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Abstract: Functional connectivity has emerged as a promising approach to study the functional organisation of the brain and to

define features for prediction of brain state. The most widely used method for inferring functional connectivity is Pearson′s correlation,

but it cannot differentiate direct and indirect effects. This disadvantage is often avoided by computing the partial correlation between

two regions controlling all other regions, but this method suffers from Berkson′s paradox. Some advanced methods, such as regularised

inverse covariance, have been applied. However, these methods usually depend on some parameters. Here we propose use of minimum

partial correlation as a parameter-free measure for the skeleton of functional connectivity in functional magnetic resonance imaging

(fMRI). The minimum partial correlation between two regions is the minimum of absolute values of partial correlations by controlling

all possible subsets of other regions. Theoretically, there is a direct effect between two regions if and only if their minimum partial

correlation is non-zero under faithfulness and Gaussian assumptions. The elastic PC-algorithm is designed to efficiently approximate

minimum partial correlation within a computational time budget. The simulation study shows that the proposed method outperforms

others in most cases and its application is illustrated using a resting-state fMRI dataset from the human connectome project.

Keywords: Functional connectivity, functional magnetic resonance imaging (fMRI), network modelling, partial correlation, PC-

algorithm, resting-state networks.

1 Introduction

Functional connectivity is defined as measurable tempo-

ral dependences among spatially segregated brain regions

of interest (ROIs)[1]. It is a statistical summarization of

brain signals rather than a generative model of brain func-

tions. Although functional connectivity cannot give a com-

prehensive interpretation about how brain works, it can

show important features of brain activities at a macroscale

level. For example, functional connectivity can inspire hy-

potheses of brain organisation[2] and contribute to predic-

tive models[3], e.g., to characterise pathological[4] or cogni-

tive states[5].

Implicit in interpretations is the hypothesis that func-

tional connectivity describes true connections (i.e., direct

causal effects) between nodes (i.e., distinguishable func-

tional anatomic regions of interest). The accuracy of func-

tional connectivity is typically evaluated in three stages: in

terms of the “skeleton” or organisation, strength and, in

some instances, directionality. These stages can be con-

sidered to be conceptually sequential. This paper focuses

on inferring the skeleton, which is to determine whether

a connection between two ROIs exists or not. Smith et

al.[6] systematically investigated the accuracy of 12 meth-

ods for skeleton inference using 28 synthetic networks and
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their corresponding functional magnetic resonance imag-

ing (fMRI) blood-oxygen-level dependent (BOLD) signals

generated from the dynamic causal model (DCM)[7]. The

results show that the top methods are inverse covariance

(ICOV), fully partial correlation, Bayes net and full corre-

lation.

Among the above four methods, full correlation is the

most widely used method. Application of full correla-

tion methods to fMRI datasets enables inferences regarding

brain structures[8] and provides powerful features for brain

“decoding”[9]. However, while full correlation is robust and

parameter-free, there are well-known intrinsic limitations

to differentiation of direct and indirect effects. Fig. 1 shows

an example of differentiating direct and indirect effects in

the network where Node 1 → Node 2 → Node 3. The full

correlation between Node 1 and Node 3 is as high as 1.0,

but there is no real connection between the two nodes.

Fully partial correlation[10] often can successfully identify

the direct effects in Fig. 1 by regressing out the intermediate

node. The fully partial correlation of two nodes is their cor-

relation when all other nodes in the network are controlled.

“Fully partial correlation” was called “partial correlation”

in previous studies about functional connectivity. Mathe-

matically, partial correlation is used to express the correla-

tion when any subset of nodes is controlled. To avoid ambi-

guity, fully partial correlation and partial correlation are ex-

plicitly distinguished in this paper. It is difficult to estimate

the fully partial correlation when the number of data points

is less than the number of nodes. Methods based on a sparse
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linear regression model with L1-norm regularisation[11] and

on both L1-norm and L2-norm regularisation[12] were de-

veloped. In [6], it is shown that fully partial correlation can

perform well. Recent studies show that fully partial corre-

lation of fMRI signals was correlated with lifestyle, demo-

graphic and psychometric measures[13, 14]. However, this

strategy sometimes causes two independent nodes to be-

come conditionally dependent, which is known as Berkson′s
paradox[15]. As illustrated by Fig. 2, there is no connection

between Node 1 and Node 2, but the fully partial correla-

tion between these two nodes is very close to 1.0.

Fig. 1 An example of differentiating direct and indirect effects.

(a) The left is the structure of a 3-node network, the right is

the dynamics of each node. The input signal u1(t) is the BOLD

signal of a voxel from a real fMRI image. The noise is randomly

sampled from a Gaussian distribution with mean 0 and standard

deviation 0.01. (b) The absolute values of full correlation, fully

partial correlation and minimum partial correlation, respectively.

The direct effects (1–2 and 2–3) and the indirect effect (1–3) have

the same values of full correlation.

Fig. 2 An example of the Berkson′s paradox. (a) The left is the

structure of a 3-node network, the right is the dynamics of each

node. The input signals u1(t) and u2(t) are the BOLD signals

of two voxels from a real fMRI image. The correlation between

u1(t) and u2(t) is −0.035. The noise is randomly sampled from a

Gaussian distribution with mean 0 and standard deviation 0.01.

(b) The absolute values of full correlation, fully partial corre-

lation and minimum partial correlation, respectively. The fully

partial correlation of Node 1 and Node 2 is as high as 1.0, al-

though there is no effect between the two nodes.

ICOV is a regularised version of fully partial correlation,

which tends to reduce the number of non-zero elements of

the precision matrix[16, 17]. This method was extended to

incorporate both functional and diffusion imaging data[18].

ICOV may correct Berkson′s paradox if the regularisation

parameter is set to an appropriate value. The main draw-

back of ICOV is that its accuracy highly depends on the

regularisation parameter. As is observed in Fig. 3 (a), the

absolute value of ICOV between Node 1 and Node 3 is sig-

nificantly smaller than those of other node pairs when the

value of the regularisation parameter is smaller than 1.0,

which means the direct and indirect effects can be correctly

distinguished. However, the absolute value of ICOV be-

tween Node 1 and Node 3 is closed to the values of other

node pairs if the value of the regularisation parameter is

larger than 1.0. Thus, the direct and indirect effects cannot

be identified.

