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Abstract: In this paper, a discrete-frequency technique is developed for analyzing sufficiency and necessity of monotone convergence

of a proportional higher-order-derivative iterative learning control scheme for a class of linear time-invariant systems with higher-order

relative degree. The technique composes of two steps. The first step is to expand the iterative control signals, its driven outputs and

the relevant signals as complex-form Fourier series and then to deduce the properties of the Fourier coefficients. The second step is to

analyze the sufficiency and necessity of monotone convergence of the proposed proportional higher-order-derivative iterative learning

control scheme by assessing the tracking errors in the forms of Paserval′s energy modes. Numerical simulations are illustrated to exhibit

the validity and the effectiveness.
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1 Introduction

As one of intelligent control methodologies, the concept

of iterative learning control (ILC) was proposed by Ari-

moto in 1980s for a robot manipulator to track a desired

trajectory while it attempts to execute a sequence of repet-

itive tasks over a fixed time interval[1]. The fundamental

mechanism of the ILC is to utilize the proportional, inte-

gral and/or derivative tracking error(s) at the current iter-

ation to compensate for its control input so as to iteratively

generate the control input for the next iteration. The aim

is to achieve that the constructed iterative control inputs

drive the system to track the desired trajectory as precisely

as possible as the iteration index goes to infinity. A num-

ber of ILC investigations have been emerged in favor of

less system information requirement and distinct algorith-

mic structure[2−6].

In the ILC community, one of the involved concepts is the

relative degree of the system, which describes the grade of

the system control input to directly feed the output bridged

by the system dynamics such as the system matrix, the in-

put matrix as well as the output matrix. Regarding the

ILC investigation for the system with a higher-order rel-

ative degree, Sun et al.[7] proposed a learning algorithm

with initial rectifying action for a class of nonlinear systems
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with higher-order relative degree. Song et al.[8] proposed a

first-order derivative-type (D-type) ILC based on a dummy

model for nonlinear system with unknown relative degree.

Meanwhile, the sampled-data ILC and the anticipatory ILC

methods have been developed for single-input-single-output

(SISO) nonlinear system with arbitrary relative degree[9,10].

Recently, Ruan et al.[11] investigated the monotone con-

vergence of the r-th-order derivative-type (D(r)-type) ILC

scheme for linear time-invariant systems with a higher rela-

tive degree r being larger than identity, in which the track-

ing error is measured in the form of Lebesgue-p norm[11].

The investigations convey that efficiency achieved by the

derivative-type ILC law mainly hinges on the wellness of

the order in terms of the derivative in the ILC algorithm

which matches the system relative degree. However, the

above-mentioned contributions involve only the sufficient

conditions for convergence. As the necessity for conver-

gence is illuminant and beneficial, it is inspiring to exploit

any sufficient and necessary condition for monotone conver-

gence.

From an engineering point of view, the frequency domain

technique is sometimes preferable as it may exhibit the spec-

trum feature of a signal and may take advantage of its lower

computation complexity in a multiplication form of the

transfer functions converted by Laplace transform[12−14] .

Usually in engineering, the spectrum function F (jω) of a

signal f(t) for all t ≥ 0 is induced directly from its Laplace

transform defined as F (s) = L(f(t)) =
∫ +∞
0

f(t)e−stdt by

setting the real part of the complex variable s = σ + jω to

be zero, i.e., Re(s) = σ = 0. This implies that the spectrum

function F (jω) is obtained on the premise that the Laplace

integral F (s) is existent for the case when Re(s) = 0. But,
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mathematically, for some functions, the existence of the ab-

normal type of Laplace integral F (s) requires the real part

of the complex variable s = σ+jω to be no less than a posi-

tive constant. In addition, as a frequency domain technique,

Laplace transform is fit for the system operating over the

whole time duration from zero to infinity and thus the spec-

trum function is frequency-continuous. Note that the ILC

scheme is implementable for a system with multiple opera-

tions, where each operation is performed over a finite time

interval. This implies that the Laplace-transform spectrum-

based ILC results reported in [12−14] need to be refined

in a rigorous manner. However, Dirichlet has exploited a

discrete-frequency technique by which a Dirichlet-type sig-

nal over a finite time interval is expanded as a Fourier series.

