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Abstract:   In the recent years, deep learning models have addressed many problems in various fields. Meanwhile, technology develop-
ment has spawned the big data in healthcare rapidly. Nowadays, application of deep learning to solve the problems in healthcare is a hot
research direction. This paper introduces the application of deep learning in healthcare extensively. We focus on 7 application areas of
deep learning, which are electronic health records (EHR), electrocardiography (ECG), electroencephalogram (EEG), community health-
care, data from wearable devices, drug analysis and genomics analysis. The scope of this paper does not cover medical image processing
since other researchers have already substantially reviewed it. In addition, we analyze the merits and drawbacks of the existing works,
analyze the existing challenges, and discuss future trends.
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1   Introduction

In the big data era, data has become more important

than ever  before.  Meanwhile,  rapid  information  techno-

logy  improvement  facilitates  data  processing.  This  trend

is particularly obvious in the field of healthcare. Conven-

tional  data  in  heahthcare  are  all  collected,  standardized

and stored  in  information  system  like  hospital  informa-

tion  system  (HIS),  laboratory  information  system  (LIS),

picture  archiving  and  communication  systems  (PACS),

etc., including demographic information, medical records,

medical image, lab tests, medications, procedures and dia-

gnosis,  etc.  Novel  technologies  such  as  wearable  device,

medical website,  drug  discovery  and  genetic  testing  en-

rich the categorization,  scope and amount of  the health-

care data. Intelligent analysis of these data is helpful for

diagnosis, treatment,  decision  making  support,  prescrip-

tion, disease prediction, curative effect evaluation, etc. It

is an urgent task to extract valuable knowledge from the

massive data in healthcare.

Deep  learning  (DL)  can  be  traced  back  to  around

2000. In  recent  years,  deep  learning  outperforms  tradi-

tional machine  learning  methods  with  a  significant  mar-

gin  in  image  recognition,  speech  recognition  and  natural

language processing[1]. The great success demonstrated its

strong ability of  modeling sophisticated data.  Nowadays,

deep learning is applied to more and more fields, and has

obtained  many  encouraging  results.  It  has  been  shown

that healthcare is one of the most promising directions.

Applying deep learning in healthcare  results  in  many

surprising works. The success of deep learning in the field

of computer vision and image processing can be extended

to  the  field  of  medical  image  processing  directly.  It  is

used for imaging, image segmentation, image recognition,

lesion detection, etc. This inspired lots of works along the

direction of  medical  image  processing;  hundreds  of  pa-

pers were published in the last 3–5 years. Litjens et al.[2]

and  Greenspan  et  al.[3] already  gave  substantial  reviews

on deep  learning  in  medical  image  analysis.  As  men-

tioned above, health-care is more than medical image pro-

cessing  with  a  number  of  other  aspects,  therefore  many

researchers  applied  deep  learning  to  analyze  other  types

of data, and obtained significant improvements. This pa-

per focuses  on  health-care  areas  other  than  medical  im-

age  processing.  By reviewing  these  works  systematically,

it is expected that this article could help the readers un-

derstand the general situation of this field. To our know-

ledge, the most similar review was given by [4]. Although

their  review  covered  many  aspects,  it  was  not  extensive

enough.  For  example,  the  most  important  improvement

in recurrent neural networks (RNN), gated recurrent unit

(GRU),  is  missing.  Some latest  important  works  are  not

included due to its publication time, such as electrocardi-

ography (ECG)  applications  and  electronic  health  re-

cords  (EHR)  analysis.  Furthermore,  we  will  share  our

own experiences with the application of deep learning on

healthcare.

In this paper, all the works are categorized into 7 cat-

egories  according  to  the  data  analyzed,  which  are  EHR,
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ECG, electroencephalogram  (EEG),  community  health-

care data, data from wearable devices, drug analysis and

genomics analysis.

The  remainder  of  this  paper  is  organized  as  follows.

Section 2  overviews  commonly  used  deep  learning  al-

gorithms, including their benefits and drawbacks. Section 3

reviews  the  relevant  applications  in  healthcare  in  detail.

Section  4  analyzes  the  limitations  and  challenges  in  this

area.  Finally,  the  conclusion  of  this  study  is  drawn  and

the  prospect  of  further  development  is  discussed  in

Section 5.

