I3ATH

SPA

UNIVERSITY

Wu, X,, Li, C., Wang, X. and Yang, H. (2018) 'A creative
approach to reducing ambiguity in scenario-based software
architecture analysis’, International Journal of Automation
and Computing. doi: 10.1007/s11633-017-1102-y.

The final publication is available at Springer via http://doi.org/10.1007/s11633-017-1102-y

ResearchSPAce

http://researchspace.bathspa.ac.uk/

This pre-published version is made available in accordance with publisher
policies.
Please cite only the published version using the reference above.

Your access and use of this document is based on your acceptance of the
ResearchSPAce Metadata and Data Policies, as well as applicable law:-
https://researchspace.bathspa.ac.uk/policies.html

Unless you accept the terms of these Policies in full, you do not have
permission to download this document.

This cover sheet may not be removed from the document.

Please scroll down to view the document.

http://doi.org/10.1007/s11633-017-1102-y
http://researchspace.bathspa.ac.uk/

A Creative Approach to Reducing Ambiguity in
Scenario-based Software Architecture Analysis

Xiwen Wu*
*Department of Computer Science
and Engineering
Shanghai Jiao Tong University
Shanghai, China
Email: jxnuwxw@gmail.com

Chen Lif
fDepartment of Computing
Imperial College London
London, United Kingdom
Email: Chen.lil@imperial.ac.uk Email: xuan.wangl13,h.yang@bathspa.ac.uk

Xuan Wang and Hongji Yarig
iCenter for Creative Computing
Bath Spa University
Bath, United Kingdom

Abstract—In software engineering, a scenario describes an not define the conditions of messages. Here, compdherdy
anticipated usage of a software system. As scenarios are useneed one messagen{ or my) or both messagesr(, and

ful to understand the requirements and functionalities of a
software system, the scenario-based analysis is widely asén
various tasks, especially in the design stage of software dri-
tectures. Although researchers have proposed various scano-
based approaches to analyse software architecture, thereestill
limitations in this research field, and a key limitation lies in
that scenarios are typically not formally defined and thus mg
contain ambiguities. As these ambiguities may lead to defes; it is
desirable to reduce them as many as possible. In order to reae
ambiguity in scenario-based software architecture analyis, this
paper introduces a creative computing approach to scenario
based software requirements analysis. Our work expends thi
idea in three directions. Firstly, we extend an ADL-based la-
guage - Breeze/ADL to model the software architecture. Sendly,
we use a creative rule - Combinational Rule (CR) to combine th
vector clock algorithm for reducing the ambiguities in modding
scenarios. Then, another creative rule - TransformationalRule
(TR) is employed to help to transform our Breeze/ADL model to
a popular model - UML model. We implement our approach as
a plugin of Breeze, and illustrate a running example of modehg
a poetry to music system in our case study. Our results show ¢h
proposed creative approach is able to reduce ambiguities dhe
software architecture in practice.

Keywords—Creative Computing, Vector Clock Algorithm,
Scenario-based Analysis of Software Architecture, Sequee Di-
agram, Breeze/ADL

|I. INTRODUCTION

my) to delivermg, and different conditions lead to different
message orders. The ambiguities in the design phase may lead
to defects in the latter phase of software development. As it
takes much effort to fix those defects in software, it is deéde

to reduce the ambiguities as many as possible.

Thus, we introduce the creative computing combining with
popular algorithm and modeling language into our approach.
In software architecture, the architecture descriptionlage
(ADL) is commonly used to formally define architectures.
Although researchers [8], [9], [10], [11] have proposedmas
ADLs, it is still a blind spot to model scenarios with ADLSs. In
practice, programmers typically use the sequence diagfam o
Unified Modeling Language (UML) [12] to model scenarios.
As the state of the art, UML is a general-purpose modeling
language in the field of software engineering, and it pravide
a standard way to visualize the design of a system. Despite
of its popularity, UML is not suitable for automated ana$ysi
(e.g, verification and validation), since its constructs lack
formal semantics. As a result, Pandey [1] criticizes that th
informal UML can lead to ambiguities and inconsistencies.
As far as the definition of scenarios is concerned, ADL has
advantages over UML [1], since ADL presents a formal way
to define scenarios, and thus allows automating architectur
level scenario-based analysesd.[3], [4], [5], [6]). However,

For a given software system, its software architecture dieis challenging to reduce such ambiguities in scenarigeda
fines its structure, communication and interrelation amitéig software architecture analysis with ADLSs:
components [1], and its scenarios describe its usages R]. Bhallenge 1.Although it is relatively easy to introduce new
scenarios are useful to improve the quality of an architefeatures for modeling scenarios, it is tricky to detect aulice
ture [3], the scenario-based analysis of software ardhitec possible ambiguities in scenarios.
has been a hot research topic in recent years [3], [4], [§]Jhallenge 2.To make our approach more general and com-

[6]. Although this research direction is intensively stedli

patible with existing works, we need rules to translationlAD

Sibertin-Blancet al. [7] complain that even the basic diagramnto a general model. It is tricky to choose a popular modglin
notation, sequence diagrams, may contain ambiguitiese silanguage and define such rules and to ensure the correctness

existing work typically does not define scenarios formafiyr

during the translation.

example, a sequence diagram may show that compohent To address the above challenges, in this paper, we present

receives two messages; andm, from component®8 andC
respectively, and componeAtdelivers another message;.

a creative computing approach to reducing ambiguity in
scenario-based software architecture analysis and peopos

From the sequence diagram, it is tricky to determine theéglartcombinational rule and transformational rule. Based on the
order betweenn;, ms andms, since sequence diagrams dareative rules, we extend our previous tool, called Bre€ze.

extension supports the formalization of scenarios, theieli that simply could not have been generated before the change
nation of possible ambiguities, and the translation fromLAD [19]. For instance, if all organic molecules are basicatitings
to UMLs. This paper makes the following key contributionsof carbon atoms, then benzene cant be a ring structure. In