This makes it possible to adopt Fourier series for enlight-

ening the ILC significance. The aforementioned expecta-

tions motivate the paper to investigate sufficient and nec-

essary assumptions in discrete frequency domain for mono-

tone convergence of a proportional-higher-order-derivative-

type iterative learning control (PD(r)-type ILC) algorithm

for a class of linear time-invariant system with a relative

degree r > 1.

The remaining of the paper is organized as follows. Sec-

tion 2 exhibits preliminaries including the concept of the

system relative degree, the well-known Dirichlet theorem,

some relevant properties of the Fourier coefficients and the

discrete frequency-domain Parseval′s energy equality. Sec-

tion 3 constructs a PD(r)-type ILC scheme and derives the

Fourier coefficients of the tracking errors. In Section 4,

sufficiently and necessarily monotonous convergence of the

proposed PD(r)-type ILC algorithm is analyzed in discrete

frequency domain. Numerical simulations are displayed in

Section 5, and Section 6 concludes the paper.

2 Preliminaries

Consider a class of single-input-single-output linear time-

invariant systems described as

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t), t ∈ [0, T ]
(1)

where [0, T ] is the time interval of system operation, x(t) ∈
Rn, u(t) ∈ R and y(t) ∈ R denote the n-dimensional state

vector, scalar control input and output, respectively. A, B

and C are matrices with appropriate dimensions.

Definition 1[15]. Suppose that the system (1) satisfies

the following conditions:

{
CAi−1B = 0, i = 1, 2, · · · , r − 1

CAr−1B �= 0.
(2)

Then, the relative degree of system (1) is said to be r,

where r is an integer larger than one and Ai(i = 0, 1, · · · , r−
1) represents the i-th power of matrix A.

For the system dynamics (1), the following derivation is

helpful in understanding the concept of the system relative

degree.

If the relative degree r = 1, then CB �= 0. Thus, it yields

y(t) = Cx(t)

ẏ(t) = Cẋ(t) = CAx(t) + CBu(t).

If the relative degree r = 2, it implies that CB = 0 and

CAB �= 0. Therefore,

ẏ(t) = CAx(t)

ÿ(t) =
d
(
ẏ(t)

)

dt
= CAẋ(t) = CA (Ax(t) +Bu(t)) =

CA2x(t) +CABu(t).

Likewise, if the relative degree r = 3 which indicates

CAB = 0 and CA2B �= 0, then ÿ(t) = CA2x(t) which gives

rise to

˙ẏ (̇t) = CA2ẋ(t) = CA2
(
Ax(t) +Bu(t)

)
=

CA3x(t) + CA2Bu(t).

In general, if the relative degree of the system (1) is r > 1,

we get
{

y(i)(t) = CAix(t), 0 ≤ i ≤ r − 1

y(r)(t) = CArx(t) + CAr−1Bu(t).
(3)

From equation (3), it is seen that the relative degree r turns

to be the lowest derivative order of the output y(t) whose

lowest-order derivative y(r)(t) is explicitly fed by the control

input u(t) bridged by the system matrices.

Dirichlet Theorem[16]. If a periodic function f(t), t ∈
(−∞,+∞) with a period T is piecewise monotone on the

interval [0, T ] and is continuous except possibly for a finite

number of discontinuous points of the first type, then the

function f(t) can be decomposed as a Fourier series in a

complex form as

S(t) =
+∞∑

n=−∞
Cnejnωt (4)

where

ω =
2π

T
, j2 = −1, ejnωt = cos(nωt) + j sin(nωt)

C0 =
1

T

∫ T

0

f(t)dt, Cn =
1

T

∫ T

0

f(t)e−jnωtdt

n = 0,±1,±2, · · ·

S (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(t), if t is a point of continuity,
1

2

[

lim
Δt→0+

f (t+ Δt) + lim
Δt→0−

f (t+ Δt)

]

,

if t is a point of discontinuity,
1

2

[

lim
Δt→0+

f (0 + Δt) + lim
Δt→0−

f (T + Δt)

]

,

if t = 0 or T.