Fig. 3 ICOV with various values of the regularisation parame-

ter. (a) Absolute values of ICOV for the network in Fig. 1 with

the regularisation parameter varying from 0 to 10. (b) Absolute

values of ICOV for the network in Fig. 2 with the regularisation

parameter varying from 0 to 1 000.

One possible way to overcome this drawback is to

use cross-validation for automatically adjusting the reg-

ularisation parameter. For real datasets, the cross-

validation scores were usually calculated based on the ac-

curacies of predicted BOLD signals rather than inferred

connections[17], because the real connections are unknown.

However, the validity of tuning the regularisation parame-

ter in this way is still doubtful for two reasons. One rea-

son is that a value of the parameter that results in accu-

rate prediction (e.g., fMRI BOLD signals) is not necessar-

ily same as the one that is likely to recover the true model

(e.g., real connections)[19]. The other reason is that func-

tional connectivity provides a data summary rather than
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a generative model[1], so it may not be reasonable to use

functional connectivity to replicate fMRI BOLD signals for

cross-validation. Several other approaches were also pro-

posed for overcoming this drawback. Utilizing the mono-

tone property of the lasso path of ICOV, Huang et al.[20]

used the largest regularization parameter value that pre-

serves the existence of a connection as a quasi-measure

for the strength of this connection. Recently, a statistic

also based on the lasso path was proposed to test whether

a regularised inverse covariance matrix represents all the

real connections[21, 22]. The statements of their method are

asymptotic and based on strong mathematical assumptions.

Even worse, the proper value of the regularisation param-

eter for a sub-network may not be suitable for other sub-

networks. The existence of an appropriate value for a large-

scale network is still unclear.

Here we propose use of minimum partial correlation as a

parameter-free measure for the skeleton of functional con-

nectivity in fMRI. The minimum partial correlation be-

tween two nodes is the minimum of absolute values of par-

tial correlations by controlling on all possible subsets of

other nodes. Fully partial correlation, which controls all

other nodes rather than a proper subset of other nodes,

can be regarded as an approximation of minimum partial

correlation. Theoretically, there is a direct effect between

two nodes if and only if their minimum partial correlation

is non-zero under the faithfulness assumption[23] and Gaus-

sian assumption. However, it is time-consuming to calcu-

late minimum partial correlation, since the number of all

possible controlling subsets grows exponentially with the

number of nodes. To address this, we have modified the PC-

algorithm to approximate the minimum partial correlation

for an “elastic PC-algorithm”. Unlike the PC-algorithm

and its other variations, the elastic PC-algorithm is not

based on a specific significance threshold. Within a given

time budget, the elastic PC-algorithm can efficiently ap-

proach the minimum partial correlation as possible. We

have evaluated the elastic PC-algorithm using the NetSim

dataset[6] and illustrate its application with a resting-state

fMRI dataset from the human connectome project[24]. This

paper is an extension of its conference version[25]. More de-

tails of the algorithm and applications are provided in this

journal version.

2 Methods

2.1 Preliminaries

In this paper, a graph is denoted as G = (V, E), which

consists of a node set V = {r1, r2, · · · , rN} and an edge

set E. A directed graph contains only directed edges, an

undirected graph contains only undirected edges. A graph

is usually represented by an adjacency matrix MG. For a

directed graph, there is an edge from the node ri to the node

rj if and only if the element mji in the j-th row and i-th

column is non-zero. For an undirected graph, the adjacency

matrix is symmetric. A non-zero element in the adjacency

matrix represents an undirected edge. Given a directed

graph, its skeleton is an undirected graph by stripping away

all arrowheads from its edges and getting rid of redundant

undirected edges. If there is a directed edge from the node

ri to the node rj , then the node ri is a parent of the node

rj and the node rj is a child of the node ri. If there is

a directed path from the node ri to the node rj , then the

node ri is an ancestor of the node rj and the node rj is a

descendant of the node ri.

Given a directed acyclic graph (DAG) G = (V, E), each

node denotes a random variable and each directed edge rep-

resents a causal effect from one random variable to another

one. A causal model represented by G generates a joint

probability distribution over the nodes, which is denoted as

P (V ).

Definition 1. For a DAG G = (V, E) and a distri-

bution P (V ) generated by the causal model represented

by G, G and P satisfy the causal Markov Condition if

and only if for every node r ∈ V , r is independent of

V \ (Descendants(r)
⋃

Parents(r)) given Parents(r) [23].

When the causal Markov condition is satisfied, the condi-

tional independence relationships in the generated distribu-

tion P are entailed in the DAG G using the concept called

d-separation. For a 3-node path r1 → r2 ← r3, the middle

node r2 is called collider.

Definition 2. A path is said to be d-separated by a

set Z if and only if at least one non-collider is in Z or at

least one collider and all its descendants are not in Z. Two

nodes are said to be d-separated by a set Z if and only if

all paths between the two nodes are d-separated by Z[23].

If two nodes ri and rj in DAG G are d-separated by a

node set Z, then ri and rj are conditionally independent in

distribution P given Z. There is no edge between nodes ri

and rj if and only if they can be d-separated by some node

set. This means that the nodes ri and rj are conditionally

independent in the distribution P given some node set, if

there is no edge in DAG G between the two nodes. However,

the reverse statement is not true. For some DAG G and

distribution P that satisfy the causal Markov condition,

the conditional independence between two nodes ri and rj

does not necessarily imply the absence of an edge between

ri and rj . In order to exclude these cases, two equivalent

concepts, stability[26] and faithfulness[23], are introduced.

Definition 3. A distribution P is faithful to a DAG G

if all and only the conditionally independence relations in

P are entailed by G, i.e., under the faithfulness assumption,

there is no edge between two nodes ri and rj in G if and

only if ri and rj are conditional independent in P given

some node set[23].

For the details of Bayesian networks and causal Bayesian

networks, please refer to the two seminal texts[23,26]. For

references to applications of Bayesian networks in neuro-

science, refer to the two recent reviews[27, 28].

2.2 Minimum partial correlation

In this paper, we assume the mechanism that generates

BOLD signals can be represented by a DAG G = (V, E),

where V = {r1, r2, · · · , rN}. The node ri denotes the ran-
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dom variable of the i-th region of interest (ROI). The ran-

dom variable ri generates T samples of the BOLD signals of

the i-th ROI, which are denoted as Xi = {x1
i , x

2
i , · · · , xT

i }.
All random variables generate the same number of samples.

