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Abstract: The recently introduced theory of practopoiesis offers an account on how adaptive intelligent systems are organized.

According to that theory, biological agents adapt at three levels of organization and this structure applies also to our brains. This is

referred to as tri-traversal theory of the organization of mind or for short, a T3-structure. To implement a similar T3-organization in

an artificially intelligent agent, it is necessary to have multiple policies, as usually used as a concept in the theory of reinforcement

learning. These policies have to form a hierarchy. We define adaptive practopoietic systems in terms of hierarchy of policies and

calculate whether the total variety of behavior required by real-life conditions of an adult human can be satisfactorily accounted for

by a traditional approach to artificial intelligence based on T2-agents, or whether a T3-agent is needed instead. We conclude that

the complexity of real life can be dealt with appropriately only by a T3-agent. This means that the current approaches to artificial

intelligence, such as deep architectures of neural networks, will not suffice with fixed network architectures. Rather, they will need to

be equipped with intelligent mechanisms that rapidly alter the architectures of those networks.
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1 Introduction: Hierarchy of policies

Practopoiesis is a recent theory of how adaptive agents

are organized and proposes a number of principles under

which such systems operate[1]. One of the key presump-

tions of practopoiesis is that adaptive mechanisms are orga-

nized into a specific type of hierarchy: Mechanisms lower on

the hierarchy determine the properties of the mechanisms

higher on the hierarchy. Interactions among those levels

of organization are described by concepts such as monitor-

and-act unit and cybernetic knowledge, and by principles

such as knowledge extraction, knowledge shielding, down-

ward pressure for adjustment, and equi-level interactions. It

has been also proposed that practopoiesis has implications

for development of machine learning and artificial intelli-

gence (AI)[1,2].

Practopoietic systems can be described from the perspec-

tive of machine learning as follows. The entire set of adap-

tive capabilities of an organism (i.e., monitor-and-act units)

at one level of organization, in the terminology of machine

learning, can be described as the policy (π) for generating

actions. Similarly, cybernetic knowledge[1] can be under-

stood as an optimal policy of machine learning. Recent

analyses showed that adaptations of neurons and neural
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networks enhance computations[3, 4].

Importantly, a practopoietic agent may have different

sets of policies, some of them acting on the environment

but others acting on the agent itself. These sets form a

hierarchy.

Thus, practopoietic hierarchy is an arrangement in

which, for policy x, there is a policy y whose actions change

policy x. This makes it a T2-agent, due to the actions exe-

cuted at two levels of organization. To indicate that actions

of policy y change policy x, we write:

πy → πx.

In that case, TD-learning[5] and Q-learning algorithms[6]

are considered special policies belonging to πy .

Importantly, however, according to practopoietic theory,

biological T3-systems have also a third policy[1] — referred

to as tri-traversal theory of human cognition. The theory

claims that there are fast and slow “learning” mechanisms

and that the slow mechanisms train the fast ones. Thus, a

full agent can be described then as

πG → πA → πN

whereby, by following the tri-traversal theory, we presume

that πG is stored in genes, πA in the rules for neural adapta-

tion responsible for fast changes to the system (referred to

also as anapoiesis), and πN in the properties of the neural

network.

This relationship can be also described as fast learning

(by operations of πA) and slow learning how to learn

fast (by operations of πG). Here, most of the knowledge
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acquired through the lifetime of an agent is acquired in the

properties of πA, not in πN as would be the case in the most

modern approaches to AI. In other words, T3-agents store

knowledge in the rules on how to quickly learn.

To describe the interaction between an agent and its en-

vironment, we can write

πG → πA → πN → U

where U stands for the surrounding world or Umwelt.

To describe the adaptive capabilities of an entire species,

there is one additional policy, πE , which determines the

genome πG. This policy operates according to the rules of

evolution by natural selection. Thus, the adaptive structure

of an entire species can be described as

πE → πG → πA → πN .

These levels of adaptation in Tn-systems, would be dis-

tinguished from layers in the hierarchy of neural networks.

Even if a network has 1 000 layers, it remains to operate as

a T1 system if there is no learning, and as T2 if a typical

form of learning such as backpropagation is applied.

To create a T3 system, one needs to add a level at which

the learning algorithm adapts. For example, an algorithm

that uses feedback from the environment to adapt the learn-

ing rate of a gradient descent can be considered to con-

tribute overall to a T3 organization of the entire system.

This is because there are three levels of adaptation: network

< learning algorithm (teacher of the network) < teacher of

the learning algorithm (learning to learn). In the present

paper, we are considering systems in which not only a small

bit of knowledge is used at lower levels of organization to

form a T3 system (e.g., only on parameter value, the learn-

ing rate), but where the knowledge on how to learn contains

a huge amount of information, i.e., the system becomes an

expert on how to learn. See Fig. 1 for organization of bio-

logical minds according to the theory of practopoiesis.