2   Deep learning

Neural  networks  (NN)  can  be  traced  back  to  1940 s,
and  was  first  implemented  as  a  perceptron  in  1950 s[5],

which  is  a  bionic  inspired  linear  classifier.  Perceptron

started  the  first  wave  on  NN  research.  However,  early

neural  networks  did  not  achieve  very  good  performance,

and it was found that perceptron has its own limitations.

Research works on NN were revived when the multi-lay-

er  perceptron (MLP) was  designed and trained with the

back propagation (BP) algorithm in the 1980 s[6, 7]. These

works gave rise to the second wave of NN research. Then,

a NN usually had 3 layers,  which were input layer,  out-

put  layer  and  1  hidden  layer,  it  was  referred  to  as  the

shallow  model.  Although  these  works  did  improve  the

model performance, NN has been shadowed by other ma-

chine  learning  methods  represented  by  support  vector

machine (SVM) in 1990 s. Many factors kept NN from be-

coming deep architectures as we have today.

In fact,  restrictions on the development of the neural

network is not only the model itself, but also the limita-

tions of hardware, such as memory capacity and comput-

ing power, and the volume of the training dataset. With

rapid development of hardware, things changed gradually.

Lecun et al.[8] developed the famous convolutional neural

networks  with  multiple  hidden  layers.  Hinton  et  al.[9]

formally proposed the concept and method of deep learn-

ing. It was found that training a deep neural network is

feasible.  Meanwhile,  rapid  development  of  internet  and

mobile internet facilitated the collection of large dataset.

The third wave of  NN research has been set up, and its

development has  been  rapid  and  enormous.  Deep  learn-

ing, which refers to NN with more than two hidden lay-

ers, got  great  success  in computer  vision and speech ap-

plications[1, 10, 11].  In  the  past  6  years,  a  variety  of  deep

NN  were  developed  and  applied  in  various  domains.  In

this paper,  we  group  them  into  5  categories,  and  intro-

duce them one by one. Details about these deep NN could

be found in [1, 4].

Deep neural  networks  (DNN). Generally,  all  the

5 kinds of deep learning models can be called deep neural

networks. For clarity, in this paper, deep NN refers to all

kinds of deep learning models. DNN specifically refers to

the  basic  structure,  which  is  the  conventional  NN  with

more  than  two hidden  layers,  as  shown in Fig. 1. Train-

ing of DNN is difficult. Moreover, DNN is prone to suffer

the  problem  of  vanishing  of  the  gradient,  which  means

that in the BP training process, gradients (or errors) be-

come  negligible  when  it  reaches  the  first  several  layers

through  many  backward  layers.  Solving  these  problems

led  to  the  booming  of  the  deep  learning,  and  various

kinds of deep NN.

AutoEncoder  networks  (AE). AutoEncoder  is  an

unsupervised model. The output layer of AE is not the la-

bel,  but  the  input  itself  or  its  noisy  version.  Training of

AE  is  to  reconstruct  the  original  input  data.  From  the

viewpoint  of  information  theory,  reconstructing  original

data means no loss of information. In other words, train-

ing of AE is searching the best coder to minimize inform-

ation loss. The coder is the compressed data with least in-

formation loss. It is an optimal representation of original

data. Because  the  coder  is  with  low  dimension  and  dis-

criminative,  AE  is  well  suited  for  feature  extraction.

Some researchers  used AE to extract  features  from vari-

ous kinds of healthcare data[12–15].

Restricted Boltzmann machine  (RBM) related

networks  (DBN  and  DBM). Restricted  Boltzmann

machine[16] is  a  variant  of  Boltzmann  machine,  which

mimics the conception of statistical thermodynamics, the

neural  variables  range  from  0  to  1.  Restriction  on

Boltzmann machine leads to a bipartite graph structure.

Restriction simplifies the network structure, which makes

the  training  procedure  of  RBM  more  tractable  than

Boltzmann  machine.  Two  kinds  of  deep  NN frameworks

can be derived from RBM, deep belief networks (DBN)[9]

and deep Boltzmann machines (DBM)[17]. Both DBN and

DBM  are  initialized  by  layer-wise  greedy  training  of

RBM, and fine-tuned by target labels.

Convolutional  neural  networks  (CNN). CNN

consists of interleaved convolution layer and pooling (sub-

sample)  layer,  which  is  robust  to  shifting,  rotation  and
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scaling[8]. CNN is the most commonly used deep learning

model. Its success on ImageNet[10] is the tipping point of

deep learning research boom. Although CNN is  designed

for  image  recognition[8],  it  can  be  used  on  any  fixed,

ordered, and location related data. For example, it is con-

venient  to  apply  CNN  to  1-d  time  sequence  with  fixed

length and 3-d video.