The Pearson′s correlation coefficient ρi,j between ri and rj

can be estimated from samples as follows:

ρ̂i,j =

T∑

t=1

(xt
i − x̄i)(x

t
j − x̄j)

√
T∑

t=1

(xt
i − x̄i)2

T∑

t=1

(xt
j − x̄j)2

(1)

where x̄i and x̄j are sample means of random variables ri

and rj . The Pearson′s correlation coefficient is also called

full correlation.

Full correlation counts both direct and indirect effects

between two random variables. To remove indirect effects,

we can calculate the second order correlation between ri

and rj by removing the effects of a node set Z ⊆ (V −
{ri, rj}). This second order correlation is called the partial

correlation ρi,j·Z by controlling the node set Z. Similarly,

partial correlation can be estimated from samples:

ρ̂i,j·Z =

T∑

t=1

(εt
i·Z − ε̄i·Z)(εt

j·Z − ε̄j·Z)

√
T∑

t=1

(εt
i·Z − ε̄i·Z)2

T∑

t=1

(εt
j·Z − ε̄j·Z)2

(2)

where {εt
i·Z} is a set of the residuals of the linear regression

with ri as the response variable and Z as the predictor

variable set. So is {εt
j·Z}. The sample partial correlation

is the sample full correlation on the residuals when some

controlling factors are regressed out.

The partial correlation between two nodes varies with

the controlling set. For a node set V , the minimum par-

tial correlation (MPC) between two nodes is the minimum

of absolute values of partial correlations by controlling all

possible subsets of other nodes, which is formally defined

as follows.

Definition 4. Given two nodes ri and rj in a node set

V , the minimum partial correlation ωi,j between the two

nodes is

ωi,j = min{|ρi,j·Z ||Z ∈ 2(V −{ri,rj})} (3)

where ρi,j·Z is the partial correlation between ri and rj

by controlling the node set Z. 2(V −{ri,rj}) represents all

subsets of the set V − {ri, rj}. A controlling set Z that

satisfies ρi,j·Z = ωi,j is called a minimum controlling set for

nodes ri and rj .

Next, we will discuss an important property of minimum

partial correlation that implies that it is a good measure of

the existence of functional connectivity.

Proposition 1. Assuming the distribution P of the

nodes V in a DAG G is multivariate Gaussian and faithful

to G, there is an edge between the two nodes ri and rj in

G if and only if the minimum partial correlation ωi,j �= 0.

According to [29] , the partial correlation ρi,j·z = 0 if

and only if ri and rj are conditionally independent given

Z under Gaussian assumption. Based on this result and

Definition 3, Proposition 1 can be easily proved.

According to Proposition 1, minimum partial correlation

is a measure of the existence of functional connectivity (i.e.,

the links in functional networks). Because minimum par-

tial correlation is symmetrical, it cannot infer the directions

of functional connectivity. According to Definition 1, min-

imum partial correlation can be calculated only based on

partial correlation. Thus, minimum partial correlation can

be estimated from samples, which is denoted as ω̂i,j .

We denote the cardinality of the controlling node set Z

as |Z|. According to [30], the distribution of the estimated

partial correlation ρ̂i,j·Z is the same as the full correlation

estimated from T −|Z| samples. Under the hypothesis that

ρi,j·Z = 0, the z-score ρ̃i,j·Z of the estimated partial corre-

lation ρ̂i,j·Z can be calculated as follows:

ρ̃i,j·Z =
1

2
log

(1 + ρ̂i,j·Z
1− ρ̂i,j·Z

)√
T − |Z| − 3. (4)

However, the distribution of estimated minimum partial

correlation is unknown. In this paper, we approximate the

absolute value of z-score ω̃i,j·Z of the estimated minimum

partial correlation ω̂i,j·Z as

ω̃i,j·Z = min{|ρ̃i,j·Z ||Z ∈ 2(V −{ri,rj})}. (5)

Given the BOLD signal samples from all ROIs of a brain,

we can calculate the estimated value or the absolute value

of its z-score of the minimum partial correlation for each

pair of ROIs. These estimated values or absolute values of

z-scores form a symmetric matrix Ω. The matrix Ω repre-

sents the skeleton of functional connectivity in a fractional

way. Given a directed graph G, its skeleton is an undirected

graph by stripping away all arrowheads from its links and

removing redundant undirected links. A pair of ROIs with

higher estimated minimum partial correlation value or abso-

lute value of the z-score is more likely to have a link between

them. The matrix Ω is therefore a parameter-free measure

of functional connectivity, which can be used for decoding

cognitive states, evaluating brain disease, etc.

There are three advantages of parameter-free methods for

inferring functional connectivity. The most obvious one is

that parameter-free methods are user-friendly, prior knowl-

edge and experiences are not required. A second advantage

is that parameter-free methods increase the comparability

of results from different studies. If there are some tuning

parameters in a method, the results usually vary according

to the values of the parameters. Even though all experi-

mental conditions are identical in two studies, it is not valid

to compare the two results if different values of parameters

are used in the two studies. A third advantage is that inter-

pretability of parameter-free methods is usually better than

other methods. Taking ICOV as an example, the physiolog-

ical meaning of results showing that if a connection exists

under some values of the regularisation parameter, but not

with others is hard to explain.
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2.3 Elastic PC-algorithm

It is in polynomial time to estimate partial correlation by

controlling a given node set. However, we need to enumer-

ate all possible controlling sets in order to estimate mini-

mum partial correlation, the number of all possible control-

ling sets is exponential. Several algorithms for causal infer-

ence can be easily modified to calculate minimum partial

correlation, such as SGS-algorithm[23], PC-algorithm[23] ,

TPDA[31], MMHC[32] and TPMB[33] .

This paper focuses on extending PC-algorithm to ap-

proximately calculate minimal partial correlation. The PC-

algorithm is composed of two main steps: skeleton graph in-

ference and edge direction determination. This paper aims

at generating functional connectivity without orientations

of edges. Thus we concentrate on the first step of the PC-

algorithm.

The PC-algorithm uses an important feature of Bayesian

networks to achieve fast computation. That is, if two nodes

ri and rj can be d-separated, then there is a subset of their

neighbours which d-separates them. Therefore, there is no

need to enumerate all possible controlling sets. Instead the

PC-algorithm only considers subsets of the neighbour sets.