Practopoiesis proposes that all living individuals have

T3 organization, starting from each biological cell. Impor-

tantly, adding multiple Tn systems does not increase n.

So, while each living cell alone operates as a T3 system,

an entire organism built off billions of such cells remains to

present also a T3 system. Similarly, a group of individual

organisms or an entire society still form a T3 system.

The inclusion of evolution to form a T4 system applies

to a single species and to the biosphere as a whole[1]. Thus,

according to the theory, the entire evolving life on planet

Earth can be understood as operating with four levels of

policies, whereas each individual agent has “only” three.

1.1 Generalizing actions

In reinforcement learning theory, actions of an agent are

conceptually different from the processes of learning by that

agent. Practopoiesis generalizes all those forms of actions

to one single concept: adaptive traverses (here, indicated by

arrows, →). A traverse is whenever knowledge of an agent

together with the feedback from environment are used to

make some changes either to the agent itself or to the en-

vironment. Two traverses are considered different if their

mutual impacts are asymmetric: If one traverse affects the

knowledge of the other but not the other way around. For

example, a back propagation learning rule changes the map-

ping function of a neural net, but the mapping function of

the neural net does not change the learning rule. Hence,

here two traverses can be distinguished.

Fig. 1 The organization of biological minds according to the theory of practopoiesis. The descriptions of the three traverses are shown

on the right. On the left described is the knowledge that each traverse uses for its operations but also the knowledge that each of the

traverses creates by its operations. Top to Top-3 indicate the depths of adaptive levels.
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A system with operational capabilities at n levels is a

Tn-system and has n traverses, each directed either towards

the outside of the agent or towards inside of the agent (the

latter being often referred to as learning).

The total number of traverses equals the number of or-

ganization levels at which policies exist. This is because

actions of the policy at the top level of organization, πN ,

affect the environment directly. Hence, the full interac-

tion (with all the arrows) between a biological species as an

agent and its environment can be written as

πE → πG → πA → πN → U. (1)

That way reinforcement learning can be considered a spe-

cial case of practopoietic systems. From the above consid-

erations, we can also see that reinforcement learning is not

nearly as sophisticated implementation of practopoiesis as

is natural intelligence. The reason is more adaptive levels

in natural intelligence.

1.2 Generalizing feedback

In reinforcement learning, learning mechanisms receive

feedback. In practopoietic systems, policies at each level

of organization receive feedback inputs too. These inputs

are conceptually different in reinforcement learning theory:

The input for πx is the identity of state s; the input for πy

is the reward r.

Practopoiesis conceptually generalizes those feedback in-

puts as ik, where k is the level of organization of the system

(E, G, A or N). Feedback inputs can be acquired through

sensory inputs shared across policies at different levels. For

example, a camera can provide the necessary information

for πN and πA.

The goal of the present study is to demonstrate the ad-

vantages of such hierarchical organization of multiple poli-

cies (traverses) as compared to an agent with fewer policies.

The present analysis focuses on interactions πA → πN →
U, presuming that the policies πA have been already put in

place. The broader context of how the developmental pro-

cesses responsible for acquiring proper architecture of πA

though the application of πB is not addressed here. This

topic has been discussed in some detail in [1].

2 Calculating variety of a human agent

and its Umwelt

The problem addressed here is funded in Ashby′s law of

requisite variety[7]. This law states that for a successful

control of a system, the system that controls has to have at

least as many states as the system that is being controlled.

Otherwise, it would not be possible to produce a sufficient

number of different responses, given all the number of differ-

ent challenges that the environment poses on a controller,

or on an agent in general. The question is then how many

states can a human brain (or an AI-agent) theoretically as-

sume and is this number sufficiently large to address the

variety of the real-life problems that such agents face? The

immediately following questions is: Can an increase in the

number of policies (traverses) improve any limitations in

the variety of the agent?

The key presumption behind the present calculations is

that the upper limit of the total variety of states that a pol-

icy of an agent can produce is limited by the total amount of

memory that the policy requires. The available amount of

memory represents the maximum entropy that the system

can generate and yet that its actions are informed about the

environment in which it acts. Therefore, although one may

argue that an agent could produce high entropy simply by

generating noise, relevant for satisfying the law of requisite

variety is only behavior that is informed about the prop-

erties of environment. The latter follows from the good

regulator theorem[8], which states that a regulator can be

successful in regulating a system only if it is a good model

of that system. The memory requirements on variety are

the memory requirements for becoming a good model of the

world in which the agent operates.

