subtracting Ud from both sides of the ILC law

(13), we have


Ui+1 = A(
Ui) − i + 2

i + 1
L

i∑
j=0

e∗j . (16)

Then, substituting (16) into the right hand side of (15) and

applying the operator E{·} on both sides of (15), we obtain

E(A(
Ui+1)) = E(A(
Ui)) − LE(A(e∗i )). (17)

Since both E(·) and A(·) are linear operators, we can ex-

change the operation orders of E(·) and A(·), which yields

E(A(e∗i )) = DE(A(ei)) (18)

where E(Γjej) = DE(ej) is applied as Γj and ej are inde-

pendent from each other. Meanwhile, from (3), (5) and (7),

it follows that

ei = P
Ui + (dd − di) (19)

where di � [di(1), di(2), · · · , di(Td)]T. Then, combining

(18) and (19) gives

E(A(e∗i )) = DPE(A(
Ui)) + DE(A(dd − di)). (20)

By virtue of Assumption 2, we can obtain that

E(dd − di) = E(dd) − E(di) = 0 (21)

which yields

E(A(dd − di)) = 0. (22)

Then, the relationship (20) becomes

E(A(e∗i )) = DPE(A(
Ui)). (23)

In consequence, substituting (23) into (17), we have

E(A(
Ui+1)) = [I − LDP ]E(A(
Ui)). (24)

Taking the norm ‖ · ‖ on both sides leads to

‖E(A(
Ui+1))‖ ≤
‖I − LDP‖‖E(A(
Ui))‖ ≤
ρ‖E(A(
Ui))‖. (25)

According to the condition (14) and 0 ≤ ρ < 1, (25) implies

that

lim
i→∞

‖E(A(
Ui))‖ = 0. (26)

Part 2. Now we prove the convergence of ei in math-

ematical expectation. Multiplying both sides of (25) by

(i + 2), it follows that

‖E(

i+1∑
j=0


Uj)‖ ≤ ρ‖E(
i∑

j=0


Uj)‖ + ρ‖E(A(
Ui))‖. (27)

According to the boundedness of ‖E(A(
Ui))‖ from

(25), (26) and Lemma 1 in [14], we can further derive

limi→∞ ‖E(
∑i

j=0 
Uj)‖ = 0, thus

lim
i→∞

E(
Ui) = lim
i→∞

[E(
i∑

j=0


Uj) − E(

i−1∑
j=0


Uj)] = 0. (28)

Applying the operator E(·) on both sides of (19) yields

E(ei) = PE(
Ui) (29)

where Assumption 2 is applied. Finally, it is proved that

limi→∞ E(ei) = 0. �
Remark 4. In Assumption 1, it is assumed that the

probability distribution is known and then the mathe-

matical expectation matrix D can be calculated directly.

Whereas, if qm is unknown, we know its lower and upper

bounds, i.e., 0 ≤ α1 ≤ qm ≤ α2 ≤ 1 (α1 and α2 are known

constants), then, according to (9), we have

diag{1, 1, · · · , 1︸ ︷︷ ︸
Td−N1

, (N1 + N2)α1, · · · , (N2 + 1)α1} ≤

D ≤ diag{1, 1, · · · , 1︸ ︷︷ ︸
Td−N1

, (N1 + N2)α2, · · · , (N2 + 1)α2}

where “≤” means that every corresponding diagonal ele-

ment of the left matrix is less than that of the right one.

Based on the lower and upper bounds of D and convergence

condition (14), the controller can be designed similarly.

4 Extension to time-varying systems

In this section, the proposed ILC scheme is extended to

time-varying systems

{
xi(k + 1) = A(k)xi(k) + B(k)ui(k)

yi(k) = C(k)xi(k)
(30)

where A(k), B(k) and C(k) are time-varying matrices with

appropriate dimensions and C(k)B(k) �= 0. This system

can be written equivalently as the Ti×Ti-dimensional lifted

system as

⎡
⎢⎢⎢⎢⎢⎣

yi(1)

yi(2)
...

yi(Ti)

⎤
⎥⎥⎥⎥⎥⎦ = Pi

⎡
⎢⎢⎢⎢⎢⎣

ui(0)

ui(1)
...

ui(Ti − 1)

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

wi(1)

wi(2)
...

wi(Ti)

⎤
⎥⎥⎥⎥⎥⎦ (31)
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where wi(k) = C(k)
∏k−1

j=0 A(j)xi(0) and

Pi =

⎡
⎢⎢⎢⎢⎣

C(1)B(0) · · · 0
...

