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Abstract: This paper deals with the robust stability of time-delay system with time-varying uncertainties via homogeneous polyno-

mial Lyapunov-Krasovskii functions (HPLKF). We give a sufficient condition to demonstrate that the system is asymptotically stable.

A new class of Lyapunov-Krasovskii function is introduced, whose main feature is that the conservativeness due to uncertainties is

reduced. Numerical examples illustrate the effectiveness of our method.
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1 Introduction

Systems with unknown delayed states are often encoun-

tered in practice, such as communication systems, engineer-

ing systems and process control systems, etc.. For this rea-

son, robust stability analysis for uncertain time-delay sys-

tems has attracted a considerable amount of interests in

recent years[1−12]. The quadratic Lyapunov-Krasovskii (L-

K) function is always employed and the results are often

obtained in the form of linear matrix inequalities (LMIs).

However this method gives rise to overly conservativeness.

So, many researchers reduce the conservativeness due to un-

certainties through changing the structure of the quadratic

Lyapunov-Krasovskii function[1]. In [2], some new robust

stability criteria for linear sytems with interval time-varying

delay have been investigated. This paper is based around

using homogeneous polynomial Lyapunov-Krasovskii func-

tions (HPLKF) to study the conservativeness due to uncer-

tainties. By using this method, the conservativeness due to

uncertainties is reduced.

Recently, a more general class of Lyapunov func-

tions are named homogeneous polynomial Lyapunov

functions(HPLF)[13−24]. The robustness analysis via ho-

mogeneous polynomial Lyapunov functions has been pre-

sented in many papers. In [13], the authors demon-

strated simultaneous stability by using non-quadratic poly-

nomial Lyapunov functions. Whereas Xu and Xie[14] ad-

dressed the construction of piecewise homogeneous poly-

nomial Lyapunov functions for piecewise affine systems.
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Asymptotic stability regions of nonlinear dynamical sys-

tems were estimated by using homogeneous polynomial

Lyapunov functions[15]. In [16], an LMI approach was given

by homogeneous optimized forms.

In this paper, inspired by HPLF, we apply homogeneous

polynomial Lyapunov Krasovskii functions for the time-

delay system with time-varying polytopic type uncertain-

ties. First of all, we give h and μ. Since the solution of sys-

tem is continuous function of p(t), there must exists an up-

per bound k, such that system is stable for all p(t) ∈ [0, k].

By solving a numerical example, we can get that the ho-

mogeneous polynomial Lyapunov-Krasovskii functions in

this paper produce much better results than those from

quadratic Lyapunov-Krasovskii functions.

The paper is organized as follows. In Section 2, we state

the problem and some preliminaries on homogeneous poly-

nomial functions. In Section 3, we present the sufficient

condition of asymptotic stability of system. Section 4 illus-

trates the obtained result by numerical example, which is

followed by the conclusion in Section 5.

Notations. Rn denotes the n-dimension Euclidean space

and Rn×m is the set of real matrices with dimension n×m;

The notation X ≥ Y (respectively X > Y ) where X

and Y are symmetric matrices, means that the matrix

X − Y is positive semi-definite (respectively, positive def-

inite); AT denotes the transposed matrix of A; x ⊗ y

denotes the Kronecker product of vectors x and y, i.e.,

x ⊗ y =

(
x1y

x2y

)
, x =

(
x1

x2

)
.
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2 Problem statement and preliminaries

A system containing time-varying structured uncertain-

ties is described by{
ẋ(t) = A(p(t))x(t) + Ad(p(t))xd, t > 0

x(t) = φ(t), t ∈ [−h, 0]
(1)

where x ∈ Rn is the state, xd = x(t − d(t)) stands for the

delayed state, and p(t) ∈ [0, k] is a time-varying uncertain

parameter.

The matrices A(p(t)) and Ad(p(t)) of system contain

uncertainties and satisfy the real, convex, polytopic-type

model

[A(p(t),Ad(p(t)))] =
∑n

1 λi(t)[Ai, Adi]∑n
1 λi(t) = 1, λi(t) ≥ 0. (2)

The delay, d(t), is a time-varying continuous function

which satisfies

0 ≤ d(t) ≤ h (3)

and

ḋ(t) ≤ μ (4)

where τ and μ are positive scalars.