The calculation of total variety gives an upper bound

estimate of what an agent can perform, how many different

sensory inputs it can distinguish in order to consider making

different actions. If one thinks of agent′s memory as a set

of templates against which the input is matched, then the

estimate of total memory is related to an estimate of the

number of templates that could be used by that agent.

In other words, we ask the question of how many differ-

ent patterns (templates) can the brain store in its (synaptic)

memory. As we will see, we are looking at the brain more as

something like a read-only memory (ROM), rather than a

memory that can easily replace its contents. The reason for

that is that it takes for us a lifetime to acquire knowledge

about the world and once acquired, this knowledge is not

easily replaceable. The number of those patterns acquired

through lifetime indicates the maximum variety of states

that a developed brain, as an Ashby′s regulator, can gen-

erate for the agent in order to produce meaningful actions

on the environment to help with agent′s survival. In other

words, this number indicates: 1) the amount of knowledge

that the brain can possibly have on how to respond in a

given situation and by doing so, 2) the variety of responses

to sensory inputs that it can produce based on that knowl-

edge.

We are interested only in meaningful informed states,

i.e., states that reflect some previously acquired knowledge

about the surrounding world. Of course, the molecules in

the brain can have many more states, but if these additional

states are not stimulus-dependent, they either have to be

mutually dependent (correlated) or have to be understood

as noise.

We are considering here first agents that do not learn

(only later we consider learning). Traditional brain the-

ory and traditional AI both rely on two-traverses (i.e., T2-

agents). One of these traverses is for learning, which is

the adaptive mechanism located lower on the practopoietic
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hierarchy. The other traverse is implemented by the mech-

anisms for processing inputs and executing actions, usually

referred to as neural activity in brain sciences and as poli-

cies in machine learning. We are interested in the variety of

this single top-level traverse. In contrast to the traditional

T2-agents, the novel approach with T3-agents presumes the

use of the two highest-level traverses for processing inputs

and executing actions[1].

The question addressed presently is whether T2-agents

can possibly generate sufficient variety of behavior in real-

life situations or whether instead only a T3-agent can sat-

isfy those needs. So far, T2-agents have been implemented

(either as a brain theory or as an AI) to limited domains

of problems, which require much less variety than what an

average adult human person may need in real life. The

present question is whether these T2-approaches can scale

up to the real human-level demands and thus to human-

level intelligence.

2.1 Variety generated by human brain

For an average adult human brain without further learn-

ing, we can estimate the total variety based on the to-

tal number of synapses and the amount of bits stored

at each synapse. According to a recent study, an opti-

mistic estimate is that a single synapse can store 4.6 bits

of information[9]. Furthermore, if there are about 1 000

synapses for each neuron and there are about 100 billion

neurons in the brain, we have in total 1011× 1 000 = 1014

or 100 trillion synapses. We can now compute two types of

variety, one for a brain that has already matured and can-

not make substantial changes easily (i.e., it cannot suddenly

replace its memories with memories of another person), and

the other for all possible sets of lifelong experiences that a

mature brain could potentially encounter (all different lives

that a person could theoretically live).

Given that 4.6 bits of information can be stored per

synapse[9], this would set the upper bound of the total

theoretical variety that a mature adult human brain can

generate without further learning to

4.6 × 1014 bits.

As 4.6 bits can assume a total of 24.6 = 24.25, which is

about 24 states, we have a total of about

2.4 × 1015 different states. (2)

This is roughly 500 terabytes of memory, and is within

the realms of what can be achieved by today′s IT technol-

ogy.

It is first important to note this number indicates the to-

tal variety of input-output that an adult brain can generate

and that it corresponds to total memory storage.

A different calculation is for the total number of possi-

ble states that the memory can assume. In that case, the

total number of possible states should be calculated as the

number of states at a synapse, 24.6 = 24 to the power of

the number of synapses, i.e.,

(2410)14 (3)

which is a much larger number (even larger than the number

of atoms in the visible universe, which is only about 1080).

So, why would we not consider the latter number as the

theoretical limit of the variety that a human brain can pro-

duce? The difference between numbers calculated in (2)