Because the structure of the graph is not known in advance,

the PC-algorithm implements an iterative strategy: One

step in the PC-algorithm is based on the graph reduced by

the previous steps. The edges of the graph are removed

according to a statistical test and a significance threshold.

The more edges are removed, the smaller the search space is.

However, if an edge is deleted incorrectly, this search space

will be improperly reduced. These mistakes will propagate

to the following steps.

The edge deletion is highly depended on the choice of

the significance threshold α. The null hypothesis of the

statistical test in the PC-algorithm is that there is no edge

between the selected two nodes. With a lower significance

threshold α, it is less likely that the null hypothesis is re-

jected. In other words, edges are more likely to be removed,

which will increase type II error. To increase the accuracy

of edge removal at each step, a larger α is required. How-

ever, the increase of α will increase the calculation time

as more edges are remained. Therefore, the significance

threshold α balances the accuracy of result and complexity

of computation.

It is difficult to optimally determine α, because the ac-

curacy and execution time of a given α cannot be predicted

in advance. A common choice of α is 0.05. We can first set

α to 0.05 and gradually increase its value to obtain more

results with higher accuracy. This can avoid a situation in

which the PC-algorithm runs for an undesirably long time

for evaluation of a large choice of α. For example, we would

like to choose α from the set {0.05, 0.1, 0.15, 0.2, 0.25}. We

first carry out the PC-algorithm with α = 0.05 and then

with larger values. If the algorithm keeps running for a

long time when α = 0.2, we can just record the results

for α = 0.15, as it is the most accurate result that can be

obtained within an acceptable execution time.

Although it has been demonstrated that the above ap-

proach achieved a satisfied accuracy for inferring functional

connectivity in simulated fMRI datasets[34], this approach

brings in extra computational loads, as the results with

lower significance threshold are not used in the calculation

with higher significance thresholds. To save computational

effort, this paper proposes the elastic PC-algorithm, tak-

ing the concept of elasticity in cloud computing[35]. Our

method automatically increases the significance threshold

within a given time budget to maximally approach the

minimum partial correlation. More specifically, an execu-

tion of the elastic PC-algorithm includes several iterations.

The execution starts from an iteration with a low signifi-

cance threshold and continues on the iterations with higher

thresholds. The execution stops if the given time budge is

used up. An iteration with a higher significance threshold

can exploit the results of the iterations with lower signifi-

cance thresholds in order to avoid repeated calculation of

same partial correlation in different iterations. An itera-

tion of elastic PC-algorithm is shown in Algorithm 1 and

the execution process is shown in Algorithm 2.

Algorithm 1. An iteration of elastic PC-algorithm

Input: signal samples {xt
i‖t ∈ [1 : T ], i ∈ [1 : N ]},

significance threshold α, previous significance threshold β,

previous s-cube D for β

Output: s-cube C for α

1) for each ordered node pair (ri, rj) do

2) C(i, j, 0 : (N − 2))← |ρ̃i,j |
3) end for

4) for k = 1 : (N − 2) do

5) initialize the referenced skeletons Sα and Sβ as
complete undirected graphs

6) for each unordered node pair (ri, rj) do

7) if C(i, j, k − 1) ≤ N−1(1− α
2
) then

8) delete the undirected edge (ri, rj) from the
referenced skeleton Sα

9) end if

10) if D(i, j, k − 1) ≤ N−1(1− β
2
) then

11) delete the undirected edge (ri, rj) from the
referenced skeleton Sβ

12) end if

13) end for

14) C(:, :, k)← D(:, :, k)

15) for each ordered node pair (ri, rj) that satisfies
|adj(Sα, ri)\{rj}| ≥ k do

16) for each controlling node set Z ⊆ adj(Sα, ri)\{rj}
that satisfies |Z| = k and Z

⋃{rj} �⊆ adj(Sβ , ri)
do

17) if C(i, j, k) > |ρ̃i,j·Z | then

18) C(i, j, k : (N − 2))← |ρ̃i,j·Z |
19) C(j, i, k : (N − 2))← |ρ̃i,j·Z |
20) end if

21) end for

22) end for

23) end for

Algorithm 2. Elastic PC-algorithm (EPC)

Input: signal samples {xt
i‖t ∈ [1 : T ], i ∈ [1 : N ]}, step δ

Output: s-cube C

1) for each ordered node pair (ri, rj) do
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2) C(i, j, 0 : (N − 2))← |ρ̃i,j |
3) end for

4) β = 0

5) α = β + δ

6) while remaining time budget > 0 do

7) C ← Call Algorithm 1
({xt

i}, α, β, C
)

8) end while

The elastic PC-algorithm is based on PC-stable

algorithm[36], which is a recent variant of PC-algorithm.

The symbol N−1(·) represents the inverse of the standard

normal cumulative distribution function (CDF). The z-

score of full correlation ρ̃i,j and the z-score of partial corre-

lation ρ̃i,j·Z can be calculated according to (4). This symbol

adj(G, ri) indicates the neighbour set of node ri in graph

G.

In the elastic PC-algorithm, we introduce a 3D matrix

that contains the minimum partial correlation values with

different steps. We call this matrix as s-cube for short. In

the algorithm, there are two s-cubes C and D, which are for

the significance thresholds α and β respectively. As there

are N nodes in the graph G and k should be smaller than

|adj(G, ri) \ {rj}| for any pair of nodes (ri, rj), the maxi-

mum value of k is N −2. Thus, k can vary from 0 to N −2,

which indicates the number of neighbours. The dimension

of s-cube is N ×N × (N − 1), where the k-th slice C(:, :, k)

contains minimum partial correlation calculated in Step k.

The inputs of the elastic PC-algorithm include signal

samples, significance threshold α, previous significance

threshold β and its corresponding s-cube D. At beginning,

the s-cube C is initialized using the full correlation between

any node pairs. In the k-th iteration, the reference skeletons

Sα and Sβ are derived using the (k − 1)-th slice of s-cube

C and D respectively. A reference skeleton is used as an

approximation of the skeleton of the graph for calculating

neighbour sets of nodes. Afterwards, the k-th slice of C is

calculated. For an ordered pair of (ri, rj) that is adjacent

in Sα but not adjacent in Sβ, the minimum partial correla-

tion should be calculated as it is not included in D. For an

ordered pair of (ri, rj) that is adjacent in both Sα and Sβ ,

some steps of minimum partial correlation calculation have

been done in D, which can be directly reused. That is, if a

subset of neighbours Z for (ri, rj) in Sα is also a subset of

neighbours for (ri, rj) in Sβ, there is no need to calculate

the partial correlation ρ̃i,j·Z . In this way, computational

effort can be saved by avoiding repeated calculations. The

estimated z-score matrix Ω̃ of minimum partial correlation

for significance threshold α is C(j, i, N − 2). As shown in

Algorithm 2, Algorithm 1 is repeatedly executed with in-

creasing significance threshold within the given time bud-

get. An example of the elastic PC-algorithm is illustrated

in Fig. 4.

