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Abstract: In this paper, we present a review of the current literature on distributed (or partially decentralized) control of chemical

process networks. In particular, we focus on recent developments in distributed model predictive control, in the context of the specific

challenges faced in the control of chemical process networks. The paper is concluded with some open problems and some possible future

research directions in the area.
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1 Introduction

Modern chemical processing plants consist of process

units arranged in a complex network. Due to safety, eco-

nomic and environmental concerns, there has been an in-

creased use of energy integration and material recycle to

improve steady state efficiency and reduce waste. These

large networks can lead to difficulties in plant-wide analy-

sis and control design, as the resulting large-scale system

may have complex nonlinear dynamics. These systems pro-

vide difficulties for traditional centralized and decentralized

control techniques. The distributed (or networked) control

paradigm is promising as it allows for simple controllers

which can communicate and cooperate with one another

to achieve improved control performance and operational

efficiency whilst remaining transparent and scalable.

Modern chemical processing networks are often designed

with steady state efficiencies and capital costs in mind, as

such, they often suffer from operability issues[1]. Heat inte-

gration and material recycle can cause strong coupling be-

tween process units, this coupled with tighter design mar-

gins can improve steady state performance at the cost of

reduced flexibility[2, 3]. The design of plant-wide control

systems for these systems is a difficult problem, with key

challenges provided by: 1) Process systems exhibit strongly

nonlinear behavior, this greatly increases the complexity of

analysis and associated control design. 2) They are large-

scale systems with strong interaction effects, due to com-

plex network topologies (e.g., due to material recycle and

heat integration). The scale of the problem means that

computationally efficient methods are required, whilst the

strong interaction effects must be accounted for to ensure

plant-wide stability. 3) There is often significant time-scale

separation between, and within, unit processes, due to dif-
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ferent physical and chemical processes. For example, mass

transport and chemical reaction effects may happen at very

different rates. Furthermore, interaction effects can induce

time-scale separation even when not present in the isolated

process units[4]. 4) Process Models often have significant

model-plant mismatch, as complex physical-chemical first

principle models often need to be simplified for control de-

sign. Additionally, physical parameters may be difficult to

measure (or be time varying), leading to modelling errors.

Distributed control, whereby local controllers make au-

tonomous decisions based upon knowledge of their local

process unit and communication signals from remote con-

trollers, has recently gained significant attention in the lit-

erature due to its scalability for large-scale applications and

its potential to account for interactions between subsys-

tems. A recent survey on distributed model predictive con-

trol (MPC) can be found in [5]. A significant advantage

of these approaches over traditional, decentralized control

systems is that interactions between unit processes can be

accounted for at the regulatory control layer. This is in con-

trast to decentralized approaches whereby interactions be-

tween unit processes may be treated as uncertainties trans-

forming the problem into a robust control problem i.e.,[6, 7].

This kind of decentralized approach can lead to poor per-

formance as the known interactions are treated as being

unknown. In contrast, in a distributed control approach,

the controller communication allows for beneficial interac-

tions to be utilized to improve plant-wide performance.

Centralized multivariable control is an intuitive ap-

proach. However, there are severe limitations in its ap-

plication to large-scale systems, the most obvious of which

is computing power, although this is neither the most fun-

damental nor worrisome issue1. In [8], an overview of cen-

tralized control is given. Some key issues were identified,

and are as follows: requirement of a multivariable dynamic

model, lack of fault tolerance, difficulties in tuning and

poor transparency. An eloquent discourse on the practi-

1Although, this is very important in approaches requiring real-
time optimization such as centralized MPC.



M. J. Tippett and J. Bao / Distributed Control of Chemical Process Networks 369

cal limitations of centralized optimal control is presented in

[9]. There are advantages of centralized control, with the

main advantage being the control of strongly interacting

processes. As pointed out in [10], however, these advan-

tages may not be enough to justify the implementation of a

centralized structure, where cascading feedback loops (de-

centralized control) may be effective.

Distributed control offers a solution to these pitfalls, of

particular importance for nonlinear control design is mod-

elling and computational burden. In the case of process

networks, it is far easier to take a “divide and conquer”

type approach of modelling individual unit processes and

their interactions, than to develop a monolithic dynamic

plant model due to their strong nonlinear nature. This

results in a set of models that are naturally suited to dis-

tributed control design. Furthermore, the distribution and

parallelization of the computational burden amongst a set

of distributed controllers has demonstrated computational

savings[11].

In this paper, we present a review of the current liter-

ature on distributed (or partially decentralized) control of

chemical process networks. In particular, we focus on re-

cent developments in distributed model predictive control

and how stability and performance objectives can be en-

forced. In contrast to some existing reviews (e.g., [5, 12]),

we also review some approaches to distributed model pre-

dictive control (such as dissipativity and passivity based

methods) which have not been covered previously.