. . .
...

C(Ti)
Ti−1∏
k=1

A(k)B(0) · · · C(Ti)B(Ti − 1)

⎤
⎥⎥⎥⎥⎦ .

The desired trajectory Yd is generated by

Yd = PUd + dd (32)

where

P =

⎡
⎢⎢⎢⎢⎣

C(1)B(0) · · · 0
...

. . .
...

C(Td)
Td−1∏
k=1

A(k)B(0) · · · C(Td)B(Td − 1)

⎤
⎥⎥⎥⎥⎦

and dd = [dd(1), dd(2), · · · , dd(Td)]T, dd(k) =

C(k)
∏k−1

j=0 A(j)xd(0).

The result is summarized in the following theorem.

Theorem 2. For the discrete-time linear time-varying

system (30) and the ILC algorithm (13), we choose the

learning gain matrix L such that, for any constant 0 ≤
ρ < 1,

sup
k∈Id

‖I − L(k)DP‖ ≤ ρ (33)

the mathematical expectation of the error, E(ei(k)), k ∈ Id,

will converge to zero asymptotically as i → ∞.

Proof. The proof can be performed similarly as in the

proof of Theorem 1.

Considering the desired dynamics and the lifted system

(31), we have

ei = P
Ui + (dd − wi) (34)

where wi � [wi(1), wi(2), · · · , wi(Td)]T. Similar as

(20)−(23), it follows that

E(A(
Ui+1)) = [I − LDP ]E(A(
Ui)). (35)

Now, following the procedure of the proof of Theorem 1, we

can conclude that limi→∞ E(ei) = 0. �
Remark 5. In Theorems 1 and 2, the identical initial-

ization condition is replaced by E(xi(0)) = xd(0). So, other

than deriving the convergence of tracking error, we prove

its mathematical expectation converges asymptotically by

using the mathematical expectation operator and the pro-

posed iteration-average based ILC scheme.

5 Illustrative example

In order to show the effectiveness of the proposed ILC

scheme, two examples are considered.

Example 1. Time-invariant system.

Consider the following discrete-time linear time-invariant

system

xi(k + 1) =

⎛
⎜⎝

0.50 0 1.00

0.15 0.30 0

−0.75 0.25 −0.25

⎞
⎟⎠ xi(k)+

⎛
⎜⎝

0

0

1.00

⎞
⎟⎠ ui(k)

yi(k) =
(

0 0 1.00
)

xi(k) (36)

where xi(0) = [0, 0, 0]T, i ∈ N . Let the desired trajec-

tory be yd(k) = sin( 2πk
5

) + sin( 2πk
5

) + sin(50πk), k ∈ Id �
{1, 2, · · · , 50}, as shown in Fig. 1, and thus, Td = 50. With-

out loss of generality, set u0(k) = 0, k ∈ Id in the first

iteration. Moreover, assume that N1 = N2 = 5 and that

Ti is a stochastic variable satisfying discrete uniform distri-

bution. Then, Ti ∈ {45, 46, · · · , 55} and P [Ti = τm] = 1
11

,

where τm = 45+m, m ∈ {0, 1, · · · , 10}. Further, the learn-

ing gain is set as L = 0.5I50×50 . The performance of the

tracking error ‖ei‖ is presented in Fig. 2. It shows that the

tracking error ‖ei‖ will converge within 42 iterations.

Fig. 1 The reference yd with desired trial length Td = 50

Fig. 2 Norm of tracking error in each iteration of ILC with non-

uniform trial length: N1 = N2 = 5

Moreover, Fig. 3 gives the tracking error profiles for 10th,

20th, 80th, 100th iterations, respectively.