3 Results

In this section, the elastic PC-algorithm was evalu-

ated using a synthetic dataset: NetSim[6]. Its appli-

cation is illustrated using a resting-state fMRI dataset

from the human connectome project[24]. Results with

the elastic PC-algorithm were compared with full correla-

tion, fully partial correlation, regularized inverse covariance

(ICOV)[16, 17], network deconvolution (ND)[37] and global

silencing (GS)[38]. A brief description of these methods is

as follows:

Fig. 4 An example of the elastic PC-algorithm. (a) and (b)

display the reference skeletons Sα and Sβ in Algorithm 1, sat-

isfying α > β. The table in (c) shows calculations required at

Step 1 with the significance threshold α. The column “need cal-

culation?” tells us whether the corresponding partial correlation

needs to be calculated or can be directly obtained from D. For

node pairs (r2, r3), (r2, r5) and (r3, r4), whose edges are in red

in (a), all their partial correlations need to be calculated as Sβ

in (b) does not contain the edges between them. For the node

pair (r1, r2), partial correlation on set {r5} needs to be calcu-

lated. This is because in Sβ , {r5} is not a subset of neighbours

for (r1, r2).

1) Full correlation (Full): The full correlation of two ROIs

ri and rj can be calculated using (1). 2) Fully partial corre-

lation (FP): The fully partial correlation of two ROIs ri and

rj can be calculated using (2) by setting Z = V \{ri, rj},
where V is the set of all ROIs. 3) ICOV: Let Σsample be

the sample covariance matrix calculated according to (1),

the ICOV method finds an optimal matrix Λ according to:

Λ=argminΛ�0tr (ΛΣsample)−logdetΛ +λ‖Λ‖l1 , where ‖·‖l1
is the element-wise l1 norm of elements in the matrix Λ.

ICOV is a parameter dependent method and the value of

the regularization parameter λ greatly influences the re-

sults. For the simulation dataset, the regularization pa-

rameter λ was set to 5 and 100, which were suggested by

the designers of this dataset[6]. For the real dataset, a

cross-validation method was used to tune the regulariza-

tion parameter λ as is described in [17], although we do not
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think this cross-validation method is appropriate. 4) ND:

Let Σsample be the sample covariance matrix calculated ac-

cording to (1). In ND, Σsample is modelled as the sum of

direct dependence Λ and indirect dependence due to indi-

rect paths. Λ is derived from: Λ=
Σsample

(I+Σsample)
, where I is a

identity (ID) matrix. 5) GS: In the GS method, the rela-

tionship between Λ and Σsample is approximately modelled

as Λ=
Σsample−I+ϕ((Σsample−I)Σsample)

Σsample
, where ϕ( · ) sets the

off-diagonal terms of matrix to zero.

3.1 Simulation evaluation

The NetSim dataset[6] designed by Smith et al. was

used to evaluate the accuracy of our method. Because

this paper focuses on skeletons, we did not evaluate the

direction inference. The BOLD signals were generated us-

ing DCM with nonlinear balloon model for the “vascular

dynamics”[7]. The dynamics of the signals in the neural

network was defined as follows: ṡ=σΦs+Ψu, where s is the

neural time series, ṡ is its rate of change, u is the exter-

nal inputs, Ψ is the weights controlling how the external

inputs feed into the network, Φ defines the network connec-

tions between nodes with the diagonal elements set to −1,

σ controls both the within-node temporal inertia and the

neural lag between nodes. The neural signals were then fed

into the nonlinear balloon model for vascular dynamics to

generate the BOLD signals. The values of balloon model

parameters were almost identical to the prior means used

in [7].

All network topologies were constructed based on a same

building block: a 5-node ring. The ring was a variation

of a chain, the head of which is pointed to its tail. The

networks with more than 5 nodes were built by linking sev-

eral 5-node rings together. 28 networks were designed for

different purposes of evaluation. Please refer to [6] for the

details of these networks. For each network, 50 simulated

subjects were generated by slightly changing the values of

parameters.

Following [6], we used c-sensitivity of skeleton inference

to measure the accuracy. Given a directed graph G, its

skeleton is an undirected graph by stripping away all arrow-

heads from its edges and removing redundant undirected

edges. Suppose that each element of the symmetric ma-

trix Â represents the estimated “confidence” about whether

there is a connection between the corresponding nodes. All

elements of matrix Â are assumed to be nonnegative. The

distribution of “true positive” (TP) connections includes

all the elements in the matrix Â, the corresponding con-

nections of which are found in the skeleton of graph G.

Similarly, the distribution of “false positive” (FP) connec-

tions includes all the elements in the matrix Â, the corre-

sponding connections of which do not exist in the skeleton

of graph G. The c-sensitivity is defined as the fraction of

true positives that have higher value in the matrix Â than

the 95th percentile of the false positive distribution. The

c-sensitivity shows the ability of the matrix Â for differen-

tiating true connections and spurious connections. If there

is no overlap between the distributions of TP and FP, the

c-sensitivity is 100%. It is worth noting that diagonal ele-

ments are ignored for calculating c-sensitivity. Fig. 5 shows

an example of calculating c-sensitivity.

We investigated the performance of different methods by

estimating the resulting c-sensitivity values. The results

are summarized in Table 1, where each value is the mean

value of 50 simulations. ICOV-5 and ICOV-100 represent

the ICOV method with the regularization parameter being

set to 5 and 100, respectively. These settings can give good

results of ICOV according to [6].

The figures highlighted by yellow in Table 1 are the

highest c-sensitivity scores in their corresponding simula-

tions. Generally speaking, the elastic PC-algorithm (EPC)

performed best. The elastic PC-algorithm gained highest

c-sensitivity in 24 out of 28 simulations. Full correlation

(Full) and ICOV-100 only worked best for 1 simulation,

while fully partial correlation (FP) achieved the maximal

c-sensitivity values for 2 simulations. ICOV-5 and network

deconvolution (ND) gained the maximal values for 3 simula-

tions, while global silencing (GS) worked best for 4 simula-

tions. For the results obtained from elastic PC-algorithm,

19 simulations had c-sensitivity values larger than 85%.