« Based on combinational ru|e, we propose an extendg@ggesting that this is indeed what benzene iS, the chemist
ADL, called Breeze/ADL, that introduces new featurekriedrich von Kekule had to transform the constraint string
for modeling scenarios, and an algorithm to reduce posépPen curve) into that of ring (closed curve). This stytisti
ble ambiguities in scenarios. We leverage the combinati§ignsformation made way for the entire space of aromatic
rule to borrow ideas from the vector clock algorithm [13fhemistry, which chemists would explore [sic] for many year
that produces positive results in determining event ordersEXxploratory creativity rests on some culturally accepted
in distributed systems. style of thinking, or conceptual space [19]. This may be a

. Based on transformationl rule, we choose UML atheory of chemical molecules, a style of painting or music,
our target model and define mapping relations betwe€h @ particular national cuisine. The space is defined (and
Breeze/ADL and the UML sequence diagram. The magonstrained) by a set of generative rules. Usually, thefgs ru
ping relations allow us to translate Breeze/ADL intd@re largely, or even wholly, implicit. Every structure pumetd
UMLs, which allows integrating our approach with existby following them will fit the style concerned, just as any wor
ing tools. A user may design more accurate architecturgi§ing generated by English syntax will be a grammatically
with our tool, and then translate these architectures &ceptable English sentence. In exploratory creativitg t
UML to gain the benefits of existing industry tools. person moves through the space, exploring it to find out whats

« A plugin of Breeze that is implemented for our approacfhere (including previously unvisited locations)t and, tie
The latest version of Breeze is now available at Gifhupmost interesting cases, to discover both the potential hed t
With the support of the extended Breeze, we conductedi@its of the space in question.

case study on modeling an online shop. The results shown this paper, we propose related rules based on combina-
the effectiveness of our approach. tional creativity and transformational creativity.

The rest of the paper is organized as follows. Section Rcenario-based Analysis of Software Architecturekazman

at ©t al. [3] analyse relations between quality attributes and
scenarios. Lassingt al. [14] work on a similar research
\Aroblem, with an emphasis on the impacts of complex sce-
narios. Lunget al. [15] present an approach that estimates the
reusability of software architectures through scenarmsse

[l. RELATED WORK [4] models scenarios with finite-state machines and verifies

Creative Computing With the rapid development of infor- their consistency. Tekinerdoganal. [2] propose an approach
mation technology, a great deal of novel computing emergddat analyses the reliability of software architecturecatzb
such as Google search engine and Facebook, which enrich&hé!- [5] propose a reliability analysis method that is based
human life much more convenience and colorful. This kind &N Scenarios of component interactions. Rodrigetesl. [16]
computing could be considered as Creative Computing. TREPPOSE a reliability prediction approach that is based on
nature of creative computing, grammatically, focuses an t§c€narios. Cheungt al. [6] employ scenarios to predict the
term ‘creative’. It can be seen that the meaning of cregtivifeliability of concurrent systems. Williams and Smith [17]
is the core of creative computing. present a scenario-based approach that estimates penftema
Creativity can be defined as the ability to generate novel akl architecture level. The above approaches typically do no
valuable ideas [18]. If we look carefully at many examples ¢prmally define scenarios. Although Bose [4] uses finiteesta
human creativity that surrounds us, we can see that there Blachines to model scenarios, it is not helpful to detect many
three different ways in which creativity happens. Novelaisie @mbiguities in sequence diagranesq, the sample ambiguous
may be produced by combination, by transformation, or §gduence d|agrar_ns shovv_n_ in Section I)_,_smce_fmlte-state ma
exploration [19]. chines do no_t define condm_ons for transitions _elthe.r. Oarkw
Combinational Creativity means to combine familiar ideag®mplementing the preceding approaches, since it presents
to produce unfamiliar ones, through making associations JerMal language to define scenarios and an algorithm to eeduc
tween ideas [19]. Examples include many cases of poeBech ambiguities. _ _
imagery, collage in visual art, and mimicry of cuckoo sonﬁequ_e”‘:_e Diagram.In practice, the sequence diagram of
in a classical symphony. Analogy is a form of combination ML is widely used to de_scnbe scenarios [20]. Figure 1 shqws
creativity that exploits shared conceptual structure amd d" €xample sequence diagram, and we present more details on
widely used in science as well as art. UML sequence dlagrams in Section V. AIthough itis p_o.pular,
In transformational creativity, the space or style itsaif iP@ndey [1] complains that UML suffers the incapability of
transformed by altering (or dropping) one or more of jfgutomated analysis, since it is informal. As a part of UML,

defining dimensions. As a result, ideas can now be generaf&gluénce diagrams also have the same limitation. Furtiermo
as shown by Sibertin-Blanet al. [7], sequence diagrams may

Lhitps://github.com/BreezeCSA/Breeze suffer from ambiguity. Our work complements the notation of

introduces the related work. Section Il presents comion.
rule and Breeze/ADL. Section V presents transformatiomal r
and the mapping between Breeze/ADL and UML. Section
presents a case study. Section VII concludes.

1) Elements of Scenario Modelingzrom the viewpoint
of software architecture, scenarios are interactions gntioa
components of a software system. Here, components can be
many, and their interactions may be in parallel. To define
scenarios formally, we need to focus on the two aspects of
scenarios such as the definition of scenarios and the inter-
actions among their components. In particular, we intreduc
four additional elements to define a scenario, and the formal
definition of a scenario is as follows:

Client and Server
& Name of

Scenario

Lifeline

Invoction
Message

y

Message-
Occurrence-
Specification

Execution-
Specification L . Lo .
Definition 3.1 Scenario:={Description, ComponentList, Mes-

sagelList, ParallelScenarjorepresents a scenario, where:

« Descriptionis a brief introduction of this scenario.

o ComponentLists a set of components that involve in
a scenarioS. Components irComponentLisfollow the
traditional definition of software architecture.

o Messagelistdenotes the messages among components,
and eachvlessagds defined in the next definition.