In this paper, we want to get the upper bound k. If p(t) ∈
[0, k], the system is asymptotically stable. For this purpose,

we employ the Lyapunov-Krasovskii functions. Then, the

problem reduces to an optimization problem.

However, because the quadratic Lyapunov-Krasovskii

functions give fairly conservative result in general. In or-

der to reduce the conservativeness, we employ homogeneous

polynomial Lyapunov-Krasovskii functions. Our objective

is to get a better result by using this method.

We firstly recall the homogeneous polynomial function.

Definition 1[13]. A monomial is a product of variables

raised to non-negative integer powers. For example

x2 and x3yz10 (5)

are both monomials.

Remark 1. The degree of a monomial is the sum of the

integer powers. For example, the degree of xy is 2, and the

degree of x3 is 3.

Definition 2[14]. Consider the vector x ∈ Rn, x =

[x1, · · · , xn]T. The power transformation of degree m

is a nonlinear change of coordinates that forms a new vec-

tor xm of all integer powered monomials of degree m that

can be made from the original x vector

xm
j = cjx

mj1
1 x

mj2
2 · · ·xmjn

n , mji ∈ N+

n∑
i=1

mji = m, j = 1, · · · , dn,m, dn,m =
(n + m − 1)!

(n − 1)!m!
.

Usually we take cl = 1. For example

1) n = 2, m = 3, =⇒ dn,m = 4.

x =

(
x1

x2

)
=⇒ x3 =

⎛
⎜⎜⎜⎝

x3
1

x2
1x2

x1x
2
2

x3
2

⎞
⎟⎟⎟⎠ . (6)

2) n = 3, m = 2, =⇒ dn,m = 6.

x =

⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ =⇒ x2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1

x1x2

x1x3

x2
2

x2x3

x2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Definition 3[14]. Let Pn,m be the set of all polynomials

in n variables with degree m. If a polynomial fn,m ∈ Pn,m

and fn,m(λx) = λmfn,m(x), then fn,m is a homogeneous

polynomial. We define the set of all homogeneous polyno-

mials in n variables with degree m as Hn,m.

Lemma 1[15]. Let Hn,m be the set of all homogeneous

polynomials in n variables with degree m. Then, f(x) ∈
Hn,2m if and only if there exists a non-zero matrix Q0 ∈
Rs×s, Q0 = QT

0 such that

f(x) = xmTQ0x
m. (8)

Remark 2. Q0 is not unique in the above representation

of f(x).

Definition 4[17]. Let us consider the system

ẋ(t) = Ax(t) (9)

where x(t) ∈ Rn and A ∈ Rn×n. Let m ≥ 1 be an integer.

Denote Ā ∈ R
(n+m−1)!
(n−1)!m! × (n+m−1)!

(n−1)!m! by the matrix satisfying

the relation

d

dt
xm(t) =

∂xm

∂x
Ax(t) = Āxm(t). (10)

The matrix Ā is called extended matrix of A.

Lemma 2 (Schur complement[3]). The linear matrix

inequality (LMI) (
Λ1(x) Λ2(x)

∗ Λ3(x)

)
> 0 (11)

is equivalent to Λ1(x)−Λ2(x)Λ−1
3 ΛT

2 (x) > 0 and Λ3(x) > 0,

where Λ1(x) = ΛT
1 (x), Λ3(x) = ΛT

3 (x) and Λ2(x) depends

affinely on x.

3 Main results

Let us introduce the extended system corresponding to

(1) defined by

d

dt
xm(t) =

∂xm

x

n∑
i=1

λi(t)(Aix(t) + Adixd) =

n∑
i=1

λi(t)(Āix
m(t) + ĀdiT (xm−1(t), xd))

(12)

where T (xm−1(t), xd(t)) stands for xm−1(t) ⊗ xd (m ≥ 1).

T (x(t), xd) = x(t) ⊗ xd =

⎛
⎜⎜⎜⎝

x1(t)x1d

x1(t)x2d

x2(t)x1d

x2(t)x2d

⎞
⎟⎟⎟⎠, where x(t) =

user
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Rectangle



G. C. Pang and K. J. Zhang / Stability of Time-delay System with Time-varying Uncertainties via · · · 659

(
x1(t)

x2(t)

)
.