The results from all methods for the 11th simulation were

less than 20%. This is because the synthetic signals for

this simulation were generated in a way that ROIs signals

greatly influence all others. Some values of c-sensitivities

in Table 1 are slightly different from the previous results in

[6]. These differences must be caused by minor variations of

Fig. 5 An example of calculating c-sensitivity. (a) The true

network that generates the observations. (b) The skeleton of

the true network, which is constructed by stripping away all ar-

rowheads from links of the true network and removing redun-

dant undirected links. (c) The estimated matrix, each element

of which represents the “confidence” about whether there is a

link between the corresponding nodes. (d) True positive distri-

bution and false positive distribution that are calculated using

both the estimated matrix and the skeleton. For example, the

element 0.16 in Row 1 and Column 2 belongs to the true positive

distribution because Node 1 and Node 2 are linked together in

the skeleton. The element 0.11 in Row 1 and Column 3 belongs

to the false positive distribution since there is no connection be-

tween Node 1 and Node 3 in the skeleton. The 95th percentile

of the false distribution is 0.15 that is marked using a red circle.

Four elements in the true distribution are larger than 0.15, one

element is smaller than 0.15. Thus, the c-sensitivity is 0.8.
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Fig. 6 Relationship between c-sensitivity improvements and significance thresholds in the elastic PC-algorithm

c-sensitivity in our experiment.

We further investigated the relationship between c-

sensitivity and significance threshold for the elastic PC-

algorithm. Fig. 6 shows the c-sensitivity improvements with

increasing significance thresholds. Negative values in Fig. 6

mean the c-sensitivity decreased with higher significance

thresholds. Theoretically, these cases should not happen,

but fMRI data do not strictly follow faithfulness and Gaus-

sian assumptions. Although the c-sensitivity improvements

in Fig. 6 had some local fluctuations, the overall increasing

trend can still be clearly observed. An obvious increase for

a large fraction of networks occurred at the first two steps,

which are from 0.05 to 0.10 and from 0.10 to 0.15.

The elastic PC-algorithm can save computational effort

by avoiding repeated calculations. Some partial correlations

at a higher significance threshold can be directly obtained

from the results at the previous significance threshold. To

assess this, we investigated computational effort saved at

each significance threshold by representing the saved com-

putational effort as the proportion of times that the last

condition in Line 16 of Algorithm 1 was not satisfied.

Fig. 7 shows the relationship between saved computa-

tional effort and significance thresholds for different sim-

ulations. It can be seen that the maximum proportion

approached to 100%. For some simulations, the propor-

tion values became 100% at some significance thresholds.

It means that the elastic PC-algorithm returned stable re-

sults when significance threshold was above a certain value.

Hence all results at higher threshold were directly obtained

from previous results. The computational effort was 100%

saved in this case.

The proportion of saved efforts varied from 23% to 100%

with the mean equal to 84.3%. When the significance

threshold became higher than 0.15, 27 out of 28 networks

had the proportion values larger than 50%. The largest
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Fig. 7 Relationship between saved computational effort and significance thresholds in the elastic PC-algorithm

increase of proportion value for most simulations occurred

when significance threshold increased from 0.05 to 0.15. As

has been pointed out, there was a significant increase of

c-sensitivity in Fig. 6 occurring at this place. These obser-

vations demonstrate that the elastic PC-algorithm can save

computational efforts while maintaining accuracy.

3.2 Empirical illustration

A real resting-state fMRI dataset from the human con-

nectome project[24] was used to illustrate the elastic PC-

algorithm and compare it with other methods as we listed

above. In contrast to the simulation dataset, there was no

“ground truth” in the real dataset. Thus accuracy mea-

sures of the results, such as c-sensitivity, therefore cannot

be calculated. Here we only presented and discussed the

properties of the results.

The real dataset included resting-state fMRI data of 10

unrelated subjects. All were healthy (6 women, 4 men).

There were two subjects in the 22–25 age range, three sub-

jects in the 26–30 age range, and five subjects in the 31–35

age range. For each subject, the functional data were ac-

quired in four approximately-15-minute runs, which were

carried out in two separate imaging sessions. Within each

session, the oblique axial acquisition of one run was phase

encoded in a right-to-left direction, it was alternated to

phase encoding in a left-to-right direction for the other

run. All functional images were acquired using a gradient-

echo echo-planar imaging (EPI) sequence with the follow-

ing parameters: repetition time (TR) = 720 ms, echo time

(TE) = 33.1 ms, flip angle = 52◦, FOV = 208×180 mm,

slice thickness = 2.0 mm, 72 slices, frames per run = 1 200,

run duration = 14:33. The data was processed using FM-

RIB software library (FSL)[39], FreeSurfer[40] and Connec-

tome Workbench image analysis suites[41]. The data was

de-noised using an independent component analysis based

method[42, 43]. The details of the pipelines are presented in

[44].

The automated anatomical labeling (AAL) atlas[45] was

used to parcel a whole brain into 116 ROIs, which are 90

regions in cerebrum and 26 regions in cerebellum. The time

series of a ROI were defined to be the average time series of

all voxels in this ROI. Although this paper only aims at es-

timating the connections between nodes, we have also faced

the problem of parcelling a whole brain into nodes in this

study. This is because that there is yet no widely-accepted

parcellation for functional connectivity inference[46, 47]. Al-

though it has been recommended to use data-driven ap-

proaches, such as high-dimensional independent component

analysis (ICA), rather than gross structural atlas based par-

cellation that may not finely correspond to real functional

boundaries in the data[48], we chose the AAL atlas (which

shows greater stability than other atlases tested[49]), be-

cause of its simplicity and interpretability.

For the elastic PC-algorithm, the initial significance

threshold was 0.05 and the step size was 0.05. Ten steps

were executed for single subject analysis. For multiple

subject analysis, to save computational time only three

steps were executed. Thus the significance threshold ranged

from 0.05 to 0.15. For ICOV, the regularisation parameter

was set to 6.5, which was obtained from a cross-validation

method as is described in [17], although the validity of this

method is still unclear.