In the summation (4), the terms sin(ωt) and cos(ωt)

produced by C−1e
−jωt + C1e

jωt are called fundamental

sinusoidal and cosine waves, whilst the terms sin(nωt)

and cos(nωt) produced by C−ne−jnωt + C+nejnωt for n =
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2, 3, · · · , are named as higher-frequency harmonic waves.

Usually, the summation S(t) =
∑+∞

n=−∞ Cnejnωt is called

as a Fourier series expansion of the function f(t) and de-

noted by f(t) =
∑+∞

n=−∞ Cnejnωt for convenience. The

above function f(t) is called as a Dirichlet-type function.

Denote the Fourier coefficient Cn of the function f(t) as

F (nω), i.e.,

F (nω) = Cn =
1

T

∫ T

0

f(t)e−jnωtdt, n = 0,±1,±2, · · · .

Then,

f(t) =
+∞∑

n=−∞
F (nω)ejnωt.

Thus, F (nω) and f(t) can be regarded as a Fourier pair.

For the sake of simplifying the context statement, in fol-

lowing content, all of the formulations in terms of discrete

frequency “nω” represent that they are fit for all frequency

orders, n = 0,±1,±2, · · ·.
Lemma 1.

Property 1. If F1(nω) = 1
T

∫ T

0
f1(t)e

−jnωtdt and

F2(nω) = 1
T

∫ T

0
f2(t)e

−jnωtdt, then αF1(nω) + βF2(nω) =
1
T

∫ T

0

(
αf1(t) + βf2(t)

)
e−jnωtdt,

n = 0,±1,±2, · · · , α and β are constants.

Property 2.

F (r)(nω) =
1

T

∫ T

0

f (r)(t)e−jnωtdt =

(jnω)rF (nω) +
1

T

r−1∑

i=0

(jnω)r−1−i
(
f (i)(T ) − f (i)(0)

)
,

r = 1, 2, 3, · · · .

Proof. If r = 1, then we get

F (1)(nω) =
1

T

∫ T

0

df(t)

dt
e−jnωtdt =

1

T

[

f(t)e−jnωt
∣
∣
∣
T

0
+ jnω

∫ T

0

f(t)e−jnωtdt

]

=

1

T

[

(f(T )-f(0)) + jnω

∫ T

0

f(t)e−jnωtdt

]

=

1

T

(
f(T ) − f(0)

)
+ jnωF (nω).

If r = 2, then we get

F (2)(nω) =
1

T

∫ T

0

f ′′(t)e−jnωtdt =

jnωF (1)(nω) +
1

T
(f ′

(
T ) − f ′(0)

)
=

(jnω)2F (nω) + jnω
1

T

(
f(T ) − f(0)

)
+

1

T

(
f ′(T ) − f ′(0)

)
.

Again, if r = 3, then

F (3)(nω) =
1

T

∫ T

0

f (3)(t)e−jnωtdt =

jnωF (2)(nω) +
1

T

(
f ′′(T ) − f ′′(0)

)
=

(jnω)3F (nω) + (jnω)2
1

T

(
f(T ) − f(0)

)
+

jnω
1

T

(
f ′(T ) − f ′(0)

)
+

1

T

(
f ′′(T ) − f ′′(0)

)
.

Analogously,

F (r)(nω) =
1

T

∫ T

0

f (r)(t)e−jnωtdt = (jnω)rF (nω)+

1

T

r−1∑

i=0

(jnω)r−1−i
(
f (i)(T ) − f (i)(0)

)
. �

Property 3. |F (−nω)| = |F (nω)|.
Proof.

|F (−nω)| =

∣
∣
∣
∣
1

T

∫ T

0

f(t)e−j(−nω)tdt

∣
∣
∣
∣ =

∣
∣
∣
∣
1

T

∫ T

0

f(t)e−jnωtdt

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
1

T

∫ T

0

f(t)e−jnωtdt

∣
∣
∣
∣
∣
=

∣
∣
∣F (nω)

∣
∣
∣ = |F (nω)| . �

Property 4.

