
International Journal of Automation and Computing 12(5), October 2015, 503-510

DOI: 10.1007/s01163-015-0896-4

Comparing the Effect of Pruning on a

Best Path and a Näıve-approach Blackboard Solver

Jeremy Straub
Department of Computer Science, University of North Dakota, Grand Forks, North Dakota 58202, USA

Abstract: A näıve solver is one approach that can be used to identify prospective solutions based on data on (or projected to be on) a

Blackboard Architecture′s blackboard. The näıve solver approach doesn′t implement heuristics or other techniques to determine what

solution paths to attempt first. Instead, it runs the blackboard forward (simulating what would occur if data were gradually added

to the blackboard at a faster-than-real time rate). The approach doesn′t guarantee that an optimal solution will be found and will

need to be run repetitively to create multiple solutions for comparison. This paper assesses the effect of pre-pruning the blackboard′s
facts and rules to remove those that are not relevant (e.g., facts that cannot be asserted, rules that cannot be triggered) or which

produce irrelevant facts and pruning actions that produce irrelevant facts (and/or trigger other similarly useless actions). It describes

the Blackboard implementation and its utility, explains the pruning process used and presents quantitative and qualitative assessment

of the utility of pruning to a näıve solver′s operations. This value is extrapolated to facilitate consideration of a more robust pruning

process which also removes low-value facts, actions and rules in addition to those being removed due to their uselessness.

Keywords: Blackboard Architecture, blackboard maintenance, control of heterogeneous craft, multi-craft control, multi-tier control.

1 Introduction

Numerous uses of the Blackboard Architecture[1] have

been proposed for a variety of applications. The black-

board approach extends the concept of an expert system

to actuate, instead of simply providing recommendations

to a human operator. While a blackboard system can be

utilized in forward-only mode, where new data is applied

and facts or actions are triggered from it, a more proac-

tive approach, for certain applications, is to steer the data

that is collected by the blackboard based on an identified

best-possible path[2, 3]. This path may not be able to be

perfectly followed: For example, if data that is collected is

different from what is predicted or if physical impediments

prevent collection, an alternate path may be needed. How-

ever, this approach can position the system to make the

best choices based on currently known information (and

update the path and thus the choices made as additional

information is added to the blackboard).

In order to identify this best path (based on the present

state), a solver must be run on the blackboard. Several dif-

ferent approaches to this can be taken. One approach which

closely mirrors the way the blackboard system operates in

forward-only mode, is a näıve solver. This solver asserts

Regular Paper
Manuscript received September 21, 2013; accepted December 4,

2014
This work was supported by a Grant-In-Aid of Research from Sigma

Xi, the Scientific Research Society, North Dakota EPSCoR (NSF #
EPS-814442) and a Summer Doctoral Fellowship from the University
of North Dakota School of Graduate Studies. Facilities and equip-
ment utilized in this work have been provided by the University of
North Dakota Department of Computer Science, and North Dakota
EPSCoR (NSF # EPS-814442).
Recommended by Associate Editor Mohammed Chadi
c© Institute of Automation, Chinese Academy of Science and

Springer-Verlag Berlin Heidelberg 2015

facts (triggering rules and actions) and continuously checks

to see if the desired outcome has been produced. The näıve

solver can be run multiple times to identify multiple solu-

tions for comparison. This approach may be particularly

well suited to a distributed blackboard system (where there

is no single repository of facts, actions and rules) as it will

not require every single fact, action and rule to have to be

transferred to be assessed. However, the data required may

still be significant (though comparatively less).

One way of potentially reducing the amount of time that

is required for any solver to run is to prune off unnecessary

data (to prevent it from having to be processed). This paper

considers the impact of pruning on the performance of the

näıve solver. It compares the time saved to the amount of

time consumed by pruning, evaluating the value provided

quantitatively. A qualitative evaluation of the approach′s
utility in a variety of conditions is also presented.

Expediency of blackboard operations is required for many

prospective applications. For example, it is critical if

a Blackboard architecture is used in the development of

new solutions for path planning for unmanned aerial[4],

ground[5, 6] and underwater vehicles[7]. Autonomous con-

trol of game agents[8] would also drive a need for timely

decision making. The evaluation conducted herein, thus,

supports assessment of the suitability of pruning best path

and näıve solvers for these applications.