and (3) is the difference between what an adult brain can

produce once it has gone through the development, educa-

tion, etc. as opposed to the variety of all kinds of different

developments and educations that a person may have got-

ten. The number in (3) is the variety of all possible lives

that a person could theoretically live. However, once we

have lived one life, the specific set of experiences defines

what we have acquired in our long-term memory, and that

knowledge cannot be changed any longer, or at least not

easily (in a way, it acts as a ROM). And this is what num-

ber (2) describes. In the present paper, we are concerned

with (2): We are considering the number of states a trained

brain can generate, without having an option to live an-

other life with a different set of experiences. According to

the above estimate, this variety is limited to only about

1015 states.1

The number 1015 gives us the maximum number of dif-

ferent responses that a mature adult brain can create with-

out further learning. To imagine what this number may

indicate, consider the famous patient H.M. who at adult

age lost the ability to create new long-term memories af-

ter bilateral medial temporal lobectomy[10]. H.M. retained

all his previous knowledge and was perfectly able to hold

a conversation, read text, watch a movie or interact with

his environment. He only could not create any new long-

term memories. He could not change his knowledge up to

the point of the surgery but could perfectly use the pre-

viously acquired knowledge. The question is then: How

many different stimuli, sentences, events, situations could

H.M. distinguish and respond to meaningfully? According

to the above calculation and a T2-theory of the brain, this

number is 4.6 × 1014 bits and indicate the total richness of

his mental life that could possibly occur.

In other words, by freezing learning, we are turning a

T2-agent into a T1-agent, albeit well trained. This number

tells us how many input-output mappings can be maximally

preformed.

What the real task behind processing a sensory input is

1The difference between the two types of varieties can be illus-
trated if we consider a medium for memory storage such as DVD-
ROM. If a DVD has 4.7 GB of memory, there are two different types
of variety we can calculate. One is the number of different movies
that can be stored on that DVD. This number corresponds to the
calculation made in (3) and is a huge number (also, much larger
than the number of atoms in the universe). The second variety is
the amount of data that can be red from the memory storage once a
movie has been burned on the DVD. This number is much smaller. It
is only 4.7GB. We are considering this smaller number in the present
study.



536 International Journal of Automation and Computing 14(5), October 2017

for H.M. (or any other intelligent adaptive agent) is to com-

pare inputs with the entire existing knowledge of all possible

patterns that it can detect. In a simple pattern recognition

task, the agent has to identify the stimulus against its entire

database. And we humans can do this very well immedi-

ately. For example, we can just see a car by checking the

shape in the stimulus against all of the other shapes that

we have in the memory.

This direct distinguishability of stimuli at the perceptual

level for human mind can be tested in experiments with

perceptual pop-out[11, 12]. These experiments tell us that

we have also limitations. We are not able to distinguish

any set of random stimuli, e.g., “IOVGJIZGSIOHIO” ver-

sus. “IOVGJIKGSIOHIO” cannot be distinguished with-

out a slow serial search for a difference. However, either of

the two sequences above can be easily distinguished from

“IOVGJI SIOHIO”. The underscore symbol induces a so-

called perceptual pop-out. Any every-day visual scene is

full of perceptual pop-outs for a human mind.

However, what we humans really excel at in comparison

to machines is that we are able to combine this variety of

perceptual stimuli with the variety of semantic information.

We test everything in parallel, the picture and its meaning.

If the only problem of AI was finding the difference between

two visual stimuli, a simple search algorithm would do that

job and would by far outperform any human.

It turns out that there is a way to estimate how much

information we are able to process in parallel. Our abil-

ity to process semantic information in parallel is related to

the size of our working memory (or short-term memory).

This memory storage is highly limited in capacity[13, 14],

is highly correlated to intelligence quotient (IQ)[15] and is

based on semantic information extracted from long-term

memory[13, 14, 16]. Our ability to store information in work-

ing memory is determined by how much knowledge we al-

ready possess about the stimuli. A color expert will be able

to store more information about colors than a non-expert.

An educated Chinese speaking person will be able to store

more Chinese characters than a non-Chinese speaker, etc.

And humans are generally outperforming today′s AI. We

humans can solve many AI-related problems immediately

i.e., much like H.M. could, without a need for additional

learning. We could just look at a visual scene or just hear a

narration and extract much more relevant information than

an existing AI-machine can today. We use these simulta-

neous detection capabilities to make decisions while driving

a car, watching a movie, or understanding language, and

making purchasing decisions. In all those acts, we compare

the current stimulus with all our knowledge acquired until

that point in time – and we do it in a blink of an eye.

Thus, the high demands on the variety for an AI-agent

come from this parallel template matching against the en-

tire knowledge of the agent. These human capabilities of

performing such matching processes fast make us smarter

than the machine.

Our superiority is seen most obviously in situation in

which the variety of sensory inputs has to be combined

with the variety of semantics. This efficient combination

of sensory+semantic contents makes us much better in un-

derstanding visual scenes and natural speech, or simply in

playing the game of go (until recently).

The present analysis is about the question of whether

1015 provides sufficient storage for the patterns that the

brain needs for such pattern-matching analyses. We com-

pare two different theories of how the brain is adaptively

organized (T2 versus T3 organization) with the estimates

of the variety demands posted by the real life of an adult

human person.