2 Plant-wide process control

Modern chemical processes consist of many units inter-

connected with one another, often through quite compli-

cated network structures[13]. In particular, mass recycle

and heat integration are commonly used in chemical pro-

cess plants to improve steady state efficiency. However,

these network structures represent positive feedback loops

in the system, which are well known to be deleterious to

control performance. Control of such processes is charac-

terized by their scale, strong interactions and differing dy-

namics (possibly on different time-scales) of each process

unit[8]. In practice, the conventional approach is to con-

trol such systems by hierarchical control systems operating

on different time-scales[10] . These range from the regula-

tory control layer interfacing directly with the process (sec-

onds), supervisory control possibly including predictive con-

trol (minutes), local optimization (hours), plant-wide opti-

mization (days) and scheduling (weeks). At each level, the

controllers may communicate with one another (horizon-

tal interaction) to account for interactions between process

variables. In addition to these interactions, controllers in

different levels interact with one another, e.g., upper level

controllers set the setpoints for lower level controllers (ver-

tical interaction). This is shown diagrammatically in Fig. 1.

There is a vast literature surrounding the regulatory and

supervisory control layers. In particular, many recent works

have focused on distributed (or partially decentralized) con-

trol, whereby controllers on these levels communicate with

one another to improve performance. This review takes

a particular focus on distributed model predictive control,

and available methods for ensuring stability and perfor-

mance requirements.

Fig. 1 Plant-wide control hierarchy (adapted from [14])

The broader question of how to integrate this with the

other control layers in Fig. 1, as well as control structure

selection (Which variables should be measured? Which

should be manipulated?) are issues in the broader sub-

ject of plant-wide control[10]. Clearly, one key issue of dis-

tributed process control is to handle interactions between

process units, particularly due to materials recycling and

energy integration. Important considerations in this con-

text are the underlying physical laws (e.g., conservation of

mass, the laws of thermodynamics) which describe the pro-

cess network, as they impose limitations on the available

degrees of freedom. For example, it is well known that

it is not possible to independently control both liquid in-

ventory and flow rate, as they are linked. In the context

of systems with recycle, improper choice of the controlled

variable can lead to the “snowball effect”[15], whereby small

disturbances can have a large effect on recycle flow rates.

The reader is directed to [13] for a further discussion on the

topic of plant-wide control.

A link between controllability analysis and control is pro-

vided by the idea of self-optimising control introduced by

Skogestad[8, 16], whereby the control structure is designed

so that it is optimal with respect to disturbances when the

process is operating at the setpoint. An advantage of this

approach is that it provides a systematic method of de-

termining the optimal control structure. An approach to

achieve this optimality was presented in [17] and further

extended in [18], which facilitates multiobjective controlla-

bility analysis and the development of Pareto optimal solu-

tions. In the latter work, developments are presented which

allow for the sensitivity of the solutions to errors and dis-

turbances to be derived.
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3 Distributed process control

As has been mentioned previously, distributed control

refers to the case where a large-scale system is controlled

by a series of local controllers, that are allowed to commu-

nicate with one another. This is shown diagrammatically in

Fig. 2. This may be viewed as two interacting networks: a

process network interacting via mass and energy flows, and

a controller network interacting via information flows.

An interesting question in distributed control design is

how to select the controller network structure. In some

approaches, the structure is set by the design, e.g., the con-

troller and process network topologies must coincide with

one another in [19, 20], and the controller network has a

full structure (i.e., each controller communicates with ev-

ery other controller) in [21]. For approaches where the con-

troller communication network topology may be chosen by

the designer, the obvious question of “optimality” in con-

troller communication structure is raised. One solution to

the problem of determining the optimal controller network

topology is presented in [22]. This is achieved in the context

of the distributed linear quadratic (LQ) problem where the

cost function is a function of the controller network topol-

ogy. Interestingly, it is shown that adding communication

links may be detrimental to performance by this measure in

some cases. It may be difficult to reconcile this performance

measure with other (more classical) ones.

Fig. 2 Conceptual view of distributed control

Modern communication technologies offer a wide vari-

ety of methods by which the controller communication can

be implemented, each of which have advantages and disad-

vantages. Recently, there has been considerable interest in

these issues (under the name of networked control systems),

e.g., the issue of uncertain delay resulting from ethernet-

based internet protocols is studied, and an approach to ro-

bust control design is presented[23]. The general framework

developed therein enjoys the advantage of being applicable

to systems with nonlinearities in the communication net-

work, and facilitates the allowable bounds on the delay and

nonlinearities to be determined through convex optimiza-

tion. An approach to networked model predictive control

of chemical plants is presented in [24] using a two tier ar-

chitecture, which allows for an upgrade of existing control

infrastructure with modern wireless communication. From

a control theory perspective, what is important is the impli-

cations of the implementation of the controller communica-

tion network (e.g., the resulting time delays, presence and

nature of noises). As such, in the remainder, we will focus

on the structure of information flow between controllers,

rather than how it is transmitted.

3.1 Distributed model predictive control

Distributed model predictive control (DMPC) has been

an area of intensive research for both the process control

and broader control theoretic community in recent years2.

DMPC has three key advantages: ease of tuning, potentially

optimal solution and effective constraint handling. The lat-

ter is of particular interest, as classical control techniques

tend to handle constraints poorly or in an unsystematic

manner. A key difficulty in applying MPC to large-scale

systems has historically been the computational effort re-

quired to perform the online optimization. This has been

one of the key driving forces for the development of dis-

tributed MPC techniques. Some existing reviews of recent

developments and architectures of MPC can be found in

[12, 26]. DMPC can be broadly categorized into cooperative

and non-cooperative approaches. In the former, the individ-

ual controllers act together to optimize a global cost func-

tion by manipulating their local process variables. Whilst

in the latter, each controller optimizes its own local cost

function by taking the actions of other controllers into ac-

count (although they do not take into account the effect of

their own actions on other controllers′ cost functions).