When m = 1, T (xm−1(t), xd) = xd.

Theorem 1. For given scalars h > 0 and μ < 1 and a

time-varying delay satisfying (3) and (4), the uncertainties

satisfy 0 ≤ p(t) ≤ k. If there exist P = PT ≥ 0, Q = QT ≥
0, Z = ZT > 0, and matrices X =

(
X11 X12

X21 X22

)
≥ 0,

Nj , j = 1, 2 with proper dimensions such that

⎛
⎜⎝Φ11 PĀdi − N1 + ETNT

2 + hX12 hFT
i Z

∗ −(1 − μ)Q − N2 − NT
2 + hX22 hF̄T

i Z

∗ ∗ −hZ

⎞
⎟⎠ = Φ < 0

⎛
⎜⎝ X11 X12 N1

∗ X22 N2

∗ ∗ Z

⎞
⎟⎠ = Ψ ≥ 0 (13)

where

Φ11 = ĀT
i P + PĀi + ETQE + N1E +

ETNT
1 + hX11, i = 1, · · · , n (14)

then the system (1) is asymptotically stable.

Proof. Choose the Lyapunov-Krasovskii functions can-

didate to be

V (x2m
t ) = V1(x

2m
t ) + V2(x

2m
t ) + V3(x

2m
t ) (15)

where

V1(x
2m
t ) = xmT(t)Pxm(t)

V2(x
2m
t ) =∫ t

t−d(t)

TT(xm−1(t), x(s))QT (xm−1(t), x(s))ds

V3(x
2m
t ) =∫ 0

−h

∫ t

t+θ

TT(xm−1(t), ẋ(s))ZT (xm−1(t), ẋ(s))dsdθ.

(16)

Consider the HPLKF given by (15). First, we have

ε1‖xm
t (0)‖ ≤ V (x2m

t ) ≤ ε2‖xm
t ‖ (17)

where ε1 = λmin(P ), ε2 = λmax(P ) + μλmax(E
TQE) +

hλmax(E
TZE).

For any matrix

X =

(
X11 X12

X21 X22

)
≥ 0 (18)

the following inequality is true

hηT
1 (t)Xη1(t) −

∫ t

t−d(t)

ηT
1 (t)Xη1(t)ds ≥ 0 (19)

where ηT
1 (t) = [xmT(t), TT(xm−1(t), xd)].

According to the Newton-Leibniz formula, we have

2[xmT(t)N1 + TT(xm−1(t), xd)N2][T (xm−1(t), x(t))−∫ t

t−d(t)

T (xm−1(t), ẋ(s))ds − T (xm−1(t), xd)] = 0.

(20)

Calculating the derivative V1(x
2m
t ) along the solutions of

(12), we should get

d

dt
xmT(t)Pxm(t) =

n∑
i=1

λi(t)[(x
mT(t)ĀT

i + TT(xm−1(t), xd)Ā
T
di)Pxm(t) +

xmT(t)P (Āix
m(t) + ĀdiT (xm−1(t), xd))] =

n∑
i=1

λi(t)[x
mT(t)ĀT

i Pxm(t) +

TT(xm−1(t), xd)Ā
T
diPxm(t) +

xmT(t)PĀix
m(t) +

xmT(t)PĀdiT (xm−1(t), xd)]. (21)

Similar to the derivative V1(x
2m
t ), the derivative V2(x

2m
t )

is

d

dt

∫ t

t−d(t)

TT(xm−1(t), x(s))QT (xm−1(t), x(s))ds =

TT(xm−1(t), x(t))QT (xm−1(t), x(t)) −
(1 − ḋ(t))TT(xm−1(t), xd)QT (xm−1(t), xd). (22)

Defining T (xm−1(t), x(t)) = Exm, so

TT(xm−1(t), x(t))QT (xm−1(t), x(t)) = xmT(t)ETQExm(t).