The present analyses are made under the assumption that

all 1015 combinations are used without any redundancies or

other sub-optimalities. Thus, we are estimating the maxi-

mal theoretical limits of pattern-matching mechanisms pre-

suming that those have been implemented in the most op-

timal way possible.

2.2 Variety of real life

This number 1015 seems large for producing a lot of in-

telligent behavior, but the question is: Is it large enough?

The other side of the equation is: How much variety does

the real life require?

The question of the variety in the real life can be ap-

proached by calculating the amount of meaningful variety

in sensory inputs to agents. We do not want to estimate

the total number of combinations that pixels of an image

can assume. We are interested only in the number of com-

binations that need to be understood by the agent in order

to behave successfully in a given world. The question is

how many different situations may a human observer need

to distinguish, understand and respond to meaningfully?

This would be then an estimate of how much variety the

human brain should be able to account for.

In the first step of analysis, we focus only on the num-

ber of different sentences that a human mind may need to

be able to comprehend. Our language is generative and a

person may expect from the surrounding world any pos-

sible message, and should be thus able to decode any of

them. To make a rough estimate of the order of magnitude

of combinations that can emerge, let us presume that an

educated native speaker of English has 15 000 words in a

vocabulary[17, 18]. In addition, let us presume that adverbs,

adjectives, verbs and nouns correspond respectively to 5%,

20%, 20% and 55% of the vocabulary. This leads to 750,

3 000, 3 000, 8 250 words in each of the four categories for

an average speaker.

From those numbers, we can calculate the number of all

combinations of sentences of different lengths. For three-

word sentences that consists of a noun, followed by a verb

and ending with a noun, we obtain roughly: 8 250 × 3 000

× 8 250

≈ 2 × 1011

combinations.
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This number fits within the variety of the human brain

estimated above. But if we add an adjective to each of the

nouns to make five-word sentences: adjective-noun-verb-

adjective-noun, we get a total of 2 × 1011 × 3 000 × 3 000

≈ 2 × 1018

combinations.

This number is already bigger than the limit that is posed

by the total number of synapses in the brain, presuming

that synapses are indeed the storage of information and that

each synapse can store about 5 bits. If we add an adverb to

each verb, the number of combinations grows even further,

etc. Therefore, there seems not to be enough memory in

our brains to generate a different response for five-word or

larger sentences.

Importantly, however, we have to consider which of

these sentences are meaningful to an average human, and

which are not. One sentence that is not meaningful cannot

be necessarily considered as producing a different brain

state as another sentence that is also not meaningful.

Rather, all meaningless sentences may be considered to

result in one the same state (e.g., a “meaningless sentence”

state). Indeed, most likely, majority of the sentences

in the above calculation can be considered as not being

successfully processed by human semantic machinery

and hence as meaningless. To illustrate that point,

we list here a few randomly generated sentences (from

http://watchout4snakes.com/wo4snakes/Random/Random

Sentence):

“The agony damages the regional spur below a pride.”

“Our insult prices the flame.”

“Behind the younger textbook quibbles an implied dealer.”

Hence, only a small fraction of five-word sentences should

be counted as meaningful. But there are also many more

six-word, seven-word long and longer sentences that hu-

mans find perfectly meaningful. Each of these meaningful

sentences should induce a different state in the brain. Thus,

the total number of possible meaningful sentences is not

easy to estimate. Below, we make this assessment based on

the capacity of human working memory.

Before that, let us first point out that T2-theories pre-

sume that both sensory and semantic processing are per-

formed at the same level of organization and thus, that it

is not just the meaning that the brain (or an AI) needs to

account for. It is the also the sensory inputs. All of those

functions are covered by the number 4.6 × 1014 bits.

This means that the above calculations suggest that a

human brain should be unable to distinguish already at the

sensory level most of five-word sentences (let alone their

meaning). As the discrepancy is not small but is almost

four orders of magnitude, this would mean that most of the

pairs of random five-word sentences a brain with the variety

of 4.6 × 1014 bits could not be even noticed as two different

sentences.

In other words, if we simulate on a computer an artificial

neural network with 100 billion neurons, 1 000 synapses per

neuron and 4.6 bits per synapse, the network would not

be large enough to associate a different response for each

of the possible five-word sentences but could only do it for

three-word sentences.

If the properties of this network correspond to the capac-

ities of our brain, we also could not distinguish most pairs

of five-word sentences. Those pairs should sound the same

to us if pronounced, or look the same if written on a paper.

But this is clearly not the case. For us, it is easy to

distinguish such sentences. How is that possible?

Before addressing this question and discussing the prop-

erties of T3-agents, let us first note that the combinatorial

problem of the real world versus the limited variety of a

brain, does not stop at language. The problem is the same

and becomes possibly even bigger when vision is considered.