3.1.1 Non-cooperative DMPC

In non-cooperative DMPC, the individual controllers op-

timize their own local cost functions by taking the actions

of the other controllers into account. An advantage of this

approach is that the resulting algorithms are often simpler,

and may require fewer communication channels and itera-

tions between controllers. One such approach is presented

in [27, 28] for linear systems, this approach is a general one

which may be applied to dynamically coupled systems (such

as process networks) and non-dynamically coupled systems

(such as vehicle formations). An advantage of this approach

is that each controller only needs to know the reference and

state trajectories of their neighbors, and no further state

information from the rest of the plant or models of the

dynamics of other processes is required. A key require-

ment of this approach is then that each controller ensures

that the closed-loop trajectory of its local process remains

within a certain distance of the reference signal. Some im-

plementation issues of this algorithm, such as selection of

tuning parameters, initialization and disturbance handling,

are studied in [29].

A similar requirement (called a consistency constraint)

is placed on the algorithm developed for dynamically cou-

pled nonlinear systems in [30]. An important assumption in

2Decentralized MPC, due to its comparative simplicity and simi-
larity to existing industrial practice, has been of interest for a longer
period, with rigorous treatments of the stability of decentralized
MPC strategies for dynamically coupled systems appearing from at
least the 1990s, e.g., [25].
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this approach is that the input constraints on the individual

controllers are decoupled. This is a realistic assumption in

process control applications in which the input constraints

are most often due to actuator limitations, and thus inde-

pendent of the rest of the process network. It is shown in

this paper that the computational complexity (in terms of

calculations required) is significantly smaller than that in

the centralized case, and even more so if the parallelization

of computation is taken into account. However, there is

an increase in the amount of data traffic that the commu-

nication system must handle, with modern communication

technology this is likely to be more than offset by the de-

creased computational load, however.

In the above approaches, the controllers communicate

in an iterative fashion, whereby the controllers iteratively

optimize their local objectives and communicate with other

controllers until some halting condition is met (e.g., conver-

gence of solutions, maximum number of iterations). How-

ever, another approach is for the controllers to communicate

sequentially, in which case there is a hierarchy of controllers

which compute their optimal solution and communicate it

to the next controller in line each sampling instance. This

approach can yield a substantial decrease in the required

computation and communication, as well as making proof

of convergence of each controller easier. It is noted in [31]

that cycles in the process network, due to recycle and heat

integration for example, complicate iterative DMPC appli-

cations. As such, iterative minimax optimization (whereby

each controller carries out its optimization based on the

worst case possible interactions from other process units)

or sequential communications are suggested as possible so-

lutions. However, iterative communication may come at

the expense of decreased performance, especially in the final

controller in the hierarchy, as it may have limited freedom to

achieve its local performance objectives given the decisions

of the previous controllers in line. As such, the choice of op-

timization hierarchy is important and should be driven by

knowledge of the interactions between processes. One such

approach which fits into this category is that presented in

[32], where a hybrid linear and nonlinear DMPC approach

is developed. This approach uses nonlinear model predic-

tive controller (NMPC) to deal with strong nonlinearities

occurring in certain process units (e.g., chemical reactors)

and allows for simpler linear MPCs to be applied to the

process units with weaker nonlinearities (e.g., distillation

columns).

Another nonlinear DMPC approach which uses sequen-

tial communication is presented in [11], wherein the frame-

work is general enough to allow for either sequential or it-

erative communication. This approach is one of a class

of MPC algorithms called Lyapunov MPC, initially de-

veloped in [33, 34] for the control of single systems. In

this approach, the amount by which the MPC decreases

a Lyapunov function is compared to a known stabilizing

controller. If the Lyapunor MPC decreases the Lyapunov

function more than the known controller, the control ac-

tion of the Lyapunov MPC is used, otherwise that of the

known controller is applied. In this way, the MPC inherits

the stability properties of the known controller. The mo-

tivation for using MPC in this approach is to improve the

performance of the control system by using MPC, and thus

achieving optimal constrained control. This is particularly

important when economic considerations are considered, as

economic MPC allows for these to be optimized explicitly

at the supervisory and regulatory control layers in real-time

rather than at higher levels in the plant-wide control sys-

tem. Extensions of this approach to economic MPC have

recently been reported in [35−37], the latter two of which

focus on output feedback. In addition to this, there have

been many developments of Lyapunov MPC in cooperative

DMPC, which will be discussed in the following section.

As mentioned above, one method to decrease the amount

on computation (and communication) required in non-

cooperative DMPC is to design local controllers such that

they solve a local minimax problem based on the worst case

interactions from other process units. In this approach, the

interactions between process units are treated as unknown

disturbances, as the predicted trajectories sent from one

controller to another are assumed to be potentially inac-

curate. As such, there are many parallels between this ap-

proach and robust MPC formulations, and optimization un-

der uncertainty more generally[38−40] . The above approach

has the advantage of allowing communication to be halted

before each controller iterates to convergence, as in 41, 42.