1

T

∫ T

0

f1(t)f2(t)dt =

+∞∑

n=−∞
F1(nω)F2(−nω).

Proof.

1

T

∫ T

0

f1 (t) f2 (t) dt=

1

T

∫ T

0

f2(t)

+∞∑

n=−∞
F1(nω)ejnωtdt =

+∞∑

n=−∞
F1(nω)

1

T

∫ T

0

f2(t)e
jnωtdt =

+∞∑

n=−∞
F1(nω)

1

T

∫ T

0

f2(t)e-jnωtdt =

+∞∑

n=−∞
F1(nω)

1

T

∫ T

0

f2(t)e-jnωtdt =

+∞∑

n=−∞
F1(nω)F2(−nω). �

If f1(t) = f2(t) = f(t), then the above Property 4 turns

to be the well-known discrete frequency-domain Parseval′s
energy equality as shown in [17] as

1

T

∫ T

0

|f(t)|2dt =
+∞∑

n=−∞
|F (nω)|2 =

1

4

+∞∑

n=−∞
A2

n (5)

where |F (nω)| = 1
2
An, An is the magnitude of the

sinusoidal and cosine waves with frequency nω, n =
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0,±1,±2, · · · . Thus, An is called as the spectrum of the

sinusoidal and cosine waves at the frequency nω, n =

0,±1,±2, · · · .
From the above Parseval′s energy equality (5), it is ob-

served that the average energy of a signal in continuous do-

main can be expressed as a quarter of the summation of the

square spectrums of all frequencies nω, n = 0,±1,±2, · · · ,
in discrete frequency domain. What follows is to adopt

the discrete-frequency energy formula
∑+∞

n=−∞ |F (nω)|2 for

evaluating the tracking performance.

3 Iterative learning control scheme

Consider a class of linear time-invariant SISO systems

taking the form as
{

ẋk(t) = Axk(t) +Buk(t)

yk(t) = Cxk(t), t ∈ [0, T ]
(6)

where [0, T ] is an operation time interval, the subscript k

refers to the operation number. xk(t) ∈ Rn, uk(t) ∈ R and

yk(t) ∈ R denote an n-dimensional state vector, a scalar

control input and an output at the k-th iteration, while A, B

and C are matrices with appropriate dimensions. Further,

assume that the relative degree r of the system (6) is greater

than unity (r > 1).

For system (6), the current proportional error and its r-

th-order derivative are utilized to compensate for its control

input so as to generate the next control input, which forms

a PD(r)-type ILC scheme as follows:

u1(t) is given arbitrarily

uk+1(t) = uk(t) + Γpek(t) + Γre
(r)
k (t), t ∈ [0, T ],

k = 1, 2, 3 · · · . (7)

Here, Γp and Γr are assigned as the proportional and the

r-th-order derivative learning gains, respectively.

Applying Property 2 of Lemma 1 to both sides of (6), we

get
⎧
⎨

⎩

[ 1

T

(
xk(T )−xk(0)

)]
+jnωXk(nω)=AXk(nω)+BUk(nω)

Yk(nω) = CXk(nω), n = 0,±1,±2, · · ·

where

Xk(nω)=
1

T

∫ T

0

xk(t)e−jnωtdt

Uk(nω)=
1

T

∫ T

0

uk(t)e−jnωtdt

Yk(nω)=
1

T

∫ T

0

yk(t)e−jnωtdt

ω =
2π

T
.

Further,

Xk(nω) = (jnωI −A)−1BUk(nω)−
(jnωI −A)−1

[ 1

T

(
xk(T ) − xk(0)

)]
.

Thus,

Yk(nω) = C(jnωI −A)−1BUk(nω)−
C(jnωI −A)−1

[ 1

T

(
xk(T ) − xk(0)

)]
.