Vision may require even larger variety than language both

at the level of semantics and at the level of sensory inputs.

Visual objects have different colors, sizes, shapes, positions,

shades, etc.

When trying to understand the variety of processing in

vision, we can ask a question of how many meaningful visual

scenes our brain is capable of perceiving and distinguishing?

To estimated that number, we will turn to the capacity of

visual working memory (a.k.a. short-term memory). Work-

ing memory is not just a storage of information. It is a place

where information is processed and this processing/storage

depends primarily on the meaningfulness of the items[16, 19].

Working memory stores information by the very means of

finding meaning in it[13]. Hence, the capacity of working

memory can be used as an indicator of how much meaning

can visual system extract from a visual scene.

Experiments indicate that visual working memory can

store about four objects[20, 21] and only if we are very famil-

iar with them[14, 19−21] and only if a category exists for each

object[16]. Thus, if we conservatively assume that an adult

human is able to distinguish 10 000 different categories of

objects, working memory for four objects would require a

total variety of

(104)4 = 1016

combinations. This would mean that already the com-

binations needed for visual working memory cannot be

accounted for by the memory of 1015 states. Working

memory capacity reflects human capacity to understand

a visual scene and is tightly related to the attentional

capacity[19, 22, 23]. The present result would mean that the

variety provided by our synaptic memory is not sufficient

to enable us to understand a visual scene of four objects.

One possibility is that a T2-brain has more capacity to

generate variety than the currently estimated. Another pos-

sibility would be that the capacity of four is an overestimate

and involves some type of chunking (as shown for tasks that

show capacity larger than four[14] and that the “true” ca-

pacity of visual working memory is perhaps just three ob-

jects. The latter hypothesis would lead to

(104)3 = 1012
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combinations, and would fit well within the supposed 1015

combinations of a T2-brain. Therefore, similarly to what

we have concluded for the semantics of verbal materials,

the semantic properties of visual working memory may fit –

with some stretching(!) – to the apparent limits of the brain.

However, even if both of the above hypotheses were cor-

rect and the brain had in the same time more storage than

assumed (e.g., more synapses) and the working-memory ca-

pacity of three objects, not four, still another source of a

combinatorial problem would remain. The above calcula-

tion accounts only for the semantic memory, i.e., object

identities, and does not take into account the variety of

sensory inputs with which these objects come.[20] The fact

is that there is not a single shape, size, color or shading for

most of the objects that we can recognize and categorize.

Normally, visual objects come in a huge variety of visual

appearances and this variety needs also to be taken care of

by the brain.

If we conservatively assume that we can perceptually eas-

ily detect each object in just 10 000 different forms, this

leads to

(1012)4 = 1048

combinations for three-object working memory (attention

capacity), and to

(1016)4 = 1064

combinations for four objects. These numbers exceed read-

ily the estimated capacity of the brain.

In fact, the number of visual combinations in which vi-

sual objects can come and can be perceptually distinguished

by our visual system without any significant effort may be

even larger. If we just assume that we can perceive an ob-

ject, e.g., a car, in 10 different shapes, in 10 sizes of retinal

projections and in 10 orientations, with 10 different colors,

and 10 patterns of shading, we already have 105 combina-

tions for that object. And these numbers are likely to be

much higher in reality. A similar problem holds for auditory

inputs and recognition of speech.

These real-life variety numbers seem too high to be ac-

counted for by stretching the estimates of the number of

synapses or their individual memory capacity. Rather, it

seems that there is a fundamental discrepancy between

what a T2-brain of reasonable size can offer (be it biological

or not) and what the real-life demands pose on human-level

intellectual capabilities.

In conclusion, it seems that the T2-theory of the brain,

which bases mental operations on a single policy, may ac-

count for the total variety of semantics, but the problem is

with the additional variety of perceptual inputs. It seems

that the combinatorial possibilities of perceptual inputs in

real life create the real problem as they need to combine

with semantics and the resulting variety exceed by far what

a maximally optimized brain with 100 billion neurons and

1 000 synapses per neuron could possibly deal with.

2.3 Variety of T3-agents

The above problems have been encountered when a single

policy was considered. Here, we will discuss how multiple

policies can provide a relief for that problem (called variety

relief in practopoietic theory[1]). To understand the solu-

tion offered by the variety relief in T3-agents, it is useful

to first consider the boost in variety that can be achieved

by the process of learning in a T2-agent. If learning is

not frozen and thus, we presume a full healthy brain (not

H.M.′s brain), we can repurpose the resources and replace

one type of knowledge that is no longer needed, with new

knowledge that may be more valid in a new situation. That

way, when learning is allowed, a much higher total variety

can be produced.