In these frameworks, it may be necessary for the local con-

trollers to enforce bounds on their predicted state/output

trajectories so as to ensure plant-wide stability. A disadvan-

tage of this approach is that the assumption of worst case

disturbances can lead to poor performance. Furthermore,

if the feedback nature of the receding horizon framework

is not taken into account, it can be difficult to ensure fea-

sibility. The latter point may be addressed by designing

feedback minimax approaches[39], or as detailed in the ex-

cellent survey paper[43].

The dissipativity-based DMPC approach for linear pro-

cess networks presented in [44, 45] is also classified as a non-

cooperative strategy. In this approach, a dissipativity en-

suring constraint is placed on each local controller. This,

in turn with the dissipativity properties of the individual

process dissipativity properties, and process and controller

network topologies, is used to ensure stability and minimum

performance bounds on the closed-loop plant-wide system.

This can be seen as an extension of the approach presented

in [46] to distributed control and more general forms of dis-

sipativity. An advantage of dissipativity based approaches

is that dissipativity may be used to effectively bound the

input-output properties of the processes, allowing for in-

teractions between processes to be accounted for. This

also allows for a “trading” of stability between processes,

as controllers may be designed to make use of stabilizing

influences of certain process units on others to help sta-

bilize other processes. A potential disadvantage of this is

that each closed-loop may then not be stable in isolation,

or when the controller communication network fails. To
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rectify this, an approach to ensure stability in these cases

has been presented in [47]. Additional extensions to multi-

rate control have also been developed[48]. As the stability

results obtained from dissipativity-based analysis are suffi-

cient only, there could be some reduction in performance

due to the need to satisfy these conditions. On the the

other hand, as dissipativity represents bounds on the sys-

tem properties, it is well suited to describing uncertainties.

Indeed, H∞ robust control may be cast in the framework

of dissipativity. Thus, there is the possibility of extending

these approaches to robust distributed MPC.

A key feature of this dissipativity-based DMPC approach

is the use of quadratic difference forms (QdFs) as supply

rates of the processes and controllers3. These forms al-

low for sharper stability results as compared to traditional

supply rates. Futhermore, as they may be thought of as

quadratic forms of a finite, receding, horizon of a system′s
inputs and outputs, they are well suited to the MPC frame-

work. This approach can be seen as a special case of some

of the dissipativity based distributed process control (DPC)

approaches presented in Section 3.2.

3.1.2 Cooperative DMPC

In cooperative DMPC, the controllers manipulate their

local variables in order to achieve a globally optimal solu-

tion, that is to optimize a global cost function. This allows

for the possibly deleterious effects of one controller′s ac-

tions on other controllers and therefore global performance

to be taken into account. This is in contrast to the non-

cooperative approaches discussed above, where the effect

of each controller′s action on others is only considered so

far as to maintain stability, or possibly a minimum perfor-

mance level. As such, cooperative control facilitates the

realization of the Pareto optimal solution, as compared to

non-cooperative control where the Nash equilibrium is typ-

ically obtained.

As pointed out in [51], the exchange of predicted state

trajectories and the modelling of interactions between sys-

tems alone is insufficient to ensure stability in DMPC ap-

plications due to competition between controllers. Addi-

tionally, Bawlings and Stewart[51] presents some interesting

analysis and discussion on methods by which the amount of

controller communication may be decreased by considering

the structure of the process network, and by modifying in-

teraction models. Although it was observed that there is a

tradeoff, in that strong interactions require a higher degree

of communication.

Some additional works by the same group as the

above[21, 52−54]. A key feature of these developments is the

emphasis on coordination between controllers to achieve a

Pareto optimal solution, and studying the stability proper-

ties assuming that the optimal solution is obtained. Addi-

tionally, there has been a focus on studying the properties

(i.e., stability and feasibility) of suboptimal MPC. For ex-

ample, cases where the controllers are not allowed to itera-

tively communicate until each controller solution converges.

3See [49, 50] and the references therein for a mathematical de-
scription of QdFs.

This is important in practice as there may be limitations

to the computational and communication overhead which is

allowable. A key result in this context is that the solution

of the local controller optimization algorithms must be fea-

sible and maintain closed-loop stability after an arbitrary

number of iterations. This is in contrast to many other

MPC algorithms where stability is only ensured if the con-

trollers are allowed to iterate to completion and the optimal

solution is found. The key technical developments for this

analysis appear in [55] in the context of MPC design for

isolated systems, or from another perspective, centralized

MPC design.

An extension of the above results to tracking control for

non-zero setpoints (in the case of linear systems) is pre-

sented in [56]. This DMPC is able to drive the process

network to any feasible setpoint using a feasible state and

input trajectory. The use of an invariant set for the track-

ing problem based on a centralized controller gives the ap-

proach a larger region of attraction than standard coopera-

tive DMPC formulations. This comes at the computational

cost of having to determine this invariant set based on a

centralized solution to the problem. However, it should be

noted that this is carried out offline, and thus does not af-

fect the computational complexity of the online problem.

The approach presented in this paper can be thought of as

a two layer structure, where the DMPC system performs as

described above, and the upper layer coordinates the dy-

namic models used in the DMPC (supervisory/regulatory

control layer) and the static models used at higher levels of

the plant-wide control hierarchy (possibly a real-time opti-

mization layer).