(23)

The derivative V3(x
2m
t ) along the solutions of (12) is

d

dt

∫ 0

−h

∫ t

t+θ

TT(xm−1(t), ẋ(s))ZT (xm−1(t), ẋ(s))dsdθ =

hTT(xm−1(t), ẋ(t))ZT (xm−1(t), ẋ(t)) −∫ t

t−h

TT(xm−1(t), ẋ(s))ZT (xm−1(t), ẋ(s))ds. (24)

Let T (xm−1(t), ẋ(t)) =
n∑

i=1

λi(t)[Fix
m(t) +

F̄iT (xm−1(t), xd)].

user
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Thus,

hTT(xm−1(t), ẋ(t))ZT (xm−1(t), ẋ(t)) =
n∑

i=1

λi(t)hxmT(t)FT
i Z

n∑
i=1

λi(t)Fix
m(t) +

n∑
i=1

λi(t)hxmT(t)FT
i Z

n∑
i=1

λi(t)F̄iT (xm−1(t), xd) +

n∑
i=1

λi(t)hTT(xm−1(t), xd)F̄iZ

n∑
i=1

λi(t)Fix
m(t) +

n∑
i=1

λi(t)hTT(xm−1(t), xd)F̄iZ

n∑
i=1

λi(t)F̄iT (xm−1(t), xd).

(25)

Combining (19)–(25) and using the Schur complement,

we have

V̇ (x2m
t ) ≤

n∑
i=1

λi(t){ηT
1 (t)Φη1(t) −

∫ t

t−d(t)

ηT
2 (t)Ψη2(t)ds}.

(26)

If Φ < 0 and Ψ ≥ 0, then V̇ 2m(xt) < −ε‖xm(t)‖2 holds

for any sufficiently small ε > 0, which ensure the asymptotic

stability of system.

Remark 3. From definition 2, it is clear that

lim
t→∞

x(t) = 0 ⇔ lim
t→∞

xm(t) = 0. (27)

Remark 4. Considering the norm of T (xm−1(t), x(t −
d(t)))

‖T (xm−1(t), x(t − d(t)))‖c =

sup
0≤d(t)≤h

‖T (xm−1(t), x(t − d(t)))‖ ≤

sup
0≤d(t)≤h

‖T (xm−1(t − d(t)), x(t − d(t)))‖ ≤

sup
0≤d(t)≤h

‖Exm(t − d(t))‖ =

‖Exm(t − d(t))‖c (28)

we can get that the inequality of (17) is right.

For system with a constant delay, we can get a delay-

independent stability criterion by Theorem 1.

Corollary 1. For given scalars h > 0 and μ = 0 and a

time-varying delay satisfying (3) and (4), the uncertainties

satisfy 0 ≤ p(t) ≤ k. If there exist P = PT ≥ 0, Q = QT ≥
0, such that

Φ1 =

(
ĀT

i P + PĀi + ETQE PĀdi

∗ −Q

)
< 0 (29)

then the system (1) is asymptotically stable.

4 Numerical examples

In this section, we give some examples to illustrate our

result. We compare our results with existing works with re-

spect to the upper bound of the uncertainties when system

is asymptotically stable.

Let us consider the following 2-dimensional time-delay

systems with uncertainties

(
ẋ1

ẋ2

)
=

(
0 1

−2 − p(t) −1

)(
x1

x2

)
+

(
−1 0

−1 − p(t) −1

)(
x1d

x2d

)
(30)

with 0 ≤ p(t) ≤ k. We can rewrite the system as

(
ẋ1

ẋ2

)
=
[
(1 − a(t))

(
0 1 −1 0

−2 −1 −1 −1

)
+

a(t)

(
0 1 −1 0

−2 − k −1 −1 − k −1

) ]( x

xd

)

with 0 ≤ a(t) ≤ 1. We can get [A, Ad] ∈ Ω.

Assume the delay is time-variant. The upper bound on

the delay h is 0.5 and μ = 0.5. By calculating the LMI, we

can get the the upper bound of uncertainties.

When m = 1, we can get a feasible solution from [4].

Based on his methods, we can get the upper bound k =

0.76.

If we choose m = 2, then x2 = [x2
1, x1x2, x

2
2]

T and

T (x, xd) = [x1xd1, x1xd2, x2xd1, x2xd2]
T.