2 Background

The work described herein draws on a significant history

of prior work related to the Blackboard Architecture, its

implementation and its uses, originating from Hayes-Roth′s
initial work[1] on refining the Hearsay II system[9]. First,



504 International Journal of Automation and Computing 12(5), October 2015

an overview of the Blackboard Architecture will be pro-

vided, including a discussion of its previous uses. Then,

the use of pruning in systems implementing a Blackboard

Architecture will be discussed.

2.1 Blackboard Architecture

The Blackboard Architecture functions are similar to an

expert system (see [10, 11]) in that it is comprised of facts

(logical statements that can be asserted or not, and in some

implementations, asserted with a value assigned) and mech-

anisms for asserting the truth or falsity of those facts (i.e.,

actions and rules). Unlike an expert system, a blackboard

system also commands actions to actuate outcomes in its

environment. Under Hayes-Roth′s initial design[1], based

off the Hearsay II system[9], two blackboards were utilized:

one for domain problems (specific to the topic of the system)

and the other for control problems (how to effect goals).

However, subsequent implementations have used a variety

of configurations. Velthuijsen et al.[12] proposed a parallel

implementation while Ettabaa et al.[13−15] proposed various

forms of a distributed Blackboard Architecture. Rosenking

and Roth[16] demonstrated how systems can cooperate us-

ing the blackboard concept, while Dong et al.[17] showed

how an event-based blackboard system can be developed.

A variety of changes and enhancements have been made

to the base blackboard concept. Corkill et al.[18, 19] worked

to create a generic Blackboard-style architecture and its

implementation. Alexander-Craig[20] claimed to have rein-

terpreted the Blackboard Architecture by adding new task

capabilities, message handling and filtering capabilities,

among other things. Jiang et al.[21] created an adaptive

implementation for use by distributed agents, while Laasri

et al.[22] demonstrated reasoning ability in the time and hy-

pothetical domains. Rice et al.[23, 24] created a language for

Blackboard problem solving implementation, while Mentec

et al.[25−27] demonstrated its utility for real-world control

problems.

The utility of Blackboard systems have been demon-

strated across a wide variety of domains. Huang et al.[28]

demonstrated its utility in an intelligent tutoring system.

Campos et al.[29−35] demonstrated the use of Blackboard

for robotic control. Adhau et al.[36] demonstrated it effec-

tiveness for project scheduling.

2.2 Blackboard pruning

Among the earliest mentions of the concept of pruning in

an expert systems and blackboard context is work by Giu-

liano and Jones[37] who published a technical report dis-

cussing the value of utilizing humans to prune computer-

generated association lists in 1966. By 1977, the concept

of pruning had been considered for use in conjunction with

the Blackboard Architecture by Goodman and Reddy[38].

However, their paper provided only a suggestion of the

value of its use. In 1987, Craig[39] utilized pruning to re-

move aircraft that were not deemed to be impactful from a

Blackboard-based airspace monitoring system. This prun-

ing, however, was at the object (and not rule/fact/action)

level. It has also been suggested in the context of restricting

design choices[40], pruning decision trees[41] and removing

aspects of the solution space deemed inferior choices by an

evaluation process[42−46] . Ward and Novick[47] discussed

the problem of pruning away a desirable answer and Ou

et al.[48, 49] discussed prospective solutions to this problem,

via a configurable severity parameter and global best-value

consensus. The pruning concept has also been used in au-

tonomous control outside of Blackboard-based systems. As

one example, Rantanen and Juhola [50] used what they

termed “configuration deactivation” for a similar problem

of reducing the search space for path planning.

3 Best path and näıve solvers

The best path is taken to be the path that requires the

lowest cost (which is a combination of the computational

cost of running rules and the costs attributable to actions).

In most systems that operate in a real-world environment,

the action costs (e.g., the time and fuel used for moving

a craft and collecting data) will dwarf the computational

costs of rule activation. However, this may not always be

the case. Rules requiring particularly robust analysis may

take longer than actions which do not have a physical com-

ponent (e.g., triggering a message to be sent across a net-

work). Also, the level of concurrency possible may impact

this comparison as well.