A novel sensitivity based coordination approach to

DMPC is presented in [57, 58]. A key development in this

work is the use of a linear approximation of the cost func-

tions of neighboring controllers in each controller′s cost

function in order to coordinate the individual controllers.

The essential idea being that these approximations convey

gradient information about the neighboring controllers′ cost

functions. Whilst a condition ensuring the convergence of

the algorithm is presented, the paper does not consider the

stability of the plant-wide system, leaving this as a potential

area of future research.

A useful framework for studying DMPC is game the-

ory, as it is well suited to studying optimal decision mak-

ing amongst multiple agents. Furthermore, it allows for

communication and negotiation protocols to be designed so

that the controllers can either achieve cooperative or non-

cooperative solutions. In addition to optimality, this frame-

work also allows for the stability of the resulting equilibria

to be studied. Two game theoretic approaches are presented

in [59, 60], the former focused on the case where there are

only two subsystems. In this case, the amount of communi-

cation can be exactly determined, and practical stability of

the resulting system is ensured. The latter paper considers

the more general case of an arbitrary number of subsys-

tems. As it is assumed that each controller only has local

state and model information, the controllers must negotiate
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in order to achieve a cooperative solution. The individual

controllers propose solutions, then they agree on the best

solution based on a novel negotiation protocol. However,

the game theory based approaches may suffer from combi-

natorial explosion of possible strategies, and thus become

impractical when the number of subsystems is large. Also,

the Nash equilibrium reached by independent controllers

can be far from the Pareto optimal solution.

As mentioned in the previous section, the recently devel-

oped Lyapunov MPC, provides a stability ensuring frame-

work for cooperative nonlinear DMPC. Many develop-

ments in this area have been summarized in the recent

monograph[26]. This is a flexible framework which allows for

flat and tiered controller structures[24, 61], as well as asyn-

chronous sensor information[62] , and process networks with

multiple time-scales[63, 64]. Additionally, this approach has

been extended to allow for disruptions (e.g., noise or data

losses) in the controller communication, by implementing

a system which determines if the information received by

a controller is reliable or not[65]. A significant advantage

of this approach is its flexibility to handle a multitude of

situations, and issues encountered in practical applications.

Additionally, it allows for economic DMPC, as presented

in [66]. Wherein the closed-loop and computational per-

formance is compared to that of conventional centralized

MPC, with the conclusion that economic DMPC allows for

improved performance with the same level of computational

burden. A potential disadvantage of this approach is that

the designer must have knowledge of a stabilizing controller

(which respects any constraints), which may be difficult to

determine a priori. However, as many chemical process net-

works can be stabilized (at least locally) by relatively simple

controllers (multi-loop or cascaded PID for example), this

may not be major drawback in practice.

Although DMPC has been demonstrated to have signifi-

cant computational savings as compared to centralized con-

trol [61, 67, 68], the computational complexity of DMPC (es-

pecially for nonlinear systems) is still of concern. It was

shown in [69] that there is a tradeoff between the rate of

convergence, level of communication and the distribution

of computation. This has led to the development of sev-

eral approaches which reduce the amount of communication

required[28, 59, 70]. Another approach to reduce the compu-

tational requirements of DMPC is to develop specialized

optimization algorithms which take advantage of the struc-

ture of the optimization problem which occurs in DMPC.

One such approach for linear DMPC is presented in [71],

based on offline inversion of the Hessian matrix and a dual-

mode strategy which allows for the designer to decrease the

computational time at the expense of global optimality.

There have also been some parallel quadratic program-

ming algorithms which may be applied to linear DMPC. In

[72], such an approach based on accelerated gradient meth-

ods was developed using a dual decomposition. In [73],

an algorithm based on the proximal center decomposition

method was developed. A projection free approach to paral-

lel quadratic programming was presented in [74]. However,

it should be noted that these algorithms were not developed

with DMPC in mind. And as such they do not consider the

similarity of the optimization problem between two sam-

pling instants. Therefore, some additional improvements

may be possible.

A very computationally efficient approach to linear MPC

is explicit MPC, first developed in [75, 76]. However, to the

best of our knowledge, there have not been attempts to

extend this to DMPC, and it remains restricted to systems

of small or intermediate size due to the size of the resulting

look up table in large-scale applications.

3.2 Dissipativity and passivity based DPC

Dissipative system theory was first formalized[77, 78] as

an extension of the concept of passive systems. Intuitively

speaking, dissipative systems are those for which the in-

crease in stored energy is bounded by the amount of en-

ergy supplied by the environment (here energy may refer

to actual physical energy or an abstract energy-like quan-

tity). This provides a useful framework for studying inter-

connected systems, such as process networks, as it is an

input-output property. This allows for much of the com-

plexity of the problem to be shifted to the interconnection

relations, rather than studying centralized process models.

A continuous time dynamical system with input, output

and state u, y and x respectively, is said to be dissipative

if there exists a function called the supply rate s(u, y), and

positive semi-definite function defined on the state, called

the storage function V (x(t)) such that:

V
(
x(t1)

)
− V

(
x(t0)

)
≤

t1∫

t0

s
(
u(t), y(t)

)
dt (1)

for all times t0, t1 ≥ 0[77]. This inequality is known as

the dissipation inequality. The following (Q, S, R)-type of

supply rate is commonly used:

s(u(t), y(t)) = yT(t)Qy(t) + 2yT(t)Su(t) + uT(t)Ru(t).