« ParallelScenariois a vector that defines possible active

Message-
Occurrence-
Reply Specification

|
|
I
I
|
I
|
I
Message }

Fig. 1. An example of basic interaction

Modeling Element Description

Component template,
Connector template, Templates for elements.

Interface template

Style

Breeze.xsd

Style Constraints

Constraints for specific style.

Reconfiguration Operations

Defining the changes

instances of scenarios. Here, in a vedter, as, ..., a;, },

a; denotes number of possible active instances ofithe
scenariaS;, andm denotes the total number of scenarios.
For example, ifSy, S2, S3 and S, are four scenarios and

State Opti Allowed state transf ti . . .
e e owec ST raneTormaton their vector is{0,0, 3, o0}, the first 0’ and the second

Definition | omPonent, Connector Definitions of the elements ‘0’ denote thatS; and S, cannot have active instance;

Interface, according to the templates oy . . i

i . Instances (Component, The configuration of 3 denotes that95 can haVe 3 aCtIV_e Ir_]Stances’ and
Configuration Connector and Connection) architecture instances. denOteS thaS4 can haVe |nf|n|te active Instances.
State State Transformation Rules | | oo NS T pefinition 3.2 Message:={ SourceComponent, TargetCompo-
elements state

Fig. 2. The schema for Breeze/ADL nent, VectorClock, Tygerepresents a message, where:

« SourceComponem$ a component that sends a message.
sequence diagrams, since our extended Breeze/ADL is forma¢ TargetComponer$s a component that receives a message.
and it allows our algorithm to reduce ambiguities in scesgri « VectorClockis a vector clock that defines timestamps of
Breeze/ADL. As the underlying ADL of our Breeze tool [8], messages.

[21], Breeze/ADL models software architecture in the forsna Typeis the type of a message. We define two types of
of both XML and graphs. Figure 2 shows the schema file ~messages,e, a request or a response.

of the existing Breeze/ADL. To support modeling scenarios, |n Figure 3, the left part shows the elements that are added
iur work in this paper extends the Breeze/ADL in Figure % define scenarios, and the right part shows an example
with more elements. Furthermore, we propose an algorithmdgenario that is defined in Breeze/ADL. In this example, the
reduce ambiguities of scenarios, and implement a trarlslam,o components ar€lient and Server and they are defined
from Breeze/ADL to UML sequence diagrams. inside thecomponentlistabel. The messages between the two
components are defined inside thessagelistabel, and the
definition of a message includes its attributes suchyag

source andtarget
The specification of UME defines the concrete and abstract

syntaxes of sequence diagrams. After inspecting elemdnts o
sequence diagrams, we find that the basic modeling elements
in the Basiclnteractionpackage of UML are quite useful. For

example, most approaches in Section Il use only these basicCombination Rule

modeling elements. As a result, in this paper, we focus ONcombinational Ruldeads to improve the result and reduce

thesehpa5|c modelmg elements. | del ambiguity in scenario-based software architecture arsalys
In this section, we present new elements to model scenarigs, (e is described as below:

(Section I11-1), and the vector clock algorithm to ensuratth
scenarios are defined without ambiguities (Section 1V-B).

[1l. SCENARIO MODELING IN BREEZE/ADL

IV. COMBINATIONAL RULE FOR REDUCING THE
AMBIGUITY

Definition 4.1. A Combinational Rule(CR) is to combine
different requirements modules;{ based on variety weights

2http://www.omg.org/spec/UML/ (k;) (i.e., probability of the selected modules) for inferring

An Example of Scenario Definition in Breeze/ADL

\
| Scenariolist Scenario — Description <scenariolist>
\ <scenario ID="S1" name="client and server">
‘ ‘ <description> the scenario of clients and server </description>
— ComponentList | | <componentlist>

‘ ‘ <component ID="N1" name="Client"/>
| <component ID="N2" name="Server"/>
‘ — Messagelist ‘ </componentlist>

| <messagelist>
‘ ‘ <message ID="M1" name="request" type="request" source="N1" target="N2">
‘ L parallelScenario ‘ </,::§:°rd°d(timestamp="1,0"/>

ge>
L —_—_—————— ————— = — = _ _ | <message ID="M2" name="response" type="response" source="N2" target="N1">
~ = <vectorclock timestamp="1,1"/>
‘ ‘ </message>
| | Messagelist Message — VectorClock | | </messagelist>
‘ ‘ <parallelscenario>
‘ Source _ Request ‘ <maxparallelnum scenariolD="S1" num="INF">
- </parallelscenario>

| Tyee =L N | | </scenario>
‘ Target ™ { Response ‘ </scenariolist>
- -

Fig. 3. The added elements for Breeze/ADL and an example

related requirements moduleg (wherei is the index of the send out a messadd, our algorithm updates every dimension
module. The formal definition o€R is as follows: of its clock and chooses the message whose dimension is the
biggest one happens befaké. Here, our algorithm increases
vt;[i] by 1 beforeC; sends the message. We assume that
where then is the total number of the possible modules ana component cannot send out more than one message at a
the sum of thek; should equal to 1, i.e., time, so we separate messages by adding decimals. As the
algorithm concisely define the partial order of messageisgnd
ko + kit oot hn =1 (2) or receiving in scenarios, the ambiguity example in Section
By using the above rule, we define, as Breeze/ADL will be eliminated.

model, and introduce the Vector Clock Algorithm (see next In our approach, the timestamps have the basic property
section) asr;. Thus the equation for our approach can bef isomorphism. We find that the timestampsaf and vt;

koro + k1x1 + ... + kpzn — ¥y (1)

written as: follow the three relations:
ko(Breeze/ADLModel) + ki (V ectorClock Algorithm) o vt; <otj & Vo € [1,n] : floor(vt;[z]) < floor(vt;[x])
— (Breeze/ADLModel)’ o Ut; < vt; & vt; < wvt;and Iz € [1,n] : floor(vt;[z]) <
3) floor(vt;[x])