The best path is identified based on predictions related

to certain elements. Facts that are asserted can obviously

be taken as given. However, the results of actions or rules

may be unpredictable (i.e., there would be little point to

collecting data which is already absolutely known, thus the

results of data collection can be projected based on a prior

knowledge and past experiences, but surprises could and

should occur). Thus, for the purposes of solving for the

best path, the outcomes of actions are predicted. A more

complex approach (a subject for prospective future work)

would be to evaluate multiple result permutations.

The näıve solver algorithm is depicted in Fig. 1. It begins

by selecting an invokable rule (one with all preconditions

satisfied) to run (if there is not one, the algorithm ends

with no solution found). The rule is then run, which may

or may not assert one or more facts and/or trigger one or

more actions. Each action that is triggered may trigger ad-

ditional actions (i.e., recursive chains of actions) and assert

one or more facts. Once all facts are asserted and all ac-

tions are run, the algorithm checks to see if the designated

final condition is reached. If not, the invokable rules are

identified and the process restarts with the selection of an

invokable rule to run.

4 Experimental design

A Blackboard-style system was implemented incorporat-

ing the näıve solver depicted in Fig. 1 and described in the

previous section. This implementation also incorporated

a pruning engine, which is described in Section 4.1 and



J. Straub / Comparing the Effect of Pruning on a Best Path and a Näıve-approach Blackboard Solver 505

Fig. 1 Näıve solver algorithm

depicted in Fig. 2. Following this, in Section 4.2, the exper-

imental setup and regime are described. Section 5 presents

the data that was collected through this process.

4.1 Pruning engine

The pruning engine that was developed operates itera-

tively. The engine, depicted in Fig. 2, begins by identifying

facts that don′t serve as rule conditions and facts that are

not currently asserted and which cannot be asserted (e.g.,

there is no rule or action that asserts them). A placeholder

value is then inserted into each rule which requires one of

these facts as a precondition and they are removed from the

list of facts to be asserted by rules and actions.

Rules that cannot be asserted now (e.g., those with the

placeholder values) as well as rules with empty trigger lists

are next identified and removed. Finally, actions that are

no longer in any triggered list (i.e., which cannot be in-

voked now) are now identified and deleted. If any change is

made during this iteration of the pruning engine, the pro-

cess restarts (as the changes made may allow other changes

to be made). If not, the engine ends.

4.2 Experimental setup and regime

To quantify the time required for the pruning algorithm

and to test and compare the performance of the näıve solver

using pruned and un-pruned data, 500 trials were run. Each

trial began with the creation of a random blackboard config-

uration. The beginning configuration included 1000 rules,

1000 facts and 1000 actions. For each fact, a random num-

ber of prerequisite facts (constrained by a maximum value

parameter) was determined and this number of facts were

randomly selected for use as prerequisites. For each fact and

action, a random number of triggered facts and/or actions

(constrained by a maximum value parameter) was deter-

mined. Whether a fact or action would be used was then

determined randomly for each slot. Finally, the applicable

fact or action was randomly selected. A parameter-based

number of facts were randomly selected to be initially as-

serted.

For the non-pruned trials, two steps were then performed.

First, an alternate solver was run on the data which is guar-

anteed to find the best path. This was performed to allow

the complexity of trials to be compared quantitatively. Sec-



506 International Journal of Automation and Computing 12(5), October 2015

ond, the näıve solver was run on the blackboard. The re-

sults of the trial (presented in Section 5) were recorded and

the next trial commenced.

Fig. 2 Pruning engine algorithm

For the pruned trials, the process began by performing

the pruning of the blackboard. This process continued it-

eratively (as described in Section 3) until a run completed

with no change being made. The final numbers of facts,

rules and actions as well as the amount of time required were

recorded for each iteration. Next, the guaranteed-optimal

solver was run to allow comparison of the complexity of the

solution from run to run. Finally, the näıve solver was run

and the results were recorded.

It is important to note that some of the networks pro-

duced may not be solvable or that the näıve solver may fail

to solve networks in certain cases. The solver automatically

gives up after an amount of time that is significantly longer

than the time typically required to find a solution.

5 Data collected

This section presents the data collected during the ex-

perimentation discussed in Section 4. First, the non-pruned

näıve solver results are presented in Table 1. The first four

fields present the data (number of iterations, time to popu-

late, time to solve and the path length determined) for the

guaranteed-optimal solver. The remaining five fields char-

acterize the performance of the näıve solver. The find count

field indicates the numbers of loops of the näıve solver al-

gorithm that were run, the rules run and acts run fields

indicate the number of rules and actions invoked, respec-

tively. The time field indicates the total time consumed by

the näıve solver and the not found field indicates how many

of the 500 trials resulted in no solution being identified.