(2)

In the special case that dim (y) = dim (u) and the supply

rate is yT(t)u(t), the system is said to be passive; which in

the case of linear time invariant systems is equivalent to pos-

itive realness. As stability conditions based on dissipativity

theory are sufficient only (most approaches use variations

of the results developed in the series of papers[79−81]), there

may be a need to detune the resulting controllers so as to

ensure that these conditions are satisfied. The advantage of

dissipativity theory for large-scale systems is that the anal-

ysis and control design may be carried out using the rel-

atively simple dissipativity properties rather than detailed

models.

Developments over the last two decades have drawn re-

lationships between the thermodynamic laws underlying

chemical process systems and passivity/dissipativity, see

[82–88] and the references therein. In general terms, the

available work of process systems may be used to define a
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storage function for chemical process systems in a natural

way. This facilitates and motivates the use of dissipative

controllers for such systems. The key result of [82, 83, 87]

is that under certain conditions, chemical process networks

are structurally passive due to the 1st and 2nd laws of

thermodynamics. Thus, by using the well known passiv-

ity theorem, it can be shown that they can be stabilized by

decentralized passive controllers, e.g. multi-loop PID con-

trol. However, it should be noted that this result says little

about the level of performance that may be realized with

this approach. As this is a structural property of process

systems (i.e., independent of certain parameter values), this

approach may be robust to variations or inaccuracies in the

measurements of these parameters.

A natural extension of this is the dissipativity with sup-

ply rates of the form (1). Dissipativity based analysis

for plant-wide stability and performance was developed for

the linear systems case[89] and for nonlinear plant-wide

systems[90, 91]. Dissipativity based decentralized control ap-

proaches were investigated for linear systems, where the

controller design was formulated as a linear matrix inequal-

ity (LMI) problem[92, 93]. This approach was then extended

to distributed control[94, 95]. This was achieved by refor-

mulating the distributed control problem as a decentralized

control problem of closed-loop nodes in the process network

which interact through mass/energy and information ports,

i.e., a two-port network. The disadvantage of this is that

there is some restriction on the topology of the controller

communication network. A related approach, which uses

dynamic supply rates as a more general form of dissipa-

tivity is presented[96, 97]. An advantage of this approach is

that the more general supply rates allow for sharper sta-

bility and minimum performance bounds as compared to

(Q,S, R) supply rates.

In [19, 98], an LMI based H∞ approach to distributed

control for linear systems, interconnected by either peri-

odic or infinite structures is presented. In this context, the

H∞ control problem may be seen as a special case of dis-

sipativity based control where the supply rates are of the

form −yT(t)y(t) + γ2uT(t)u(t), γ > 0. In the latter pa-

per, imperfect controller communication in the form of lossy

communication and constant delays is also considered.

An approach to dissipativity based distributed control

for nonlinear systems based on differential geometry is

presented[20]. The essence of the approach is to decom-

pose the drift vector field of each process into dissipative

and non-dissipative components and then design controllers

to dominate the non-dissipative component. An attractive

feature of this is that it provides a constructive procedure

for finding the process storage functions. Furthermore, dis-

sipative (stabilizing) dynamics of the processes are retained

allowing for less control effort to be used.

3.3 Graph theoretic DPC

Graph theory provides a natural framework for represent-

ing large-scale systems, as it allows for the structure of the

relationships between nodes (which may represent unit pro-

cesses or individual process variables) to take center stage.

This is important in the context of both process design and

control, as it is often the relationship/interactions between

subsystems which are the source of performance difficulties.

It has been suggested that graph theoretic approaches allow

for a more flexible design procedure as compared to geomet-

ric approaches, however, with the caveat that the approach

is strongly influenced by the choice of state variables[99].

Graph theoretic techniques, such as reduction of the graph

representing the process network, can be also used prior to

the use of other techniques. For example, an approach of

reducing the graph of the process network into a strongly

connected graph is advocated prior to dissipativity based

stability analysis[100] .

In [22, 101], a graph theoretic DPC approach is presented,

in which a “communication cost” is applied in a modified

linear quadratic regulator (LQR) framework to find an op-

timal controller network structure. An interesting result

in this formulation is the existence of (and conditions for)

“critical prices” where the addition of further communica-

tion links decreases plant-wide closed-loop performance.

Another approach to develop the optimal controller

structure (for both stabilization and disturbance rejection

problems) is presented for nonlinear process systems[102].

In this approach, the process network is represented as a

directed graph to describe the relationship between differ-

ent internal and external variables. An approach for robust

distributed large-scale systems both with and without time-

delay in the communication channels between controllers is

presented[103]. As with the above paper, the process net-

work is represented as a directed graph, this is a natural way

to represent chemical process networks as the mass flows be-

tween process units are almost exclusively unidirectional in

nature.

3.4 Distributed state estimation

An important implementation issue in modern control

design is state estimation. In the case of distributed con-

trol, this issue is compounded by the need for communi-

cation between geographically dispersed sensors and actu-

ators in order to obtain accurate state estimates. As with

distributed control, there is a tradeoff between observer per-

formance and the computational and communication load.