Single subject analysis:

We first arbitrarily selected a subject to visually com-

pare the elastic PC-algorithm with other methods. The

results of each method formed a matrix, representing the

functional connectivity skeleton. All matrices were normal-

ized in the same way that all elements range from 0 to
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1. An element with higher score in the matrix indicated a

higher confidence on the existence of a connection. Fig. 8

gave us a straightforward overview of different results, the

10 images in the first two columns show results of elastic

PC-algorithm over different significance thresholds, 5 im-

ages in the last column display results of 5 other methods.

Each figure presents a matrix, the dimension of which is

116 × 116. The colour indicates the values of elements of

these matrices, which are from 0 to 1. A figure with more

white area means that there are more zero elements in the

corresponding matrices.

More elements in the results of the elastic PC-algorithm

approached zero with an increasing significance threshold.

The resulting matrix with the significance threshold of 0.50

was sparsest. There were many elements consistently large

in all results of the elastic PC-algorithm, especially the

elements adjacent to the diagonal, suggesting that neigh-

bouring labelled ROIs in AAL atlas are more likely to have

connections. Because two homotypic regions in the left and

right hemispheres were assigned adjacent labels in the AAL

atlas (e.g., lingual regions 47 and 48 in the left and right

hemispheres), this observation is consistent with the obser-

vation that two homotypic regions are more likely to highly

correlate with each other.

Fig. 8 Single subject results of different methods. The x-y axes

indicate the labels of the 116 ROIs

Compared with other methods including full correlation,

fully partial correlation, ICOV with regularisation param-

eter of 6.5, ND and GS, results from elastic PC-algorithm

with significance thresholds larger than 0.10 were sparser

than results from all other methods. The ND method per-

formed poorly in regards of sparsity, while GS method gen-

erates results with patterns different from other methods

that appears unreliable. Fully partial correlation and ICOV

methods returned results with similar patterns to the elastic

PC-algorithm but less sparse. All these observations sug-

gest that results from the elastic PC-algorithm may be more

plausible and reliable than results from other methods.

The relationship between the saved computational efforts

and significance thresholds was studied. The computational

effort saved at each significance threshold was represented

as the proportion of times that the last condition in Line 16

of Algorithm 1 was not satisfied. The proportion of saved

computational effort varies from 9.2% to 72%. When the

significance threshold increased from 0.05 to 0.1, only 9.2%

computational effort was saved. It means that the reference

skeleton of threshold 0.1 changed greatly from the reference

skeleton of threshold 0.05. When the significance threshold

further increased above 0.10, the proportion of saved effort

was always maintained at a level larger than 50%. Thus,

the results of the elastic PC-algorithm reached a relatively

stable state, where the number of re-calculations is limited.

The patterns of the results with the elastic PC-algorithm

with different significance thresholds were similar, but be-

came sparser with higher significance threshold (Fig. 8).

Moreover, the changes between results with two adjacent

significance thresholds were calculated. The amounts of

changes between two neighbouring significance thresholds

were measured using the root mean square difference of el-

ements. The changes at threshold 0.10 was as high as 0.17.

When the significance threshold increased above 0.20, the

changes remained at a constant level lower than 0.02. It

means that the results became relatively stable with signif-

icance threshold larger than 0.20. This is consistent with

the observation that the proportion of saved computational

effort maintained high when the significance threshold was

larger than 0.2.

Multi-subject analysis:

After the single subject analysis, we applied different

methods to infer functional connectivity for 10 subjects.

Similar to single subject analysis, functional connectivity

was fractionally represented in matrices, whose elements

were normalized between 0 and 1. The matrix for each

subject was inferred using different methods, then the aver-

age matrix was obtained from each method across 10 sub-

jects. This generated 6 matrices, one for each of the 6 dif-

ferent methods including full correlation (Full), fully par-

tial correlation (FP), ICOV, network deconvolution (ND),

global silencing (GS) and the elastic PC-algorithm (EPC).

To compare these 6 different results, we selected the top 20

largest elements of each matrix and use their corresponding

connections to form a functional network for each method,

which was used to estimate the 20 most confident connec-

tions. There were 40 connections selected by at least one

method. Many connections were detected by at least 2 dif-

ferent methods.

Table 2 shows the details of these connections. There
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were three categories, classified according to their patterns

of connections between pairs of: 1) homotypic regions in the

left and right hemispheres (Type I connection), 2) the het-

erotypic regions in the same hemisphere (Type II connec-

tion), 3) heterotypic regions in different hemispheres (Type

III connection). If a connection was found by a certain

method, then the corresponding value in the table was set

to 1, otherwise it was set to 0. There were 16 Type I connec-

tions, 22 Type II connections and 2 Type III connections.

Connections discovered by the elastic PC-algorithm were

similar with those detected by fully partial correlation and

ICOV. However, the results of full correlation were very

different from those of other methods, consistent with the

expectation that full correlation method detects indirect, as

well as direct, effects.