For example, if memory storage for some text-storage de-

vice is limited to just one million characters, only one or a

few books can be stored in this memory. However, if the

device can “relearn” by deleting old and loading new books,

the device can store all possible books that do not exceed

1 million characters. In fact, the total possible variety of

that memory storage for is 10156 of different combinations

of 26 letters in English alphabet (for comparison, as men-

tioned, the number of atoms in the visible universe is about

1080).

With a limited brain size or neural-network size, changes

to the network′s knowledge are thus the key process for

boosting variety.

But what if not only the slow learning of facts and skill

boosts variety, but in addition another mechanism operates

and makes the brain change its knowledge at another level

and at high speed. If the brain would have some quick way

of reorganizing its anatomy and changing its memories, it

could produce a much higher variety than 1015. It may

have in fact enough variety to account for the richness of

the sensory inputs.

The hierarchy of policies in a T3-agent described above

in (1) can offer exactly this learning-based boost in variety.

As policy πA can change policy πN , and the total variety of

the agent increases.

The speed of this adaptive change at πA would corre-

spond to the “speed” of our thought. Each time we think

a new thought or create a new mental image, we may be

reorganizing our brains in such a fast way. Hence, the speed

of this change should correspond to the speed of our mental

processes, the lower limit being known to lay somewhere at

100 or 150 milliseconds[1].

2.4 How much can the variety increase
theoretically?

We have seen that maximum possible variety of a

1-million character storage is 10156, and this puts the upper

bound as it presumes the “learning” mechanism (i.e., the

loading mechanism), that is itself unlimited in knowledge

creation capabilities. However, in most cases, this is not

realistic. The learning mechanism has its own limitations.
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In general, when the variety of the learning mechanism is

considered, the combined variety across two levels of orga-

nization can be computed as a product of the two varieties:

If πA has NA possible states, and πN has NN states, the

maximum total theoretical number of states that could be

produced by the combined agent is

NA× NN .

For example, in the 1-million character memory from the

example above, we may presume a book-loading “learning”

mechanism that has only 10 different states. This loading

mechanism cannot load more than 10 different books. As a

consequence, the total possible variety of the entire system

(memory + loader) is 10 million different states. In general,

depending on the limitations of the learning mechanisms,

there will be normally a stark reduction in the number of

combinations in comparison to what would be achieved by

an unlimited learning mechanism (in the above example,

107 down from 10156).

In adaptive systems, the limitations on learning come

from the limited sources of knowledge. If the knowledge

would be already prepared in a ready-to-use form and stored

elsewhere, it could be simply loaded (like from a larger hard-

disk to the smaller RAM memory of a computer). This

would make the problem trivial. Unfortunately, adaptive

systems do not have such an auxiliary depository of knowl-

edge of how to interact with the world. Rather, biological

systems have to extract that knowledge from the environ-

ment, which is why they are adaptive on the first place.

As mentioned, the process of extracting knowledge from

the environment is referred to as traverse in [1]. For ex-

ample, application of reinforcement learning is a traverse,

knowledge on how to learn stored at a lower level is applied

through interaction with the environment in order to create

new knowledge (new policy) at a higher level. Hierarchy of

policies in (1) generalizes that relation.

2.5 How many states can a frozen T3-
brain theoretically produce?

Let us presume that the brain is a T3-agent and that

when frozen (i.e., without learning), it becomes a T2-agent.

Let us also presume that the brain uses much of its variety

for the lower level of the two remaining, i.e., for storing

πA. This is where the abstract knowledge is stored such as

concepts. Hence, this level of organization can be referred

to as ideatheca (meaning storage of concepts).

Let us conservatively assume that ideatheca (i.e., πA)

has just 1012 states, which is what we estimated above as

the lower bound of semantic capacity enabling three-item

working-memory. Next, let us presume that πN has even

less variety and set it to the value 1010. This presumes that

only a small portion of the entire brain′s resources is under

the influence of ideatheca and can be changed quickly in less

than a second. In particular, the choice of this number pre-

sumes that only 1/1 000-th of the total memory machinery

of the brain is being changed in such a rapid way.

Under these assumptions, the total number of states that

a combined πA → πN could produce without any additional

learning is

1012 × 1010 = 1022.

This number is much larger than 1015 and much more

suitable for coping with the estimated real-life requirements

on variety. This number indicates that if H.M. was a T3-

agent before the surgery and became limited to a T2-agency

after the surgery (losing his third traverse), this patient may

have had the possible richness of mental life that could deal

with 1022 combinations. Irrespective of whether the esti-

mates of his semantic memory of concepts is about 1012 or

1016, there is still a lot of room left for additional combina-

tions of sensory inputs that indicate those concepts in the

surrounding world and that H.M. could efficiently process.