The data for the pruned näıve solver is divided into two

tables for ease of reading. Table 2 provides the data for

the pruner algorithm and Table 3 provides the data for the

solver. The pruner algorithm′s data (in Table 2) begins

with the amount of time that was required for the pruning

engine to run. The next three fields indicate the numbers of

facts, rules and actions, respectively, which were left when

the pruner completed.

In Table 3, the solver results begin with the data related

to the guaranteed-optimal solver (which is located in the

first four fields). The remaining five fields present the data

for the näıve solver. Note that the fields in Table 3 corre-

spond to the field in Table 1 with the same name. Thus,

the description of each field will not be repeated.

The point of presenting both the guaranteed solver and

näıve approaches is multi-faceted. First, it demonstrates

the impact of pruning on both. The guaranteed solver′s
time commitment for a non-preprocessed network is actu-

ally a combination of the preparation time (i.e., the second

column of Tables 1 and 3) and the solve time (third col-

umn). This is still less than the näıve solver–across both

conditions. However, it is notable that the pruning im-

proves the näıve solver′s performance significantly. This is

discussed in greater detail in the subsequent section.

The näıve approach is important, in its own right, in

several instances. First, the näıve approach is the typical

method used by forward-only Blackboard systems which



J. Straub / Comparing the Effect of Pruning on a Best Path and a Näıve-approach Blackboard Solver 507

Table 1 Non-pruned guaranteed optimal and näıve solver results (mean values from 500 runs)

Guaranteed optimal solver Näıve solver

Iter Time Solve time Path length Find count Rules run Acts run Time Not solved

7.9 1 197.5 23.4 8.9 33.8 28 793.6 38 039.5 5 680.3 14

Table 2 Pruned näıve solver results, pruner time and results (mean values from 500 runs)

Time Facts Rules Actions

507 906.2 685.6 938.9 667.7

Table 3 Pruned guaranteed optimal and näıve solver results (mean values from 500 runs)

Guaranteed optimal solver Näıve solver

Iter Time Solve time Path length Find count Rules run Acts run Time Not solved

9.6 1 317.4 20.8 11.6 14.0 12 877.8 17 747.8 2 366.0 6

look for other rules to assert once a new fact is asserted. Sec-

ond, even in a solving blackboard system (such as the one

discussed), the näıve approach serves a role in dealing with

dynamic data. Thus, the impact of the pruning on it may

be critical for systems that need to perform well during pe-

riods where an assumption is violated and an update of the

Blackboard network preparations for the guaranteed solver

has not yet been performed. Third, there are some network

configurations where the näıve solver may outperform the

guaranteed one. Characterization of areas of superior näıve

solver performance remains a subject for future research.

6 Analysis of data

The data presented in the previous section demonstrates

the clear value of the pruning process to the näıve solver.

While the performance of the guaranteed-optimal approach

does not change significantly (the number of iterations and

path length increase slightly, as the population time and the

solve time decreases by approximately 11%), the impact on

the näıve solver is more pronounced. The näıve solver now

only requires 41.3% of the number of iterations that it did

previously to generate a solution and it runs only 44.7% of

the rules and 46.7% of the actions of the non-pruned ap-

proach. The number of instances where a solution could

not be identified drops from 2.8% to 1.2%. Perhaps most

importantly, the amount of time required decreases to only

41.7% of the non-pruned approach.

The pruner, however, is computationally intensive to run,

requiring an average of 507 906.2 ticks. This is, of course,

much more than the average savings per solution generated

(of 3 315.4 ticks). Thus, to justify the cost of the pruning,

at least an average of 153.2 uses of the solver must be run

for each pruning. The initial pruning, under the random

model presented is (of course) the most expensive and this

may be true for many applications. Practically, this means

that the benefit of this first expensive pruning may be en-

joyed across multiple iterations or re-pruning and solving

(with the re-pruning runs taking significantly less time due

to having to do less work).