Analogously, the PD(r)-type ILC law (7) leads to

Uk+1(nω) = Uk(nω) +
(
Γp + Γr(jnω)r

)
Ek(nω)+

1

T
Γr

r−1∑

i=0

(jnω)r−1−i
(
e
(i)
k (T ) − e

(i)
k (0)

)
. (8)

Here, Ek(nω)= 1
T

∫ T

0
ek(t)e−jnωtdt.

Owing to

ek+1(t) = yd(t) − yk+1(t) = ek(t) −
(
yk+1(t) − yk(t)

)

then,

Ek+1(nω) = Ek(nω) −
(
Yk+1(nω) − Yk(nω)

)
=

Ek(nω) −C(jnωI −A)−1B
(
Uk+1(nω) − Uk(nω)

)
+

C(jnωI −A)−1 × 1

T

[(
xk+1(T ) − xk(T )

)
−

(
xk+1(0) − xk(0)

)]
. (9)

Substituting (8) into (9) reduces

Ek+1(nω) = Ek(nω)−
C(jnωI −A)−1B

(
Γp + Γr(jnω)r

)
Ek(nω)−

C(jnωI −A)−1B
Γr

T

r−1∑

i=0

(jnω)r−1−i
(
e
(i)
k (T ) − e

(i)
k (0)

)
+

C(jnωI −A)−1 1

T

[(
xk+1(T ) − xk(T )

)
−

(
xk+1(0) − xk(0)

)]
. (10)

Let

GPD(r)(nω) = 1 −C(jnωI −A)−1B
(
Γp + Γr(jnω)r

)

ψk(nω) =
1

T

r−1∑

i=1

(jnω)r−1−i
(
e
(i)
k (T ) − e

(i)
k (0)

)

Φk(0) =
1

T

(
xk+1(0) − xk(0) − (jnω)r−1ΓrBek(0)

)

Φk(T ) =
1

T

(
xk+1(T ) − xk(T ) − (jnω)r−1ΓrBek(T )

)
.

Arranging (10), we get

Ek+1(nω) = GPD(r)(nω)Ek(nω)−
C(jnωI −A)−1BΓrψk(nω) +C(jnωI −A)−1×
(Φk(T) − Φk(0)). (11)

Remark 1. It is found from (11) that, for the PD(r)-type

ILC law (7), the spectrum of the tracking error at the next

iteration is composed of three parts. The first part is the

spectrum of the current tracking error which dominates the

convergence. The second part includes the values at the
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current iteration including the initial and terminal states

as well as the initial and terminal tracking error derivatives

whose orders range from zero to r − 1. The third part

consists of the values at the next iteration of the initial and

terminal states.

4 Convergence analysis

Theorem 1. Assume that the PD(r)-type ILC (7) is

applied to the linear time-invariant systems (6) with relative

degree r > 1. Suppose e
(i)
k (T ) = 0, e

(i)
k (0) = 0, for all

i = 0, 1, 2, · · · , r− 1, and the initial and terminal states are

resectable. Then, the propositions

+∞∑

n=−∞
|Ek+1(nω)|2 <

+∞∑

n=−∞
|Ek(nω)|2 (12)

and

lim
k→+∞

+∞∑

n=−∞
|Ek+1(nω)|2 = 0 (13)

hold if and only if

|GPD(r) (nω)| < 1 (14)

where

|GPD(r)(nω)| = |1 − C( jnωI −A)−1B
(
Γp + Γr(jnω)r

)∣
∣
∣ .

Proof. Sufficiency:

Because e
(i)
k (T ) = 0 and e

(i)
k (0) = 0, for i =

0, 1, 2, · · · , r − 1, and the initial and terminal states are

resectable, (11) becomes

Ek+1(nω) = GPD(r)(nω)Ek(nω). (15)

Denote Qk =
∑+∞

n=−∞ |Ek(nω)|2. By taking the as-

sumption
∣
∣
∣GPD(r)(nω)

∣
∣
∣ < 1 into account, it is induced that

0 ≤ Qk+1 < Qk < · · · < Q1. This means that the

sequence {Qk+1} is lower-bounded and monotonically de-

creasing. Therefore, limk→+∞Qk+1 exists.