The number 1022 would also correspond to a neural net-

work that has 100 billion neurons and 1 000 synapses per

neuron, but also has an additional set of mechanisms that

change the properties of the network with a rapid rate and

on the basis of the incoming sensory inputs. To achieve va-

riety of 1022, it would be sufficient to enable changing one

bit of information per neuron (there are about 100 billion

neurons in human brain). For example, a neuron could be

switched on or off by its adaptation mechanisms.

For this to work, a pre-requirement is that the slow learn-

ing mechanisms noted as πG in (1) provide the knowledge

to πA on how to adjust πN . In other words, by slow learn-

ing mechanisms and throughout many years of the devel-

opment of the nervous system, the network must first learn

how to make these quick adjustments to its πN . That is the

network has to acquire the 1012 amount of πA knowledge

through its development time.

In that case, the agent can be considered as “understand-

ing” the sensory inputs. Understanding would mean that

the operation of πA gives the stimuli best possible interpre-

tation given all of the knowledge that the agent has acquired

through lifetime (for details see the section on abductive

reasoning in tri-traversal agents in [1]).

The alternative to extending the hierarchy would be to

cope with the variety requirements by simply increasing the

total size of the given policy, i.e., by increasing the network

size. In that case, variety grows linearly with the number of

components. To double the variety of patterns stored in the

brain, the size of the brain needs to be doubled. To increase

variety to 1022 states, from 1015 states in a 1.5-kilogram

brain, we would need an increase to 1.5 × 107 kilograms

of biological mass. This is more than the cumulative size

of all the brains of all the people currently living on planet

Earth.

3 Conclusions

A T2-AI, which means an AI based on single memory

storage and on a single set of learning mechanisms, cannot

possibly reach the intelligence of human. This conclusion
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is made on the basis of Ashby′s requisite variety theorem[7]

and an estimate of the total theoretical variety of control

that a brain can create given the number of neurons and

synapses. It turns out that the variety the brain could pos-

sibly create if it was a T2-agent would not be enough to

deal successfully with the demands of the real-world envi-

ronment. However, we also show that if the organization

of the brain formed a T3-agent, the size of the brain would

suffice. Accordingly, an AI that would mimic human intel-

ligence would have to be organized as a T3-agent too.

The variety of a T2-agent would be sufficient to imple-

ment all of the semantic knowledge of an adult human per-

son that can be expressed in words, but would not suffice

for the requirements of the sensory processing of those se-

mantic categories. The objects and situations that need to

be detected from the sensory data, require too much vari-

ety to be dealt with a T2-brain. This is the case for both

recognition of visual scenes and understanding of speech,

and the problem does not go away even if the coding and

processing is maximally optimized in the brain.

The important implication of the present analysis is that

no novel optimization or invention of a new algorithm, or

discovery of a new architecture for neural circuits can pos-

sibly bring a T2-agent (i.e., a traditional single-policy +

learning-mechanism agent) with reasonable size of resources

to a human-level intelligence. The present calculations al-

ready presume that all the operations and coding schemes

in the organization of the agent have been optimized to the

theoretical maximum. Thus, no new creative invention in

machine learning is possible that could bring to the intel-

ligence level of humans the modern approaches to AI. In

other words, to build artificial general intelligence, we need

to seek beyond deep learning networks, Markov chains or

Bayesian networks and similar. Otherwise, we would need

to scale up the resources to prohibitively large sizes.

The only way to create an artificial system that is human-

level intelligent with reasonable resources is to implement

a hierarchy of policies, which then makes possible the deci-

sions about driving, walking, moving, etc. to rely on the full

variety of the sensory data. A T3-agent with realistic com-

putational resources can perform such a task and, once it

has acquired knowledge of an average adult person, it could

generate variety of 1022 states. This number is sufficient to

deal with all the semantic knowledge and still plenty of sen-

sory information can be processed. And, if needed, there

would be enough room for increasing that number within

the realm of the current IT technology.

A change from T2 to T3-organization comes with some

costs[1]. One cost is that the entire agent operates always

slower with more than with fewer traverses. This is because

the additional adaptive processes require time to complete.

In human mental operations, this slowdown ranges from

100 s of milliseconds to seconds (for more details see [1]).

In [1], it has been proposed that the physiological mech-

anism underlying anapoiesis, i.e., the application of knowl-

edge in ideatheca to change network properties, are im-

plemented through neural adaptation. Furthermore, these

mechanisms are proposed to rely on sensory inputs and

hence, largely on the variety stored in synapses that process

those sensory inputs. In [24], several testable empirical pre-

dictions have been proposed as derived from the theorized

T3-organization of the brain.

In conclusion, an AI that matches human intellectual ca-

pabilities is possible only in tri-traversal systems.
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