) o vt || vt; < not(vt; < vtj) and not(vt; > vt;)
B. Vector Clock Algorithm Here, floor(x) roundsz downward. For example, i = 1.6,
This section presents the vector clock algorithm that reduc]vloor(x) returns 1.
ambiguities. After we present the details of the algorithm, As the relation— defines partial orders, timestamps of
we next illustrate the algorithm with the sample ambiguoyfiessages follow the two properties:
sequence diagram as shown in Section I.]]
The vector clock algorithm is a kind of logical time which my — my & vt <ot (4)
is widely used in distr@buted systems to defir_le the partidéor my || my < vt | Ut;_nz (5)
of events [13]. A partial order set [22] consists of a set and a
binary relation. In such a set, a pair of elements- b denotes ~ Here,m; is a message sent by componént andms is
thata preceded, and the relation is called a partial order. I message sent by componéft Their timestamps aret;™!
a partial order set, the relation between two elememtand andvt}**, respectively. For these two equivalence relations, if
b) falls into three categories, — b, b — a, or a || b, where Equation 4 holds, Equation 5 also holds. As a result, we need
a || b denotes that there is no order relation between them 1o proof only Equation 4. Furthermore, according to Algamit
Algorithm 1 shows the detail of the vector clock algorithml, if m1 — ma, 0" < vt7**. As a result, we need to proof
For a software architecture that contaimscomponents, we only vt;"' < vt7"* = m; — ma, and the proof is as follows:
use Arc = {C4,C5...C,,} to denote the architecture, where « Assumingut;" < vt}”? andm;y || mo.
C; denotes theith component ofArc. In the algorithm, a < Supposevt;"™ = z. The only way componenf; can
component is associated with an n-dimensional, non-nggati obtain a value for théth entry of its vector, is that at
vectorvt;[1..n], wherewt;[i] records the timestamps of mes- least x is through a chain of messages originating from
sages that are sent hy;. The n-dimension vector of each C; (at messagen; or later).
component is initialized as a zero vector, and is updatede Such a chain implies that; andm, are not concurrent.
according to the following rule. If component; is about to However, we find a contradiction, so the assumption does

Algorithm 1 The Vector Clock Algorithm
1: initialize the local clock for each component as a zero
‘ vector.
| 2: if componentC; is about sending a messagé then
1 3: dims < the total number of dimensions of;
4. for j =0 to dimsdo

Convert component into Lifeline

’ <component ID="N1" name="Client"/> ‘ :>

Convert invocation into message

e ’ Client ‘ ’ Server ‘ 5: tol < all of the MessageOccurrenceSpecifications
<message ID= name="reques .
’ type="request” source="N1" target="NZ"> ‘ = ; ; happen before sendinty/
| request__ | 6: for each MessageOccurrenceSpecificatibfsin tol
| ! do
. My . .
Fig. 4. Component and Message Translation 7: if vt *[j] > vt;[j] then
. My .
8: vt;[j] < vt; " [4]
o: end if
10: end for

not hold. For example, ibt_ﬁ;’“ < o, m1 — m2 OF 11. and for
my — my. At the same time, ifma — my, vt;" < 4. vtii] = vti[i] + 1

vtj*. Here s a contradiction. Thereforg,™* < vtj"* = 13 while there exist another messagé; on component
my = My _ ¢y whosevt [i] equalsut;[i] do
« In summary, Equation 4 holds. 14: vtili] vt;]i] + 0.1
In summary, there exists an isomorphism between the s& end while
of partial ordered messages and the timestamps that attaeh timestampM with clock vt; and send it
to them. As a result, timestamps are useful to determine the end if
relations between two messages.
We illustrate how to use our algorithm for detecting the
ambiguity in the sequence diagram in Section I. For simpligthere then is the total number of the possible modulés,
ity, we assume that this scenario consists of only the thriseentropy of moduler; and the sum of thé; should equal
componentsife., A, B, andC), and we assume th& andC to1,i.e,
do not send any messages before andms are sent. Under ko+ki+..+k,=1 (7
this assumption, the timestampsrof andm, are(0, 1, 0) and
(0,0, 1), respectively. IfA needs bothn; andm, to deliver Here we consider some popular models which are used to
ms, the resulting timestamp ofi3 will be (1,1,1) to m3. model architecture in the high level in different areas. The
On the other hand, i needs onlym, (or ms), the resulting candidate models are selected as Petri net, UML model, AADL
tamestamp ofnz will be (1,1,0) (or (1,0, 1)). As every set model and LQN model. The above equation can be written as:
of timestamps corresponds to a unique sequence, our agproac

detects an ambiguity, if more than one set of timestamps is”% (Epetri * k1, Buarp * k2, Eaapr * ks, Epon * kn)

produced during analysis. — General Model
(8)
V. TRANSFORMATIONAL RULE FOR MODEL According to the domain expert experience, the UML is a
TRANSFORMATION most popular modeling language in industry area and the

i corresponding entropy is the maximum.
A. Transformational Rule

Transformational Ruléeads to change the thinking patter- Model Transformation

of users and provides more practical way to implement it in To make our approach more generaL we provide a set of
the industry area. The rule is inspired by Machine Learningiapping rules between Breeze/ADL and UML. The benefit
algorithm. To be Specific, we borrow some ideas of DeCiSifo mappmg is that we can combine the advantages of both
Tree [23] which helps us to determine the transformatighDL and UML. The combination not only supports formally
directions. The rule is defined as follows: modeling scenarios at architecture-level, but also alltvesss-
lating scenarios from Breeze/ADL to UML sequence diagrams

Definition 5.1 A Transformational RuléTR) is to retrieve the that are supported by industrial tools,g, Rational Rose,

) ! .
module () Wh'c.h has the maximum entrpp)E][based on, Enterprise Architect (EA), and PowerDesigner.
the current requirements module;) according to the users

) :) As EA is a professional and famous tool in industry, our
fgfr;e;fggﬁnrizgak(gf_(r'; |s V;i'?gﬁ;@ghe module feature). Theapproach translates scenarios from Breeze/ADL to EA style

XML files. In this section, we define the mapping relations
in the concrete syntax (Section V-B1) and the abstract gynta
max(Ey x k1, By x ko, ..., By x k) — ' (6) (Section V-C), respectively.