Table 2 Top 20 connections detected by different methods

Type ROI label Hemisphere ROI label Hemi Full FP ICOV ND GS EPC

I Frontal Mid Left Frontal Mid Right 0 0 0 0 1 0

I Frontal Sup Medial Left Frontal Sup Medial Right 0 1 1 0 0 1

I Frontal Med Orb Left Frontal Med Orb Right 0 0 0 0 0 1

I Calcarine Left Calcarine Right 1 1 1 1 1 1

I Cuneus Left Cuneus Right 1 1 1 1 1 1

I Lingual Left Lingual Right 1 0 0 0 0 0

I Occipital Sup Left Occipital Sup Right 1 0 0 0 0 0

I Occipital Mid Left Occipital Mid Right 1 1 1 1 1 1

I Occipital Inf Left Occipital Inf Right 0 1 1 1 0 1

I Postcentral Left Postcentral Right 1 1 1 1 1 1

I Parietal Sup Left Parietal Sup Right 0 1 1 1 1 1

I SupraMarginal Left SupraMarginal Right 1 1 1 1 1 1

I Angular Left Angular Right 0 1 1 0 1 0

I Precuneus Left Precuneus Right 1 1 1 1 1 1

I Paracentral Lobule Left Paracentral Lobule Right 0 1 1 1 0 1

I Temporal Sup Left Temporal Sup Right 0 1 1 1 0 1

II Frontal Sup Left Frontal Mid Left 0 1 1 1 1 1

II Frontal Inf Tri Left Frontal Inf Orb Left 0 0 1 0 0 1

II Calcarine Left Cuneus Left 1 0 0 0 0 0

II Calcarine Left Lingual Left 1 0 0 0 0 0

II Cuneus Left Lingual Left 1 0 0 0 0 0

II Cuneus Left Occipital Sup Left 1 1 0 1 1 0

II Occipital Sup Left Occipital Mid Left 0 0 0 0 1 0

II Occipital Mid Left Occipital Inf Left 0 0 0 1 0 0

II Parietal Sup Left Parietal Inf Left 0 1 1 1 1 1

II Angular Left Temporal Mid Left 0 0 0 0 1 0

II Cerebelum Crus1 Left Cerebelum Crus2 Left 0 1 1 1 0 1

II Precentral Right Postcentral Right 1 1 1 1 1 1

II Frontal Sup Right Frontal Mid Right 0 1 1 1 1 1

II Frontal Mid Right Parietal Inf Right 1 0 0 1 0 1

II Calcarine Right Lingual Right 1 0 0 0 0 0

II Cuneus Right Lingual Right 1 0 0 0 0 0

II Cuneus Right Occipital Sup Right 1 0 0 0 1 0

II Occipital Sup Right Occipital Mid Right 1 0 0 0 1 0

II Occipital Mid Right Parietal Sup Right 0 0 0 0 1 0

II Parietal Inf Right Angular Right 0 1 1 1 0 0

II Angular Right Temporal Mid Right 0 0 0 0 1 0

II Cerebelum Crus1 Right Cerebelum Crus2 Right 0 1 1 1 0 1

III Calcarine Left Lingual Right 1 0 0 0 0 0

III Cuneus Right Occipital Sup Left 1 0 0 0 0 0
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There were 6 Type I connections that were coherently

discovered by all 6 different methods. These were found

in the following hemispherically homotypic ROIs: Cal-

carine, Cuneus, Occipital Mid, Postcentral, Supramarginal

and Precuneus. Compared to the other types, the fraction

of Type I connections that were consistently detected by

different methods was relatively high. Only 1 out of 22

Type II connections was discovered by all 6 methods (the

connection between precentral and postcentral gyri in the

right hemisphere). Ten Type II connections were found by

one method.

There were only two Type III connections (between left

calcarine and right lingual regions, and right cuneus and left

superior occipital regions), and these were identified only by

the full correlation method. As is shown in Fig. 9, it was

quite likely that these Type III connections were enhanced

by indirect effects.

We also investigated the distribution of top 1% connec-

tions that were found by the elastic PC-algorithm. Totally,

67 connections were selected with the corresponding ele-

ments in the matrix ranging from 0.20 to 0.75. These con-

nections were plotted using BrainNet Viewer[50] (Fig. 10).

There were 26 Type I connections, 40 Type II connections

and only 1 Type III connection. It is interesting to observe

that we only obtained a quite limited number of connections

between two heterotypic regions in different hemispheres. It

suggests that in resting states, the functional connectivity

might be composed primarily of Type I and Type II con-

nections.

Fig. 9 Connections detected by various methods between the

following ROIs: calcarine, lingual, cuneus and superior occipital

regions

4 Discussion

We proposed use of minimum partial correlation to in-

fer the skeleton of functional connectivity in fMRI data.

We designed an algorithm, called elastic PC-algorithm,

to efficiently approximate the minimum partial correlation

within a computational time budget. A Matlab implemen-

tation of the proposed algorithm is publicly available at

https://github.com/LNie/ElasticPC. The simulation study

demonstrated the capability of the proposed method to im-

prove the accuracy of skeleton inference. The empirical

study showed that direct functional effects between two het-

erotypic regions in different hemispheres might be rare dur-

ing resting state.

There are limitations to our approach. One drawback of

the proposed method is that minimum partial correlation

is always zero if the number of points in fMRI time series is

less than or equal to the number of ROIs. This situation is

not common in areal level studies, because the number of

time points is normally more than 600 and the number of

ROI is usually equal to or less than 300. However, minimum

partial correlation cannot be directly applied in voxel level

studies. This is because the number of voxels is much larger

than the number of time points. ICOV[16, 17] and recently

proposed L0-norm based methods[51] can avoid this draw-

back via proper regularization. Future work is needed to

explore the possibility of combining minimum partial cor-

relation and L0-norm or L1-norm based approaches.

Fig. 10 Top 1% connections selected by the elastic PC-

algorithm. The nodes outside the cerebrum are in cerebellum.

The figure is generated by BrainNet Viewer[50] to show all sides

of the brain, including the lateral and medial sides of each hemi-

sphere, the dorsal and ventral sides, and the anterior and poste-

rior sides of the brain.

Another drawback of our study is that the theoretical

analysis of minimum partial correlation is based on the

faithfulness, Gaussian and DAG assumptions. As these are

approximations for fMRI data, potential confounds that

may arise as a consequence need to be considered in the

application of the proposed method. Although, the perfor-

mance of the proposed method was demonstrated on a sim-

ulation dataset generated without these assumptions, the

simulation dataset was artificially designed and the dimen-

sions of the network structures were highly simplified. Fu-

ture work is needed to investigate the theoretical bounds

on the performances under more realistic assumptions.

The methods for network modelling from fMRI data are

based on various assumptions, thus the model complexity of

these methods are different. A simpler model, e.g., full cor-

relation, is less neurologically meaningful but it can stably

and efficiently infer a network with more nodes, in contrast,
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a more complex model, e.g., DCM, is more neurologically

meaningful but it may be more sensitive to its assump-

tions and can only analyse smaller networks[48]. In terms

of model complexity, the proposed minimum partial corre-

lation is simpler than DCM and more complex than full

correlation, partial correlation and ICOV. The minimum

partial correlation is a statistical model rather than a gener-

ation model and with few neurophysiological assumptions.

Therefore, it may be better to be used to discover network

structures as an alternative to full correlation, partial cor-

relation and etc.

A recent study shows that the functional connectivity

can be used as “fingerprinting” to identify individuals with

a high accuracy[52]. Further work is needed to investigate

the performance of minimum partial correlation to preserve

subject-specific patterns via identification experiments. It

will be of interest to study the heritability of subject-specific

patterns on functional connectivity. Future work also may

use minimum partial correlation to explore the relationship

between brain functions and behavior, genetics or disease

related phenotypes[3]. This could be important particularly

in using minimum partial correlation as biomarkers[53] to

better classify psychiatric diseases.
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