Recurrent  neural  networks  (RNN). Generally

speaking,  all  the  networks  mentioned  above  are  used  as

static  models  with  fixed  inputs.  RNN[18] is  a  dynamic

model, whose output is  determined not only by the cur-

rent  states;  but  also  by  the  previous  state.  RNN suffers

the same problem as other NNs, which is vanishing of the

gradients. Furthermore, besides vanishing layer by layer,

gradients  of  RNN  also  vanish  along  time.  To  overcome

this problem, Hochreiter and Schmidhuber[19] replaced the

node  of  RNN  by  long  short-term  memory  (LSTM).

Chung  et  al.[20] proposed  a  simpler  gated  recurrent  unit

(GRU),  which  get  similar  performance  as  LSTM.  RNN

got success in many tasks for sequential data processing,

such as language modeling for speech and text[11].

3   Healthcare applications

In  this  section,  we  introduce  the  application  of  deep

learning  in  7  healthcare  areas,  which  are  EHR,  ECG,

EEG, community healthcare, data from wearable devices,

drug analysis and genomics analysis.

3.1   EHR

Electronic health records (EHR),  or electronic medic-

al records  (EMR),  is  the  systematized  collection  of  pa-

tient-centered  health  information  in  a  digital  format.

EHRs may include a range of data, including demograph-

ics, medical  history,  medication and allergies,  immuniza-

tion status,  laboratory  test  results,  radiology  images,  vi-

tal sign, etc. It is the most extensive and important data

source for healthcare.

Liang  et  al.[21] applied  DBN for  unsupervised  feature

extraction,  and  then  performed  supervised  learning

through a standard SVM for healthcare decision making.

A  dataset  on  Chinese  medical  diagnosis  and  treatment

prescription and a dataset on hypertension retrieved from

EHR were used to test the model. The experimental res-

ults  indicate  that  the  proposed  deep  model  performed

much better  than the conventional  shallow models,  such

as SVM and decision trees.

Che  et  al.[22] proposed  a  novel  knowledge  distillation

methodology  called  interpretable  mimic  learning  (IML),

where  they mimicked the  performance  of  state-of-the-art

deep learning models with gradient boosting trees (GBT).

For mortality prediction and ventilator free days predic-

tion  tasks  in  intensive  care  units  (ICUs),  IML and deep

learning give much better results than conventional meth-

ods  such  as  SVM,  logistic  regression,  decision  tree  and

GBT. It was shown that the IML can mimic deep learn-

ing architectures  including  stacked  denoising  autoen-

coders (SDAE)  and  LSTM  well,  and  can  give  compar-

able  or  even  better  results.  As  we  know,  the  GBT  is

much more interpretable than deep model.

Jagannatha  and  Yu[23] took  bidirectional  RNN  for

medical event detection in EHR. The dataset is 780 Eng-

lish  EHR  notes  of  613 593  word  tokens.  The  annotated

events can  be  broadly  divided  into  two  groups,  medica-

tion and  disease.  The  medication  group  contains  drug-

name, dosage,  frequency,  duration  and  route.  The  dis-

ease  group  contains  events  related  to  diseases  (adverse

drug events (ADE), indication, etc.) and their attributes

(severity).  The  RNN  could  be  composed  of  LSTM  or

GRU. Test results showed that RNN with GRU got the

best  performance.  The  F1-score  is  0.803 1,  compared  to

the  baseline  0.723 0,  which is  got  by conditional  random

field (CRF).

Miotto et  al.[12] proposed an unsupervised representa-

tion  of  patient  from  the  EHRs,  named  Deep  Patient,

which is a three-layer SDAE. This representation is cap-

able to capture hierarchical regularities and dependencies

in  the  aggregated  EHRs.  This  model  was  evaluated  by

predicting  health  states  by  assessing  the  probability  of

patients  to  develop  various  diseases.  Test  results  on  a

dataset composed of 76 214 test patients validated the ef-

fectiveness  of  this  representation.  The  area  under  curve

(AUC) of Deep Patient is 0.773, compared to that of the

best conventional  representation  (independent  compon-

ent analysis, ICA), which is 0.695.