1) Mapping Rules for Concrete SyntaXo illustrate the <messagelist>
mapplng relationS, we first present the concrete SyntaX of <message ID="M1" name="request" type="request" source="N1" target="N2">

Sequence Diagram (CSSD) <vectorclock timestamp="1,0"/>
L ks </message>
Definition 5.2 CSSD::{LIfEHne, Message, MessageOCCUr- <message ID="M2" name="response" type="response" source="N2" target="N1">
renceSpecification, ExecutionSpecificatjois the concrete . <vectorclock timestamp="1,1"/>
K /message>
syntax of sequence diagrams, where: </messagelist>

« Lifeline is a set of participants of an interaction and a U
participant is defined as a component in Breeze/ADL.

« Messagds an invocation/response among components.
« MessageOccurrenceSpecificatgpecifies the occurrence

of the eventse.g, sending and receiving of messages, or|

|
invoking and receiving of operation calls. As defined in Execution- reavest—__J
UMLS3, it is a type of messages. Specification /J
« ExecutionSpecificatiois a specification of the execution Of WebUl reponse” 1
or an action within a Lifeline. : i
As in Breeze/ADL, components ioomponentlistorrespond Fig. 5. Translation of ExecutionSpecification
to lifelines in the sequence diagram, Figure 4 illustrates t fdasing
mapping rule. The invocations in Breeze/ADL are mapped t0 | wmessage | 041 Interaction H InteractionFragment
messages between lifelines in sequence diagrams. In ssgjuen Dl
diagrams, a message has two attributes such as a type (sourcé 4 * eeractonfrogment | (0.1
or target) and a label. In particular, sequence diagrams use | T GeneraOrderivgl | - [0.7]
solid arrows to denote requests, and dot arrows to denq};@agj v Generalordering
responses. Our approach maps these attributes to the corre-| """ *“" e I
sponding attributes in Breeze/ADL. ‘ (0. |
Each message in Breeze/ADL corresponds to two eveats, %" 7 [. m‘”
a request and a response, in sequence diagrams. Our approac yesagend Leline LS 011 0ccurancespedification , *
translates these events inkdessageOccurrenceSpecification Benes ——————————— }H
elements in sequence diagrams. As a result, each lifeline
may have manWessageOccurrenceSpecificatielements. In T
sequence diagrams, the interval between the earliest tesd la |
MessageOccurrenceSpecificatieiements on the lifeline is MessageOccuranceSpecification
specified by théexecutionSpecificatioalement. For example,
the sequence diagram in Figure 1 includes tWessageOc- Fig. 6. Part of the abstract syntax of the Basiclnteractipaskage

currenceSpecificatioalements orClient, i.e., sending request

and receiving responseThe timestamp ofsending request Of OccurrenceSpecificationsvhen using the sequence dia-
(1,0) is smaller than that ofeceiving Responsé, 1), which gram to depict scenarios, the partial order depicted b)_/d!ect
means thasending requedtappens beforeeceiving response Clock between messages is mapped to@emeralOrdering
Figure 5 shows an example translation from Breeze/AD{Vhen transforming Breeze/ADL into sequence diagrams, our
to sequence diagrams. The event order is encoded in @&RProach infers partial orders between messages by campari

ExecutionSpecificatioalement of the lifeline. their timestamps, which is based on the isomorphism prgpert
of the vector clock algorithm.
C. Mapping Rules for Abstract Syntax

The abstract syntax of sequence diagrams is defined in
the meta-modeling language of UML. In particular, several We implemented our approach as a plugin of Breeze, and
fragments are related to sequence diagrag, the Basicln- with the support of the tool, in this section, we illustrater o
teractionspackage and th&ragmentspackage. Breeze/ADL approach using a poetry to music system. the latest vergion o
focuses on the elements in tBasicinteractionpackage, and Breeze is available at Github:
it covers lifelines, messages, message ends, interacaos https:/github.com/BreezeCSA/Breeze
general orders of sequence diagrams. Figure 6 shows the rela)
tions among these elements. In particulaGeneralOrdering A The Requirements
element denotes a binary relation amo@gcurrenceSpec- The implementation of the poetry to music system should
ification elements, and the binary relation defines that &nllow the MVC frameworK. As defined in the framework,
OccurrenceSpecificatioelement must occur before the othethe requests from customers are delivered to control com-
in a valid trace. This mechanism allows defining partial osdeponents, and components further invoke function modules to

VI. CASE STUuDY

Shttp://www.omg.org/technology/documents/formal/uitrh 4http://www.martinfowler.com/eaaDev/uiArchs.html

Breeze\ADL of Modelling Poetry2Music.

<port xmi:id="p11 "
<port xmi:id="p12 "
<port xmi:id="p13 "
<port xmi:id="p14 "

<arch xmi:id="arc1 " name="Poetry2Music">.

<node xsi:type="Breeze:Component” xmi:id="n1" name="Control">.

direction="inout"/>.
direction="inout"/>.
direction="inout"/>

direction="inout"/>

</node>

<node xsi:type="Breeze:Component” xmi:id="p15 " name="WebU|">.
<port xmi:id="p16" direction="inout"/>.
<port xmi:id="p17 " direction="in"/>.

</node>

<ed e:id="el1" source="p12 " target="p21">.

<arch>.

4 Poetry2Music

*
. *
<+ WebUl

a
) o = -

4 Candidate Music List 4 1o Music Library

P * *)
= -

% Customerinfo < PoetryStylelnfo

4 Confirmation

Fig. 7. The software architecture of poetry to music system

Generate Candidate Music List

‘ WebUI ‘

Candidate
Music List

Customer
Info

Poetry
Style Info
T

Control

‘Generate Candidate
Musiclist |
Request Poetry Style Info,

Search Poetry Style Info

|
I
|
| _ Poetry Style Info™

- | -—‘
l(_ _ _ customerinfo- —~ ~
- i
- I

o Reply 7T

|
| I
- | |
_Feedback | | |
- I |
|
! |
I

Fig. 8. The scenario of generating candidate music 5sj (llustrated in a

sequence diagram

accomplish functionalities that are requested by custenk@r
simplicity, we focus on the functionalities of querying pge

ing style.