To demonstrate the lower level of cost that may be en-

joyed by subsequent prunings, the amount of time required

for the first three iterations of the pruner was collected

across five trials. In each of these trials, the third iteration

did not produce any additional results (though this would

not always be the case). This is presented in Table 4. From

this, it is clear that low-work prunings are less expensive

(requiring approximately one-half of the time of the initial

pruning).

Table 4 Comparative cost of pruning iterations

Iteration 1 Iteration 2 Iteration 3

Ticks 332 487 170 356.8 170 268.4

Percent 49.4% 25.3% 25.3%

7 Qualitative analysis

The actual benefit produced by pruning is, of course, ap-

plication dependent. So is the cost of the pruning process.

These two are, logically, related as more benefit is received

via the removal of more items from the blackboard (which

also costs more time). The initial configuration of the node

network may also reduce (or increase) the number of prun-

ing iterations required. Pruning may also be stopped before

the point that was used for this work (a point at which no

further changes occur) as part of a cost/benefit assessment

of the projected value of continued pruning.

In addition to the comparison of the time savings per-

formed in Section 6, the value of moving work must also be

considered. Pruning is an activity that can be conducted

on an as-resources-are-available basis, while the benefit can

be enjoyed (potentially) during times where performance is

critical, such as decision making for a cyberphysical sys-

tem. The comparative value of the two types of processing

time consumed should also be taken into account as part

of the analysis process. This relative value is (of course)

application-specific and must be considered in the context

of a prospective use of the Blackboard architecture.

The impact of change on the blackboard bears considera-

tion in this context. The projection capability of the solving



508 International Journal of Automation and Computing 12(5), October 2015

blackboard approach is enabled by a network of potential

facts and their relevance (indicated by rules/actions). For

example, if the blackboard held data about a land survey

grid, facts that could be asserted might include the pres-

ence of various types of objects of interest. Some of these

facts may have rules which they satisfy. The projection

routine either assumes that all possible facts are true (the

simple approach) or projects (from prior knowledge, etc.)

the likelihood of a fact being true. Thus, the importance of

collecting data to allow the assertion or refutation of a fact

can be determined based on its impact on the rest of the

network. If a projection turns out to be false, immediate

decision making is required. A pre-pruned blackboard can

aid in the speed of this decision making.

8 Conclusions and future work

This paper has discussed a näıve solver algorithm for the

Blackboard architecture and considered the effect of prun-

ing the blackboard, using a presented pruning algorithm,

on the performance of the näıve solver. The pruning ap-

proach utilized removed only completely unneeded items.

However, the performance differential would be similar for

an algorithm that removed a similar percentage of unlikely-

to-be-needed (or other heuristically determined set of rules,

etc.). The value of the pruning was demonstrated, showing

that the pruned blackboard could be solved in less than half

of the time of the non-pruned blackboard: it required less

than half of the solver iterations, rule executions and action

executions. The value of pruned solving was compared to

the cost of pruning, demonstrating that approximately 153

uses of the pruned network would be required to cost-justify

the pruning solely on this metric. The notion of reducing re-

pruning cost was discussed (allowing this initial cost to be

spread over extended operations with a significantly lower

cost level being incurred for subsequent re-prunings). Also,

the value of shifting work from periods that are performance

critical to periods where the processing capabilities are un-

derutilized was discussed.

Future work will involve continued refinement of the

quantification of the value of pruning. This will include

assessment of whether an incomplete pruning may maxi-

mize the cost-benefit equation. The value of pruning across

multiple different network configurations is also a topic for

future work.

References

[1] B. Hayes-Roth. A blackboard architecture for control. Ar-
tificial Intelligence, vol. 26, no. 3, pp. 251–321, 1985.

[2] J. Straub. A data collection decision-making framework for
a multi-tier collaboration of heterogeneous orbital, aerial,
and ground craft. In Proceedings of SPIE 8742, Ground/Air
Multisensor Interoperability, Integration, and Networking
for Persistent ISR IV, SPIE, Bellingham, USA, 2013.

[3] J. Straub, H. Reza. The use of the blackboard architecture
for a decision making system for the control of craft with

various actuator and movement capabilities. In Proceedings
of the 11th International Conference on Information Tech-
nology: New Generations, IEEE, Las Vegas, USA, pp. 514–
519, 2014.

[4] J. Clarke, W. H. Chen. Trajectory generation for au-
tonomous soaring UAS. International Journal of Automa-
tion and Computing, vol. 9, no. 3, pp. 248–256, 2012.