Lipton et al.[24] presented LSTMs for multi-label clas-

sification to classify 128 diagnoses given 13 frequently but

irregularly  sampled  clinical  measurements.  This  model

was evaluated on a dataset consisting of 10 401 ICU epis-

odes,  where  each  episode  consists  of  multivariate  time

series  of  13  variables.  Episodes  vary  in  length  from  12

hours to several months. Trained on raw time series, the

proposed model  gave  comparable  performance  as  a  mul-

tilayer perceptron trained on expert hand-engineered fea-

tures. The AUC is 0.807 5 for LSTM and 0.803 0 for mul-

tilayer perceptron, respectively.

Esteban  et  al.[25] presented  an  RNN  based  on  GRU

that is specifically designed for the clinical domain, which

combines static and dynamic information in order to pre-

dict future events.  This  model  was evaluated on a data-

base collected in the Charit′e Hospital in Berlin, contain-

ing EHRs  of  patients  that  underwent  a  kidney  trans-

plantation.  The  model  was  adopted  to  predict  whether

any  of  three  endpoints  will  occur  within  the  next  six  or

twelve months after each visit to the clinic. That is rejec-

tion of the kidney, loss of the kidney and death of the pa-

tient. The AUC of the proposed model is 0.833, while the

AUC of the logistic regression is 0.808.

Che  et  al.[26] developed  a  novel  deep  learning  model,

namely  GRU-D,  which  is  improved  GRU.  It  takes  two

representations of  missing  patterns  and effectively  incor-
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porates  them  into  a  deep  model  architecture  so  that  it

not only captures the long-term temporal dependencies in

time  series,  but  also  utilizes  the  missing  patterns  to

achieve better prediction results. Experimental results on

real-world  clinical  datasets  (MIMIC-III,  PhysioNet)  and

synthetic  datasets  demonstrate  that  the  models  achieve

state-of-the-art  performance.  For mortality prediction on

MIMIC-III dataset, the AUC of GRU-D, GRU, and ran-

dom forest are 0.852 7, 0.838 0 and 0.829 4, respectively.

Mehrabi  et  al.[27] attempted  to  discover  the  temporal

pattern  and  association  rule  of  the  diagnosis  codes.  The

authors  modeled  each  patient′s  records  as  a  matrix  of

temporal  clinical  events  with  international  classification

of  diseases-9 th  version  (ICD-9)  diagnosis  codes  as  rows

and years of diagnosis as columns. A deep Boltzmann ma-

chine  network  with  three  hidden  layers  was  constructed

with  each  patient′s  diagnosis  matrix  values  as  visible

nodes.

Futoma et al.[28] compared predictive models for early

hospital  readmission.  They  focused  this  analysis  on  the

five patient cohorts. That is chronic obstructive pulmon-

ary  disorder  (COPD),  heart  failure  (HF),  pneumonia

(PN),  acute  myocardial  infarction  (AMI)  and  total  hip

arthroplasty/total knee arthroplasty (THA/TKA). Penal-

ized logistic  regression  (PLR)  showed  the  best  perform-

ance in traditional methods. DNN outperformed PLR on

all the 5 diseases. Take HF for example, the AUC is 0.676

versus 0.654.

Putin et al.[29] designed a modular ensemble of 21 deep

NN of varying depth, structure and optimization to pre-

dict  human  chronological  age  using  a  basic  blood  test.

The input of the model is blood biochemistry records, in-

cluding age, sex, and 46 standardized blood markers, the

output is estimated age. The best performing DNN in the

ensemble  demonstrated  MAE  (mean  absolute  error)  =

6.07  years  in  predicting  chronological  age  within  a  10

year  frame,  while  the  entire  ensemble  achieved  MAE  =

5.55 years. Furthermore, the ensemble also identified top

5 markers  for  predicting  human  chronological  age:  albu-

min, glucose, alkaline phosphatase, urea and erythrocytes.

Cheng et al.[30] predicted onset risk of congestive heart

failure (CHF) and COPD half year later using all the his-

torical  patient  records  in  EHR.  First,  the  data  was

formatted  as  a  matrix,  with  time  as  one  dimension  and

event as  the  other  dimension.  Specifically,  time  dimen-

sion  is  number  of  days,  and  event  dimension  is  onset  of

medical event categorized by ICD9. Then, a CNN with 4

layers was adopted to predict the risk. Moreover, the au-

thors also  designed 3  fusion  strategies  to  handle  the  dy-

namic  information  in  EHR,  where  a  slow  fusion  method

gave  the  best  performance.  Logistic  regression  is  the

baseline. For CHF, the AUC is 0.767 5, compared to that

of  baseline  as  0.715 6.  For  COPD,  the  AUC  is  0.738 8,

compared to that of baseline as 0.662 4.