3) Generating candidate music li€fs). According to poet-
ry style, the system retrieval music library and generate
candidate music list.

4) Confirmation(S4). The system arrange the music list
and return results to customers.

We focus on only modelings, due to space limit. Follow-
ing the MVC framework, when a customer enters keywords,
the WebUI component sends a reque§enerate Candidate
Music List to the Control component. To accomplish this
request, theControl component retrieves the poetry style
and customer information from thHeoetryStyleInfeomponent
and the Customerinfocomponent, respectively. After that,
the Control component returns the information to thiéebUI
component, and the latter component presents the feedback t
the customer.

B. Modeling with UML

According the requirements as described in Section VI-A,
with UML, the best choice for a designer it to draw a sequence
diagram to describe5s. Figure 8 shows such an example,
and it presents many details 8§ (e.g, components and their
messages). However, when developers implement the system
according to the sequence diagram, they may easily become
confused. For example, a developer may wonder whether
there exists a strict order betweBequestPoetryStylelntmd
RequestCustomerinf@and whether bottPoetryStylelnfoand
Customerinfoare required or only one of them is required
beforeReply

C. Modeling with Breeze

As introduced in Section Il, Breeze supports two modeling
languages such as Breeze/ADL and its graph format. Figure 7
shows the built architecture of the poetry to music system, i
both formats. In particular, the upper part of Figure 7 shows
the WebUI and Control components in Breeze/ADL. Due to
space limit, we do not present the definitions of the other
components. The Breeze/ADL file defines the ports of the two
components and the interactions among these ports. Acgprdi
to directions of their messages, ports have three types such
as in, out and inout An interaction is defined as an edge
between two ports. For exampl@dge ID = “el” source =
“p12” target = “p21”) denotes are; interaction from the
p12 port to theps; port. The lower part of Figure 7 shows the
architecture of the whole poetry to music in the graph format
of Breeze/ADL. In the graph, the small rectangles adhering t
components represent ports, and lines represent intenacti
between ports.

style and generating related music list. To accomplishwiee t D. Reducing Ambiguities with our Extension

tasks, the system should at least implement the functibesli

in the following scenarios:

Our extension first encodes the components and their mes-
sages of the architecture in Section VI-C. Figure 9 shows

1) Loginning(S;). Customers sign in the poetry to musidhe encoded architecture in Breeze/ADL. In the encoded

system with their usernames and passwords.

Breeze/ADL file, the components in this scenario are defined

2) Querying Poetry Style Informatior{S;). Customers in thecomponentlistag, and the messages among the compo-
query poetry with keywords, and find their correspondients are defined in thmessagelistag. TheParallelScenario

Scenario Generate Candidate Music List Definition in Breeze\ADL

<scenariolist>

<scenario name="Login" id="S1">

<componentlist>

<component id="N1" name="WebUI"/>

<component id="N3" name="Candidate Music List"/>

<component id="N4" name="PoetryStyleInfo"/>

<component id="N5" name="CustomerInfo"/>

</componentlist>

<messagelist>

<message id="M1" name="Input Keywords" type="request" source="WebUI" target="Control">

<vectorclock timestamp="1,0,0,0,0"/>

</message>

<message id="M2" name="Request Poetry Style Info" type="request" source="Control" target="PoetryStylelnfo">
<vectorclock timestamp="1,1,0,0,0"/>

</message>

<message id="M3" name="Request Customer Info" type="request" source="Control" target="Customernfo">
<vectorclock timestamp="1,1.1,0,0,0"/>

</message>

<message id="M4" name="Search Poctry Style Info" type="request" source="PoetryStyleInfo" target="PoctryStylelnfo">
<vectorclock timestamp="1,1,0,1,0"/>

</message>

<message id="M5" name="Search Customer Info" type="request" source="CustomerInfo" target="CustomerInfo">
<vectorclock timestamp="1,1.1,0,0,1"/>

</message>

<message id="M6" name="Poetry Style Info" type="reply" source="PoetryStylelnfo" target="Candidate Music List">
<vectorclock timestamp="1,1,0,2,0"/>

</message>

<message id="M7" name="Customer Info" type="reply" source="Customerlnfo" target="Candidate Music List">
<vectorclock timestamp="1,1.1,0,0,2"/>

</message>

<message id="M8" name="Reply" type="reply" source="Candidate Music List" target="Control">

<vectorclock timestamp="1,1.1,1,2,2"/>

</message>

<message id="M9" name="Feedback" type="reply" source="Control" target="WebUI">
<vectorclock timestamp="1,2.1,1,2,2"/>

</message>

</messagelist>

<parallelscenario>

<maxparallelnum scenariolD="S1" num="INF"/>

<maxparallelnum scenariolD="S2" num="INF"/>

<maxparallelnum scenariolD="S3" num="INF"/>

</parallelscenario>

</scenario>

<arch>

Fig. 9. The scenario of generating candidate music I#f) (llustrated in

Breeze/ADL

vectors of scenarios are defined in tparallelscenariotag.
The parallelscenarioof S; is (oo, 00, 00, 0), which means that
the execution ofS3 has no impact orby, Se, or itself, and
Ss cannot run in parallel withSy, since a user has tmput

keywordsbefore returning the results to customers.