We can show that the upper bound k = 0.80 and the

coefficient matrices are given by

F1 =

⎛
⎜⎜⎜⎝

0 1 0

−2 − k −1 0

0 0 1

0 −2 − k −1

⎞
⎟⎟⎟⎠

F̄d1 =

⎛
⎜⎜⎜⎝

−1 0 0 0

−1 − k −1 0 0

0 0 −1 0

0 0 −1 − k −1

⎞
⎟⎟⎟⎠

F2 =

⎛
⎜⎜⎜⎝

0 1 0

−2 −1 0

0 0 1

0 −2 −1

⎞
⎟⎟⎟⎠ , E =

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠

F̄d2 =

⎛
⎜⎜⎜⎝

−1 0 0 0

−1 −1 0 0

0 0 −1 0

0 0 −1 −1

⎞
⎟⎟⎟⎠ .

When m = 3, x3 = [x3
1, x

2
1x2, x1x

2
2, x

3
2]

T and T (x2, xd) =

[x2
1xd1, x

2
1xd2, x1x2xd1, x1x2xd2, x

2
2xd1, x

2
2xd2]

T.

We can show that the upper bound k = 1.61 and the
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coefficient matrices are given by

F1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

−2 − k −1 0 0

0 0 1 0

0 −2 − k −1 0

0 0 0 1

0 0 −2 − k −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

F̄d1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0

−1 − k −1 0 0 0 0

0 0 −1 0 0 0

0 0 −1 − k −1 0 0

0 0 0 0 −1 0

0 0 0 0 −1 − k −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

F2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

−2 −1 0 0

0 0 1 0

0 −2 −1 0

0 0 0 1

0 0 −2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

F̄d2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0

−1 −1 0 0 0 0

0 0 −1 0 0 0

0 0 −1 −1 0 0

0 0 0 0 −1 0

0 0 0 0 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly, we obtain the solutions of k when m = 4 and

m = 5. Combining m = 1, m = 2 and m = 3, we can get

the Table 1.

Table 1 Allowable upper bound k for various m

m 1 2 3 4 5 · · ·
k 0.76 0.80 1.61 2.43 2.72 · · ·

Table 1 shows the upper bounds on the uncertain-

ties for different m which are obtained from Theorem 1.

It is clear that the homogeneous polynomial Lyapunov-

Krasovskii functions in this paper produce much better re-

sults than those from quadratic Lyapunov-Krasovskii func-

tions. In Table 2, although [21] gets k = 2.9 when τm = 0.4,

but d(t) is very conservative at this value. Figs. 1–4 prove

that our results are correct.

Table 2 Allowable upper bound k for [21] with different τm

τm 0.01 0.05 0.1 0.15 0.2 0.3 0.4

k - - - 0.11 0.52 1.5 2.9

Remark 5. In [21], the time-varying continuous function

d(t) satisfy 0 < τm ≤ d(t) ≤ h. When τm = 0.4, [21] gets

the upper bound of uncertainties k = 2.9 (k = 2.9 > k =

2.72 when m = 5 in this paper). However, the time-varying

continuous function d(t) is asked to satisfy 0.4 < d(t) ≤ 0.5

at this time. It is obviously that the condition of d(t) is

fairly conservative.

Fig. 1 Responses of state x with p(t) = 0

Fig. 2 Responses of state x with p(t) = 1.61

Fig. 3 Responses of state x with p(t) = 2.43

Remark 6. From Table 1, it is clear that k increases

when m increases. However, the bigger m makes calculation

more complex. From Figs. 3 and 4, we have the influence of

p(t) = 2.43 and p(t) = 2.72 for system is similar. So we may

consider k = 2.43 is optimal by considering the complexity

of computation.
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Fig. 4 Responses of state x with p(t) = 2.72

5 Conclusions

In this paper, the problem of homogeneous polynomial

forms for robustness analysis of uncertain time-delay sys-

tems have been investigated. Both delay-independent and

delay-dependent criteria are established. Simulation shows

the upper bounds on the uncertainties for different m ob-

tained from the theorem. It is clear that the homoge-

neous polynomial Lyapunov-Krasovskii functions in this pa-

per produce much better results than those by quadratic

Lyapunov-Krasovskii functions.
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