[5] C. J. Liu, W. H. Chen, J. Andrews. Experimental tests
of autonomous ground vehicles with preview. Interna-
tional Journal of Automation and Computing, vol. 7, no. 3,
pp. 342–348, 2010.

[6] T. K. Wang, Q. Dang, P. Y. Pan. Path planning approach
in unknown environment. International Journal of Automa-
tion and Computing, vol. 7, no. 3, pp. 301–316, 2010.

[7] B. K. Sahu, B. Subudhi. Adaptive tracking control of an au-
tonomous underwater vehicle. International Journal of Au-
tomation and Computing, vol. 11, no. 3, pp. 299–307, 2014.

[8] U. K. Patel, P. Patel, H. Hexmoor, N. Carver. Improving
behavior of computer game bots using fictitious play. In-
ternational Journal of Automation and Computing, vol. 9,
no. 2, pp. 122–134, 2012.

[9] L. D. Erman, F. Hayes-Roth, V. R. Lesser, D. R. Reddy.
The hearsay-II speech-understanding system: Integrating
knowledge to resolve uncertainty. ACM Computing Sur-
veys, vol. 12, no. 2, pp. 213–253, 1980.

[10] D. A. Waterman. A Guide to Expert Systems, New York,
NY, USA: Addison-Wesley, 1986.

[11] B. Buchanan, D. Barstow, R. Bechtal, J. Bennett, W.
Clancey, C. Kulikowski, T. Mitchell, D. Waterman. Con-
structing an expert system. Building Expert Systems, F.
Hayes-Roth, D. Waterman, D. Lenat, Eds., New York,
USA: Addison-Wesley, vol. 50, pp. 127–167, 1983.

[12] H. Velthuijsen, B. Lippolt, J. Vonk. A parallel blackboard
architecture. In Proceedings of the 3rd International Expert
Systems Conference, Medford, USA, pp. 487–493, 1987.

[13] K. S. Ettabaa, I. R. Farah, B. Solaiman, M. B. Ahmed.
Distributed blackboard architecture for multi-spectral im-
age interpretation based on multi-agent system. In Pro-
ceedings of Information and Communication Technologies,
IEEE, Damascus, Syria, pp. 3070–3075, 2006.

[14] J. Palma, R. Maŕın, M. Balsa, S. Barro, P. Félix. A control
model for distributed blackboard architecture based on task
structures. In Proceedings of the International Symposium
on Engineering of Intelligent Systems, pp. 476–483, 2001.

[15] D. L. Larner. A distributed, operating system based, black-
board architecture for real-time control. In Proceedings of
the 3rd International Conference on Industrial and Engi-
neering Applications of Artificial Intelligence and expert
Systems, ACM, New York, USA, vol. 1, pp. 99–108, 1990.

[16] J. P. Rosenking, S. P. Roth. REACT: Cooperating expert
systems via a blackboard architecture. In Proceedings of
SPIE 0937, Applications of Artificial Intelligence VI, SPIE,
Bellingham, USA, pp. 143–150, 1988.



J. Straub / Comparing the Effect of Pruning on a Best Path and a Näıve-approach Blackboard Solver 509

[17] J. Dong, S. Chen, J. J. Jeng. Event-based blackboard archi-
tecture for multi-agent systems. In Proceedings of IEEE In-
ternational Conference on Information Technology: Coding
and Computing, IEEE, Las Vegas, USA, vol. 2, pp. 379–384,
2005.

[18] D. D. Corkill, K. Q. Gallagher, K. E. Murray. GBB: A
generic blackboard development system. In Proceedings
of the National Conference on Artificial Intelligence, Palo
Alto, USA, pp. 1008–1014, 1986.

[19] S. D. Tynor, S. P. Roth, J. F. Gilmore. Implementation
of a generic blackboard architecture. In Proceedings of
SPIE 0786, Applications of Artificial Intelligence V, SPIE,
Bellingham, USA, pp. 116–124, 1987.

[20] I. D. Alexander-Craig. A New Interpretation of the Black-
board Architecture, Technical Report, University of War-
wick, [Online], Available: http://eprints.dcs.warwick.ac.
uk/1368/1/cs-rr-254.pdf, 1993.