Each component is associated with a vector.SA€ontains
5 components, a timestamp in this scenario is a 5—dimen55n

® Poetry2Music_scenario_production.scenario £2 | & Poetry2Music.breeze

&

(Generate ADL| s Generating Scenario Model

!_G_e_p_grafg_U_l\ilL s Transforming Scenario Model into Sequence Diagram

Scenario name Scenario ID ParallelScenario

7| Login S1 INF,INF,INF,0
7| Query Poetry Style Information S2 INF,INF,INF,INF
7| Generate Candidate Music List S3 INF,INF,INF,0
7| Confirmation sS4 0,INF,0,0

& o

add scenario delete scenario

Fig. 10. Adding Scenarios

Generate Candidate Music ListWhen other messages such
as RequestPoetryStylelnf8earchPoetryStylelnf@earchCus-
tomerinfq PoetryStylelnfp Customerinfoand Feedbackare
sent, Breeze updates their vectors in a similar way.

When theControl component sends thRequestCustomer-
Info message, Breeze execuigs|2] + vt3[2] + 0.1, and the
adaption avoids its timestamp from equaling to the timeptam
of RequestPoetryStyleIinféd\s Replyis the last message that
involves thePoetryStyleInfacomponent and th€ustomerinfo
component, the timestamps of the two components become
the largest, after sending the message.

After the timestamps are calculated, Breeze presents the
partial order between these messages. In this scenarie the
is no partial order between messadgesquestPoetryStylelnfo
and RequestCustomerlnfaince floor(vt, °¢rvStuteinfoy
Floor(vtE stomerinioy it is also very convenient for devel-
opers to obtain the information from these timestamps that
both messagPoetryStyleInfand Customerinfaare needed to
deliver messagReply As each set of timestamps corresponds
to a unique conditions and sequences of events, a designer is
able to determine which sequence best fits the requirements
by choosing the correct set of timestamps.

Breeze allows translating the scenario from Breeze/ADL to
a UML sequence diagram . Based on the mapping rules, each
component is translated to a lifeline. In the sequence dragr
Breeze fills inExecutionSpecificatiorlements based on the
timestamps of thélessageOccurrenceSpecificatielements.

In this example, the designer decides that the following
timestamps best fit the desirable functionality:

» RequestPoetryStylein{el, 1,0, 0,0))

« RequestCustomerinfdl, 1.1,0,0,0))

o Reply((1,1.1,1,2,2))

» Feedback((1,2.1,1,1,2))

Based on the timestamps, Breeze determines the order of the
four messages, and encodes the event order ifExeeution-
Specificatiorelement of the lifeline.

Tool support

vector. According to Algorithm 1, the vectors are set to This section illustrates how to use Breeze to model and to

zero vectors initially. When th&ebUI component sends thetranslate scenarios step by step.
messagésenerate Candidate Music LisBreeze updates the 1) Step 1: Adding scenarios. As introduced in Section VI,

timestamp of the component by executing[1] + vt;[1]+1,
and attaches the new timestan{p,0, 0,0, 0), to the message

after modeling the software architecture of the poetry
to music system (Figure 7), we add the corresponding

Companent List of Scenario "Login® to add more related elements in future work. In addition, we

Component name Compenent ID plan to extend Breeze, so it can translate existing sequence
) Heeialil [} e A diagrams into Breeze/ADL for scenario-based softwareiarch

7| Control - _as2IEHdcEeaX72qYFlgBew tecture analysis

| Candidate Music List - _r708kHdcEeaX78gVFiqEew ec ySIS.

7] PoetryStylelnfo ~ _MAbhgHddEeaX78qYFigfew REFERENCES

7| Customerlnfo = _GZAmAHddEeaX78qYFig6ew

' [1] R. Pandey, Architectural Description Languages (ADls) UML: A
add co;ponem delete c:mponm Review, ACM SIGSOFT Software Engineering Not85(3), 1-5, 2010.
[2] B. Tekinerdogan, H. Sozer, and M. Aksit, Software Arebture Reliabil-

ity Analysis Using Failure Scenariogpurnal of Systems and Software

Message List of Scenario "Login”

Message name ID Type Source Target Vector C.lcuiii 81(4)‘ 558_575’ 2008.
7| Input Keywords ML request - WeblI ~ Control - 10000 |= [3] R. Kazman, G. Abowd, L. Bass, and P. Clements, Scenased Anal-
J| Request Poetry StyM2 request - Control - PoetryStylel = 1,1,0,0,0 ySiS of Software ArchitectureSoftware 13(6), 47-55, 1996.
J] Request Customer M3 reguest - Control = Customerlnt = 1,1.1,0,00 [4] P. Bose, Scenario-driven AnaIySiS of Component'bamre Archi-
J| Search Poetry StyleM4 request - PoetryStylelnfo = PoetryStylel = 110,10 tecture Models, In Proc. WICSAL, 1999.
e e e G e [5] S. Yacoub, B. Cukic, and H. H. Ammar, A Scenario-basedidRdity
1 L ¥ Analysis Approach for Component-based SoftwaReliability, IEEE
s o Transactions on, 53(4), 465—-480, 2004.
add message delete message [6] L. Cheung, L. Golubchik, and N. Medvidovic, Sharp: A Saale Ap-
Fig. 11. Adding Components and Messages proach to Architecture-level Reliability Prediction of @mrrent Systems,

In Proc. 32th ICSE Workshop, pages 1-8, ACM, 2010.

. . [7] C. Sibertin-Blanc, N. Hameurlain, and O. Tahir, Ambityuand Structural
scenarios such asogin, Query Poetry Style Informa- " pioperties of Basic Sequence Diagransnovations in Systems and
tion, Generate Candidate Music Ljsand Confirmation Software Engineeringd(3), 275-284, 2008.