To demonstrate the effect of N1 and N2 on the con-

vergence speed of the tracking error, we fix the learn-

ing gain L = 0.5I50×50 and set N1 = N2 = 30. Here,
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Ti ∈ {20, 21, · · · , 80}, P [Ti = τm] = 1
61

, where τm = 20+m

and m ∈ {0, 1, · · · , 60}. It can be seen from Fig. 4 that the

convergence will be achieved after more than 60 iterations,

i.e., the convergence speed is obviously slower than the case

N1 = N2 = 5.

Fig. 3 Tracking error profiles of ILC with non-uniform trial

length: N1 = N2 = 5

Fig. 4 Norm of tracking error in each iteration of ILC with non-

uniform trial length: N1 = N2 = 30

Fig. 5 The mathematical expectation of tracking errors when

the proposed ILC scheme is applied to (36)

To show the effectiveness of the proposed ILC scheme

with randomly varying initial states, we fix the learning

gain L = 0.5I50×50 and N1 = N2 = 5. Assume xi(0) is

a stochastic variable with probability P [xi(0) = v1] = 1
3
,

P [xi(0) = v2] = 1
3

and P [xi(0) = v3] = 1
3
, where

v1 = [0, 0,−1]T, v2 = [0, 0, 0]T and v3 = [0, 0, 1]T. Fig. 5

shows that the mathematical expectation of the tracking

error E(ei) will converge to zero within 80 iterations. The

tracking error profiles of the proposed ILC scheme and the

ILC scheme without average operator in [19] are illustrated

in Figs. 6 and 7, respectively. It is obvious that the per-

formance of the proposed ILC scheme is superior to that

of the ILC scheme in [19] under the situation of randomly

varying initial states. Similarly, in [20, 21], the identical

initialization condition is also indispensable.

Fig. 6 Tracking error profiles when the proposed ILC scheme is

applied to (36)

Fig. 7 Tracking error profiles when the ILC scheme in [19] is

applied to (36)

Example 2. Time-varying system.

In order to show the effectiveness of our proposed ILC al-

gorithm for time-varying systems, we consider the discrete-

time linear time-varying system as

xi(k + 1) =

⎛
⎜⎝

0.2e−
k

100 −0.6 0

0 0.5 sin(k)

0 0 0.7

⎞
⎟⎠ xi(k)+

⎛
⎜⎝

1.3

0.5

0.6

⎞
⎟⎠ ui(k)

yi(k) =
(

−0.5 1.5 0
)

xi(k) (37)

where xi(0) = [0, 0, 0]T, i ∈ N . Similarly as Example 1,

let the desired trajectory be yd(k) = sin( 2πk
50

) + sin( 2πk
5

) +

sin(50πk), k ∈ Id = {1, 2, · · · , 50}. Set u0(k) = 0, k ∈ Id

in the first iteration. Assume that Ti satisfies the Gaus-

sian distribution with mean 50 and standard deviation 10,

i.e., Ti ∼ N(50, 100). Since Ti is integer in this exam-

ple, it is generated approximately by the Matlab command

“round(50 + 10 ∗ randn(1, 1))”. Further, set the learning
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gain as L = 2I50×50. The performance of the tracking error

‖ei‖ is presented in Fig. 8, where ‖ei‖ will converge within

50 iterations. In addition, Fig. 9 gives tracking error profiles

at 10th, 20th, 80th and 100th iterations.

Fig. 8 Norm of tracking error in each iteration of ILC with Ti ∼
N(50, 100)

Fig. 9 Tracking error profiles of ILC with Ti ∼ N(50, 100)

6 Conclusions

This paper presents the ILC design and analysis results

for systems with non-uniform trial lengths under the frame-

work of lifted systems. Due to the variation of the trial

lengths, a modified ILC scheme is developed by applying

an iteration-average operator. The learning condition of

ILC that guarantees the convergence of tracking error in

the sense of mathematical expectation is derived. The pro-

posed ILC scheme mitigates the requirement on classic ILC

that each trial must end in a fixed duration. In addition, the

identical initialization condition might be removed. There-

fore, the proposed ILC scheme is applicable to more repet-

itive control processes. The formulation of ILC with non-

uniform trial lengths is novel and could be extended to other

control problems that are perturbed by random factors, for

instance, control systems with random factors in communi-

cation channels.
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