[21] Y. C. Jiang, Z. Y. Xia, Y. P. Zhong, S. Y. Zhang. An adap-
tive adjusting mechanism for agent distributed blackboard
architecture. Microprocessors and Microsystems, vol. 29,
no. 1, pp. 9–20, 2005.

[22] H. Laasri, B. Maitre, T. Mondot, F. Charpillet,
J. P. Haton. ATOME: A Blackboard Architecture
with Temporal and Hypothetical Reasoning, Re-
search Report RR-0855, Inria, Le Chesnay Cedex,
France, [Online], Available: http://hal.archives-
ouvertes.fr/docs/00/07/71/80/PDF/RR-0855. pdf, 1988.

[23] J. Rice. Poligon: A System for Parallel Problem Solv-
ing, Technical Report 86–19, Knowledge Systems Lab-
oratory, Stanford University, Stanford, USA, [Online],
Available: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=
ADA170399#page=166, 1986.

[24] M. Hewett, R. Hewett. A language and architecture for effi-
cient blackboard systems. In Proceedings of the 9th Confer-
ence on Artificial Intelligence for Applications, IEEE, Or-
lando, USA, pp. 34–40, 1993.

[25] J. Le Mentec, S. Brunessaux. Improving reactivity in a
blackboard architecture with parallelism and interruptions.
In Proceedings of the 10th European Conference on Artifi-
cial Intelligence, John Wiley & Sons, Inc., Hoboken, USA,
pp. 255–256, 1992.

[26] G. K. H. Pang. A blackboard control architecture for real-
time control. In Proceedings of the American Control Con-
ference, IEEE, Atlanta, USA, pp. 221–226, 1988.

[27] F. Ingrand, V. Coutance. Procedural reasoning versus
blackboard architecture for real-time reasoning. In Proceed-
ings of the 13th International Conference on Artificial In-
telligence, Avignon, France, pp. 449–459.

[28] M. J. Huang, H. K. Chiang, P. F. Wu, Y. J. Hsieh. A multi-
strategy machine learning student modeling for intelligent
tutoring systems: Based on blackboard approach. Library
Hi Tech, vol. 31, no. 2, pp. 274–293, 2013.

[29] A. de Campos, M. J. Monteiro de Macedo. A blackboard ar-
chitecture for perception planning in autonomous vehicles.
In Proceedings of the International Conference on Power
Electronics and Motion Control, IEEE, San Diego, China,
pp. 826–831, 1992.

[30] R. A. F. Romero, E. Prestes, M. A. P. Idiart, G. Faria.
Locally oriented potential field for controlling multi-robots.
Communications in Nonlinear Science and Numerical Sim-
ulation, vol. 17, no. 12, pp. 4664–4671, 2012.

[31] S. Rockel, B. Neumann, J. Zhang, K. Dubba, A. Cohn, Š.
Konečný, M. Mansouri, F. Pecora, A. Saffiotti, M. Günther,
S. Stock, J. Hertzberg, A. M. Tomé, A. Pinho, L. Seabra
Lopes, S. Von Riegen, L. Hotz. An ontology-based multi-
level robot architecture for learning from experiences. In
Proceedings of the AAAI Spring Symposium on Designing
Intelligent Robots: Reintegrating AI II, Palo Alto, USA,
2013.

[32] N. Michael, E. Stump, K. Mohta. Persistent surveillance
with a team of MAVs. In Proceedings of IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
IEEE, San Francisco, USA, pp. 2708–2714, 2011.

[33] G. Brzykcy, J. Martinek, A. Meissner, P. Skrzypczynski.
Multi-agent blackboard architecture for a mobile robot. In
Proceedings of IEEE/RSJ International Conference on In-
telligent Robots and Systems, IEEE, Maui, USA, vol. 44,
pp. 2369–2374, 2001.

[34] S. Carroll, J. E. Boyd, J. Denzinger. Data-centered control
of cooperating UAVs: Flying airplanes with a multimedia
database, [Online], Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.99.2334&rep=rep1&type=
pdf, 2008.

[35] D. A. Goldin, A. M. Chesnokov. Features of informational
control complex of autonomous spacecraft. In Proceedings
of IFAC Workshop on Aerospace Guidance, Navigation and
Flight Control Systems, IFAC, Samara, Russia, 2011.