(Figure 10). [8] C.Li,L.Huang, L.Chen, and C. Yu, Breeze/adl: Graph Gnzem Support

. ... _for An XML-based Software Architecture Description Langealn Proc.
For each scenario, the user of Breeze needs to specificazin compsac, pages 800805, IEEE, 2013.

its name, ID, and scenarios that can run in parallel rugi J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Spegffistributed
with the scenario. Software Architectures, In Proc. 5th ESEC, pages 137-1p8nger,

S . 1995.
2) St(?p. 2 _|n|t|a||2|n9 scenarios. The.user OT Breeze neefs) r. Allen, R. Douence, and D. Garlan, Specifying and Awislg Dy-
to initialize each scenario by adding all involved com- namic Software Architectures. In Proc. 2th FASE, pages 21SBringer,

i 998.
ponents and messages. Figure 11 shows the Compoq?ﬂﬂF. Oquendo, Y-adl: An Architecture Description LangaaBased On

!iSt and the message list of th#g scenario. T_he columns ™ “ine Higher-order Typed Y-calculus for Specifying Dynamiuwdavobile
in the message list correspond to the attributes that are Software Architectures, ACM SIGSOFT Software Engineerigtes,

. . 29(3), 1-14, 2004.
defmed_m Breeze./ADL' . a[tIZ% G. Booch, J. Rumbaugh, and |. Jacobson. The Unified Muglel
3) Step 3: Generating scenario model. Breeze generates snguage User Guide, Pearson Education India, 1999.

scenarios in Breeze/ADL, when its user clicks the cof3] M. Raynal and M. Singhal, Logical Time: Capturing Cditgain
responding button in Figure 10. Distributed SystemsComputer 29(2), 49-56, 1996.

. . . . 14] N. Lassing, D. Rijsenbrij, and H. van Vliet, On Softwafechitecture
4) Step 4: Translating scenarios. Breeze translates sosnar - anaiysis of Flexibility, Complexity of Changes: Size isnvdgything. In

from Breeze to sequence diagrams, when its user clicks Proc. 2th NOSA Workshop, volume 99, pages 1103-1581, 1999.

the Generate UMLbutton in Fiagure 10. Breeze enerateé15] C. H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman. An Agegch to
9 9 Software Architecture Analysis for Evolution and Reuséabilin Proc.

sequence diagrams are in the format of Enterprise Ar- 7i caSCON, page 15, IBM Press, 1997.
chitect (EA). EA displays translated sequence diagrariis] G. Rodrigues, D. Rosenblum, and S. Uchitel, Using Stesdo Predict

in i itor. an lemen f nari ini roi the Reliability of Concurrent Component-based Softwarest&ys, In
ts editor, and elements of scenarios ts project Proc. 14th FASE, pages 111-126, Springer, 2005.

browser. Figure 12 shows the translateédscenario. [17] | . williams and C. U. Smith, Pasa sm: a Method for thefétenance
Assessment of Software Architectures, In Proc. 3th WOSgepd 79—

VIl. CONCLUSION AND FUTURE WORK 189, ACM, 2002. , _ ,
[18] M. A. Boden, The Creative Mind: Myths and Mechanisms d2ed),

In this paper, we reduce ambiguity in scenario-based soft- Routledge, London, 2004.

ware architecture analysis by proposing a creative saendi’) ST'ZAO-O%Ode”v Computer Models of Creativitpl Magazine 30(3), 23—

modeling and analysing approach, based on our extenggsy z. Micskei and H. Waeselynck, UML 2.0 Sequence Diagr&emantics,
Breeze/ADL, that facilitates designers to define scenamias]Ug'VitS'tE dl_ei TOU'OUSE& TSC%hReD, 5389’ 2%08- G o
. : . . LI, L. uang, an . en, reeze rap rammar. a rap
unambiguity way. The modeling reS.UItS are us.erI to suppé?f' Grammar Approach for Modeling the Software ArchitectureBaf Data-
subsequent scenario-based analysis at architecture level Oriented Software SystemSpftware: Practice and Experienc2014.
addition, to combine the advantages of both Breeze/ADL afi##] wikipedia. Partially ordered set. http://en.wikigedrg/wiki/Partially
UML, we propose a set of rules for model transformation, ,rdered set Formal definition.
! . 3] Quinlan, J. R.: Induction of Decision Trees. Machineatréng. 1(1),

These rules allow us to translate scenarios from Breeze/ADL 81-106 (1986)
to sequence diagrams automatically.

There are still some issues that should be addressed in our
next step work. As Breeze does not support all the elements
in sequence diagrams, it cannot eliminate all ambiguities i

sequence diagrams, but we plan to introduce exploratogy rul

@) Poetry2Music - EA - 30 Day Trial -
FILE EDIT VIEW PROJECT PACKAGE DIAGRAM ELEMENT TOOLS AMNALYZER EXTENSIONS WINDOW HELP
W llads [Find Packags A
Project Browser LAl » T VirebUl Control Candidate Music List PoetryStyleinfo Customerinfo A - x.
Badd @ @-@- + Yi§
5 g Model g ~-%2-2-0 ¥ # | Default style W BrETA TS R-E K| K
5 4 FromBreeze -
‘¥ Confirmation
& Candidate Music List
i WebUI Candidate PoetryStyleInfo CustomerInfo
— Music List
&= customerinfo ; . ‘
= poetryStylelnfo } : | : }
& et cotterettly, | g <1,0,0,0,0> | !
Elements) i} |
’ <1,0,0,0,0> (W .44 u-u 0> A AN i
ha_\t use in it Tromieme * 4— <1,1.1,0,0,0>
T reject Browser REETEeieEs T]]] |
LS sCen | | | Search Postry Style Infof) |
€1,1.1,0,0,0> ! i |
i | | 1
R ; | <1,1,0,20> | i WS I0 | seaiimiie
4 General Settings | H \ \
Hade I i | Postry Style Infol) :
w L 4= <1,1,0,2,0>
}] o< b R ! \<1,1.1,o,o,1>
i <1,1.1,1,2,2> i RN = 4
1 | | , i
= | L 8 Replyl) _ _ ! !
The graphical 1 LY AN | <111,0025¢ |
- | Feedbac| |] |
representation of cg*i*"*”" \<1,1.1,1,2,21> : !
Filsnne, 5 I | | | I
scenasio login 'c121122> <1,2.1,1,22>' ' ‘
- Advanced R
(B properties S
Interaction Diagram firmation: created: 20 0 16:32:51 modifie f9/1117:50:11 1003 > % 1146 B | +

Fig. 12. Scenario Generate Candidate Music List in EnteepAirchitect

	Article coversheet Springer
	9943
	Yang's latest