One such approach based upon a distributed Kalman filter

is presented, which allows for multi-rate sensor information

to be utilized[104, 105]. An attractive feature of this approach

is that it converges to the optimal (centralized) solution of

the state estimation problem. An integrated decentralized

state feedback control and distributed state estimation pro-

cedure for linear and nonlinear systems is presented with a

focus on parallel computation[106]. In addition to guaran-

teeing the stability and optimality of the observer (as well

as the stability with the state feedback controller), the com-

putational benefit of different decompositions of the process

network (in terms of the number of distributed state esti-

mators) is studied.

In [107], an approach which ensures a minimum H∞
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performance bound on the state estimation over a finite

time horizon is presented for time-varying systems with

stochastic parameters and nonlinearities. To enable this

framework, they developed a novel stochastic bounded real

lemma to guarantee the H∞ performance. Also within the

H∞ framework, a robust distributed state estimation was

developed in [108], wherein observers with continuous time

observations interact with one another at discrete time in-

stances in a round-robin fashion. A cooperative distributed

state estimation approach is presented in [109], wherein

only communication between nearest neighbors is required

to provide asymptotically stable state estimates in the pres-

ence of delays and dropouts in the estimator communication

network.

As an analogue of MPC, moving horizon estimation

(MHE), provides an alternative to (extended) Kalman fil-

ters for state estimation. Essentially, MHE finds the op-

timal state estimates over a finite rolling horizon of past

input and output measurements subject to the process

model constraints and constraints on the states and distur-

bances. With their ability to systematically handle state

constraints, it has been argued that they are more appli-

cable to chemical process systems than traditional Kalman

filtering techniques[110−112]. As a consequence of the need

for online optimization, MHE requires more computational

effort than Kalman filters. However, in process industries,

this may be not a major concern due to the relatively slow

process dynamics, although it has been questioned whether

the improved state estimations justify the increased com-

putational effort[113]. The additional computational bur-

den associated with MHE motivates distributed MHE ap-

proaches for large-scale systems.

Distributed MHE has gained interest in the literature re-

cently in the same way that DMPC has. One practically

appealing approach is the observer enhanced nonlinear dis-

tributed MHE[114, 115], whereby a known deterministic ob-

server is utilized to provide a measurable level of robust-

ness. This approach is somewhat similar to the Lyapunov

DMPC approach discussed in Section 3.1.2, where a known

controller is used to ensure the stability of the resulting

closed-loop system. This approach has been extended to al-

low for event driven communication between observers[116]

to reduce the amount of required communication.

A distributed MHE approach with guaranteed conver-

gence for linear networks was presented[117, 118]. This has

been extended to nonlinear networks[119, 120]. The latter

also allowed for the relaxation of the assumption of observ-

ability to detectability.

4 Future directions of DPC

Based on the review of the existing literature above, in

this section, we discuss some possible areas for future re-

search in the field of distributed process control. In partic-

ular, we discuss areas which can improve business efficiency.

4.1 Flexible manufacturing and integra-
tion with business objectives

With increasing competition and changing industrial

trends, more agile and flexible manufacturing methods are

required for modern industrial processes[121, 122]. An exam-

ple of this is a shift in some areas away from steady state

design and operation to semi-batch and batch designs, in

order to decrease the time to market of different product

lines and to allow for plant and equipment to be utilized

for multiple product grades. The fast moving consumer

goods industry is an example of such a case where this

shift has occurred[123]. From a control perspective, this

requires a shift away from traditional regulatory control of

constant setpoints to allow for more frequent changes in

product grade.

One approach to improve the flexibility and return on

capital investment is reconfigurable control and process op-

erations. The essential idea is to have set process units

(reactors, dryers, filters, etc.) which can be connected

together in different ways to efficiently produce different

products or product grades. Examples of such cases are

presented in the context of food processing[124] , for oil

production[125], and for processing methane emissions[126] .

A recent distributed approach to controlling such systems is

presented[122, 127, 128], for which it is argued that distributed

control structures are more suited to reconfigurable con-

trol than traditional hierarchical structures due to their in-

creased flexibility.

A key motivation for flexible manufacturing is to make

process operations more competitive by improving their

agility, and to add value by providing mass customization

of speciality products[121]. This is a significant step away

from traditional continuous process operations which fo-

cused on steady state designs. However, there has been

a recent trend towards flexible or “smart” plants[129, 130],

in which processing operations are integrated with business

needs and are made more agile allowing for swiftly moving

business needs to be met. This latter point about smart

plant operations is intimated related to distributed and net-

worked control as the distribution of sensors, actuators and

decision making is common to both.

An interesting line of research is to design “modular”

distributed control systems which can be extended or grow

if the plant changes, or individual local controllers can be

updated with changing process equipment. This idea may

be realized using the concepts of passivity/dissipativity or

input to state stability (and the numerous variations of it

in the literature), which allow for such a modular controller

design. Developments in this area will allow for process net-

works to grow and expand without the need for a complete

redesign of the control system every time a modification is

made. This is related to flexible manufacturing and recon-

figurable control as discussed above, as it facilitates the use

(or retrofit) of installed equipment for multiple tasks.