What follows is to prove that limk→+∞Qk+1 = 0 by

reduction to absurdity.

Suppose that limk→+∞Qk+1 = Q > 0. Then, for the

given constant ε1 = Q
2
, there exists such a positive integer

K0 that, for all k > K0, the inequality Qk+1 > Q− ε1 = Q
2

holds.

Recall that the series Qk+1 =
∑+∞

n=−∞ |Ek+1(nω)|2 is

convergent. This means that, for all k > K0, the limit

exists for the partial summation sequence Qk+1 (m) =
∑+m

n=−m |Ek+1(nω)|2 with respect to the index m. In spe-

cific, limm→∞Qk+1 (m) = Qk+1. This implies that, for the

given constant ε2 = Q
4
, there exists a positive integer N0 so

that, for all m > N0, the inequality

Qk+1 (m) =

+m∑

n=−m

|Ek+1(nω)|2 > Qk+1 − ε2 > Q− ε1 − ε2

is true.

In particular, it yields that

Qk+1 (2N0) =

+2N0∑

n=−2N0

|Ek+1(nω)|2 > Q− ε1 − ε2. (16)

As the total number of the terms in the Qk+1 (2N0) formu-

lation is equal to 4N0 + 1, the inequality (16) implies that

there at least exists an integer n0 so that −2N0 ≤ n0 ≤ 2N0

and

|Ek+1(n0ω)|2 > Q− ε1 − ε2
4N0 + 1

=
Q

4 (4N0 + 1)
> 0. (17)

On the other hand, (15) reduces to

Ek+1(n0ω) = (GPD(r) (n0ω))k E1(n0ω).

By considering the assumption |GPD(r) (n0ω)| < 1, it results

in

lim
k→∞

Ek+1(n0ω) = 0.

This is contradictory to the conclusion (17).

The contradiction leads that the propositions (12) and

(13) are true.

This completes the proof of sufficiency.

Necessity:

Assume that (14) does not always hold. Then, there

exists at least such a number n0 that

|GPD(r)(n0ω)| ≥ 1.

The equality (15) leads to

|Ek+1(n0ω)| = |GPD(r) (n0ω)|k |E1(n0ω)| ≥ |E1(n0ω)| .

Consequently,

+∞∑

n=−∞
|Ek+1(nω)|2 ≥ |Ek+1(n0ω)|2 ≥ |E1(n0ω)|2

and

lim
k→∞

+∞∑

n=−∞
|Ek+1(nω)|2 ≥ lim

k→∞
|E1(n0ω)|2 = |E1(n0ω)|2 .

It is possible to select U1(nω) and Yd(nω) such that

|E1(n0ω)| > 0, which contradicts to the postulate (12).

This completes the proof of necessity. �
Remark 2. In Theorem 1 the sufficient and necessary

assumptions for the monotone convergence require that not

only all of the initial states and tracking errors are re-

sectable, but also all of the terminal states and the tracking

errors are resectable. It is well-known that, up to this date,

in the existing ILC investigations for guaranteeing the con-

vergence, the requirement for the resetting of the initial

states and tracking errors, has been accepted in ILC com-

munity. But the requirement for the resetting of the termi-

nal states and tracking errors is new. Thus, the convergent

assumptions in Theorem 1 seem to convey that, in discrete

frequency domain, the assumptions are quite critical and
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different from the existing results in continuous-time do-

main. However, the assumptions are possibly satisfied for

a stable system without steady-state error.

Without involving the reset assumptions, it is found that,

in discrete frequency domain, the recursive spectrums rela-

tionship Ek+1(nω) = GPD(r) (nω)Ek(nω) of two adjacent it-

erations is directly acquired in a precise equality form rather

than the time-domain relationship ‖ek+1(·)‖ < ρ̃ ‖ek(·)‖
in an inequality form by an appropriate relaxation tech-

nique. The discrepancy perhaps delivers that the sufficient

assumption (14) in discrete frequency domain is more effi-

cient than that of possibly achieved in continuous time do-

main. We guess that it is the milder convergent condition

(14) that incurs the additional requirement for the resetting

of the terminal states and the tracking errors. However, the

conjectures need to be clarified in a rigorous manner.