[36] S. Adhau, M. L. Mittal, A. Mittal. A multi-agent system
for distributed multi-project scheduling: An auction-based
negotiation approach. Engineering Applications of Artificial
Intelligence, vol. 25, no. 8, pp. 1738–1751, 2012.

[37] V. E. Giuliano, P. F. Jones. Study and Test of a Method-
ology for Laboratory Evaluation of Message Retrieval Sys-
tems, Government Report #ad0642829, USA, 1966.

[38] G. Goodman, R. Reddy. Alternative Control Structures
for Speech Understanding Systems, [Online], Available:
http://repository.cmu.edu/cgi/viewcontent.cgi?article=
3374&context=compsci, 1977.

[39] I. Craig. CASSANDRA-II: A Distributed Blackboard Sys-
tem, Technical Report RR90, University of Warwick, USA,
1987.

[40] S. Bhansali, H. P. Nii. KASE: An integrated environment
for software design. Artificial Intelligence in Design′92, J. S.
Gero, F. Sudweeks, Eds., Netherlands: Springer, pp. 371–
389, 1992.

[41] B. A. Draper, A. R. Hanson, E. M. Riseman. Learning
blackboard-based scheduling algorithms for computer vi-
sion. International Journal of Pattern Recognition and Ar-
tificial Intelligence, vol. 7, no. 2, pp. 309–328, 1993.

[42] B. Hayes-Roth, A. Collinot. A satisficing cycle for real-time
reasoning in intelligent agents. Expert Systems with Appli-
cations, vol. 7, no. 1, pp. 31–42, 1994.



510 International Journal of Automation and Computing 12(5), October 2015

[43] K. S. Decker, V. R. Lesser, R. C. Whitehair. Extending a
blackboard architecture for approximate processing. Real-
Time Systems, vol. 3, no. 1–2, pp. 47–79, 1990.

[44] K. S. Decker, V. R. Lesser, R. C. Whitehair. Extend-
ing a Blackboard Architecture for Approximate Processing,
COINS Technical Report, Computer and Information Sci-
ence Department, University of Massachusetts, Amherst,
USA, 89–115, 1990.

[45] A. Kemper, G. Moerkotte, K. Peithner, M. Steinbrunn. Op-
timizing disjunctive queries with expensive predicates. In
Proceedings of ACMS IGMOD International Conference on
Management of Data, vol. 23, no. 2, pp. 336–347, 1994.

[46] C. Alvarado, M. Oltmans, R. Davis, A. Davis. A framework
for multi-domain sketch recognition. In Proceedings of the
AAAI Spring Symposium on Sketch Understanding, Palo
Alto, USA, 2002.

[47] K. Ward, D. Novick. On the Need for a Theory of Knowl-
edge Sources for Spoken-Language Understanding. In Pro-
ceedings of AAAI Workshop on Integration of Natural Lan-
guage and Speech Processing, AAAI, Seattle, USA, pp 23–
30, 1994.

[48] S. Y. Ou, C. S. G. Khoo, D. H. Goh. Design and devel-
opment of a concept-based multi-document summarization
system for research abstracts. Journal of Information Sci-
ence, vol. 34, no. 3, pp. 308–326, 2008.

[49] F. Stahl, M. Bramer, M. Adda. J-PMCRI: A methodology
for inducing pre-pruned modular classification rules. Arti-
ficial Intelligence in Theory and Practice III, M. Bramer,
Ed., Berlin, Germany: Springer, pp. 47–56, 2010.

[50] M. Rantanen, M. Juhola. A configuration deactivation al-
gorithm for boosting probabilistic roadmap planning of
robots. International Journal of Automation and Comput-
ing, vol. 9, no. 2, pp. 155–164, 2012.

Jeremy Straub received bachelor′s de-
grees in business and information technol-
ogy, an M. Sc. degree in computer systems
and software design from Jacksonville State
University, USA and an MBA from Missis-
sippi State University, USA. He has pub-
lished over 30 journal articles and 100 full
conference papers. He has also authored
over 55 presentations at national or inter-

national conferences and 120 at local and regional conferences.
His research interests include development, implementation

and assessment of autonomous control technologies to answer-
ing questions of policy and law about how technology should be
utilized.

E-mail: jeremy.straub@my.und.edu
ORCID iD: 0000-0002-9821-2858