Another important aspect of flexible manufacturing is

the interaction with the product scheduling system, which
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chooses when and which products are to be produced. The

product being produced is naturally a discrete, logical vari-

able (i.e., product A, B or C), as such integration of this

with process systems (which are continuous in nature) leads

to a hybrid control problem, with a coupling of continuous

dynamics and discrete events. Despite recent developments,

this still remains a new area of research, and requires fur-

ther work.

Along this note is the possibility for the control of opera-

tions to be integrated with a business′ supply chain manage-

ment scheme. This has the possibility of reducing the inven-

tories that required, and allow for more effective schedul-

ing of process operations. Furthermore, examples such as

the MIT beer game suggest that supply chains can suffer

from positive feedback leading to poor performance (i.e.,

oscillations or high gain) in a similar manner to which pro-

cess networks have structures (i.e., mass recycle and heat

integration) which may cause operability issues. This sug-

gests that some of the DPC techniques may be used, or be

adapted to be used in managing supply chains.

4.2 Process monitoring and maintenance

As process systems and their control systems become

more complex, in order to achieve higher efficiency and

tighter control performance, they become less transparent

and harder to monitor and maintain. As such, there is a

need to develop systems which can assist operators in mon-

itoring and maintaining the plants control system. Dis-

tributed control structures are intrinsically well suited to

this as they are more transparent than centralized control

structures, and allow for a decomposition of the control sys-

tem for analysis and maintenance.

Related to this is fault detection and isolation over (pro-

cess) networks using sensor networks. This is an area of

research which is still in its (relative) infancy, and as such

should be considered as an area where significant gains,

both theoretical and practical, can be achieved. Following

this, the design of fault tolerant distributed control systems

is of importance for their practical application in industry.

4.3 Distributed economic model predic-
tive control

A recent development in the MPC literature is economic

MPC, whereby the objective function in the online opti-

mization measures some economic objective which is to

be minimized[36, 37, 131]. The obvious advantage of this

is that the optimization of the controller is then physi-

cally/economically motivated, as opposed to the mathe-

matically convenient, but abstract quadratic cost functions

often used in MPC. This may make the controller more

transparent, as the controller is optimizing a tangible quan-

tity. Distributed economic MPC is a natural extension to

these developments, as in process networks, the economics

of the overall system is intimately related to that of the in-

dividual processes and their interconnection relationships.

Thus, distributed control is a powerful framework to deliver

economic objectives in chemical process systems. Addition-

ally, this may allow for a flattening of the plant-wide control

structure, as the higher level economic optimization may be

carried out at the lower levels of the control system.

Despite these advantages, there have been few develop-

ments in the area of distributed economic MPC in the lit-

erature. A difficulty with this approach is that for com-

plicated systems (such as process networks), the economic

cost function may be difficult to determine. Furthermore,

the resulting optimization problem may be difficult to solve

as the cost function may not lend itself to efficient opti-

mization (e.g., it may not be convex) and the nonlinearity

of the processes becomes much more important compared

to regulating control where the setpoints are predetermined.

However, due to advancements in computing power and op-

timization algorithms, these problems are being overcome,

thus allowing for the benefits of distributed economic MPC

to be realized.

5 Conclusions

A review of the current literature on distributed pro-

cess control has been presented. A particular focus on dis-

tributed MPC has been taken due to its level of interest in

the recent process control community, as well as its ability

to handle nonlinearities and constraints which are key chal-

lenges in the control of chemical process networks. Whilst

there has been significant innovations and developments in

distributed process control, there are still outstanding prac-

tical issues, such as fault detection and tolerance, flexibil-

ity, reconfigurability and integration with scheduling and

broader business objectives which need to be addressed to

see a wider industrial implementation. Furthermore, in-

tegration of recently developed DPC technologies with dis-

crete systems (such as PLCs or plant scheduling) to develop

a hybrid control system would align research more closely

with industrial practice.

Additionally, whilst loop pairing is not as important as

in decentralized control schemes, it should be further devel-

oped for each local controller. Heuristics such as group-

ing variables in terms of the time-scale or based on ge-

ographic considerations, or from traditional chemical en-

gineering tools (such as plant flow sheets) may be devel-

oped. This question is linked to the question of optimal

controller communication network topology, which is still

an open question in many cases.

Whilst this review has focused on distributed control in

the context of process systems, there are other application

areas where similar problems are encountered. For exam-

ple, with a shift towards decentralized power generation due

to renewable energy generation (e.g., rooftop solar panels)

it is expected that greater strain will be placed on the elec-

trical grid. Distributed control of generation and loads may

provide a method of effectively maintaining stability of the

electrical grid. Coordination problems such as in the con-

trol of platoons of vehicles or formations of air/spacecraft

are also potential applications due to the importance of in-
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teractions between subsystems.
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Christofides. Sequential and iterative architectures for dis-
tributed model predictive control of nonlinear process sys-
tems. American Institute of Chemical Engineers Journal,
vol. 56, no. 8, pp. 2137–2149, 2010.

[12] R. Scattolini. Architectures for distributed and hierarchi-
cal model predictive control-a review. Journal of Process
Control, vol. 19, no. 5, pp. 723–731, 2009.

[13] W. L. Luyben, B. D. Tyréus, M. L. Luyben. Plantwide
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