Remark 3. From the formulation of the proportional-

r-th-order derivative-type ILC scheme (7), it is seen that

the scheme will be degenerated to a proportional-type ILC

scheme when the r-th-order derivative learning gain Γr is

null. Then, under the assumption of the initial and terminal

resetting, it is not difficult to deduce that the sufficient and

necessary condition for guaranteeing the monotone conver-

gence becomes

|GP(nω)| = |1 −C(jnωI −A)−1BΓp| < 1.

5 Numerical simulations

To show the effectiveness of the learning control law (7)

in discrete frequency domain, consider an SISO linear time-

invariant system described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ẋ1(t)

ẋ2(t)

]

=

⎡

⎣
0 1

−1

3
−1

4

⎤

⎦

[
x1(t)

x2(t)

]

+

[
0

1

]

u(t)

y(t) =
[

1

3
0

]
[
x1(t)

x2(t)

]

x(0) =
[
x1(0) x2(0)

]T

= [0 0]T.

(18)

It is testified that CB = 0 and CAB = 1
3

�= 0. This

means that the relative degree of system (18) is equal to 2,

i.e., r = 2. The operation time interval of system (18) is

set as [0, 40]. The desired trajectory is chosen as yd (t) =

1 − e−0.25t2 and the beginning control input is chosen as

u1(t) = 1. As xk(0) = 0, it is obvious that ek(0) = 0 and

e
(1)
k (0) = 0. By solving (18), it is easy to testify that the

system (18) is stable with no steady-state error for step-

type inputs. This implies that the resetting of the terminal

states and tracking errors is inherently guaranteed. For the

PD(2)-type ILC scheme (7), the learning gains are selected

as Γp = 0.8 and Γ2 = 2.4. It is computed that

|GPD(2) (nω)| =

(
5.76n4ω4 − 5.16n2ω2 + 0.64

144n4ω4 − 87n2ω2 + 16

) 1
2

< 1

where ω= 2π
40

≈ 0.157, which means the convergent condi-

tion |GPD(r) (nω)| < 1 holds. Fig. 1 displays the tracking

performance of the output at the 2nd and 15th implemen-

tations.

Fig. 2 depicts the spectrums of the frequency-wise track-

ing errors in the discrete frequency domain. It is seen

that the tracking error spectrum at each fixed frequency

is monotonously decreasing in the iteration direction. The

monotone convergence related to the spectrums of the

tracking errors made by the PD(r)-type ILC law (7) is il-

lustrated in Fig. 3 and the monotonicity in terms of the

average power of the tracking error is manifested in Fig. 4,

respectively.

Fig. 1 Outputs at the 2nd and 15th iterations

Fig. 2 Spectrums at the 3rd, 5th and 7th iterations

Fig. 3 Tracking error tendency in discrete-frequency domain
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Fig. 4 Tracking error tendency in continuous-time domain

6 Conclusions

In this paper, for a class of linear time-invariant systems

with relative degree r > 1, a PD(r)-type ILC law is devel-

oped and its sufficiency and necessity for monotone con-

vergence is analyzed by means of evaluating the tracking

error in Parseval′s energy form in discrete frequency do-

main. For analysis, the properties of Fourier coefficients

regarding the system dynamics as well as the proposed ILC

algorithm are discussed. In discrete frequency domain, the

mathematical representation of signals, initial and termi-

nal assumptions and the recursive relationship mode of the

tracking errors between two adjacent operations are quite

different from those of continuous time domain, and as such,

the sufficiently convergent equivalence of the two domains

is not obvious. This type of discrepancy needs to be fur-

ther clarified in the future. In addition, the perturbation,

noise as well as system parametric uncertainties are un-

avoidable in real applications. Therefore, robustness of the

proposed ILC scheme to these perturbations, e.g., load and

measurement perturbations, sensitivity due to the higher-

order derivation computation, remains a challenging issue.

It will be addressed in future.
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