Choi  et  al.[31] modeled  temporal  relations  among

events in electronic health records (EHRs) to predict ini-

tial  diagnosis  of  heart  failure  (HF)  with  deep  learning.

Each  clinical  event  in  EHR  data  was  represented  as  a

one-hot vector  format,  and  then  each  EHR  was  a  com-

putable  event  sequence.  RNN  models  using  GRU  were

adapted  to  predict  HF  onset.  When  using  an  18-month

observation window,  the  AUC  for  the  RNN  model  in-

creased to 0.883 and was significantly higher than 0.834,

the AUC for the best of the baseline methods (MLP).

Pham et al.[32] modeled the EHR data with a deep dy-

namic memory  model  named  DeepCare,  which  is  com-

posed of 3 levels. The first level is a series of LSTM; the

second level  is  multiscale  pooling;  the  third  level  is  con-

ventional fully connected layer. The model was tested on

two cohorts with heavy social and economic burden: dia-

betes  and  mental  health  for  3  tasks:  disease  progression

modeling,  intervention  recommendation,  and  future  risk

prediction.  Test  results  show  significant  improvement  in

modeling and risk prediction.

Avati  et  al.[33] predicted  the  mortality  of  a  patient

within 12 months by modeling the EHR data of one year

with a DNN. Accurate prediction of mortality would help

the medical care staffs improve palliative care. The data-

set consists of 221 284 selected EHRs. The model achieved

recall  of  0.34  at  0.9  precision.  The  AUC  was  0.93.

Rajkomar  et  al.[34] analyzed  the  EHR  extensively.

First,  the  EHR  data  is  converted  to  events  recorded  in

containers based on FHIR (Fast Healthcare Interoperabil-

ity Resources) and placed in temporal order, which served

as  the  input  of  deep  learning  model  for  all  the  4  tasks.

The  4  tasks  are  inpatient  mortality,  30-day  unplanned

readmission,  length  of  Stay  and  discharge  diagnosis.

Three different network architectures were designed: one

based  on  recurrent  neural  networks  (LSTM),  one  based

on  an  attention-based  time-aware  neural  network

(TANN) model, and one based on a neural network with

boosted  time-based  decision  stumps.  Each  model  was

trained separately, and the final model is an ensemble of

predictions. The  baselines  are  enhanced  version  of  con-

ventional  scores,  which  are  commonly  used  in  hospitals.

AUC of all the 4 tasks are improved consistently. For in-

patient mortality prediction, the AUC of deep learning is

0.95, while that of baseline is 0.85.

Dernoncourt  et  al.[35] designed  the  first  de-identifica-

tion  system  based  on  a  deep  artificial  neural  network

with  LSTM  as  element.  The  model  was  tested  on  two

largest  public  available  de-identification  datasets.  This

model outperforms  the  state-of-the-art  systems.  It  yiel-

ded an F1-score of 97.85% on the i2b2 2014 dataset, with

a recall of 97.38% and a precision of 97.32%, and an F1-

score  of  99.23% on the  MIMIC de-identification  dataset,

with a recall of 99.25% and a precision of 99.06%.

Discussion. EHR is often regarded as the main body

of healthcare data. In a sense, all kinds of healthcare data

are components  of  EHR.  Therefore,  there  are  many  re-

searches on EHR. Table 1 lists the application fields, in-

put data,  and  deep  models  of  the  above  mentioned  pa-
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pers. As shown in Table 1, DL models have been applied

to nearly  all  the  fields  in  healthcare,  including  conven-

tional  applications  such  as  intelligent  diagnosis,  disease

risk prediction,  and  novel  applications  such  as  chronolo-

gical  age  prediction  and  EHR  de-identification.  We  can

also  find  in Table  1 that  most  researchers  modeled  the

EHR data as a sequence of  events.  RNN is  the most ef-

fective  and  popular  DL  model  for  EHR  analysis.  Other

DL models  such as CNN, DNN, SDAE, DBN and DBM

also work on some specific tasks for EHR analysis.

3.2   ECG

Electrocardiography (ECG)  is  a  noninvasive  record-

ing of the electrical activity of heart, with electrodes be-

ing placed on skin. Arrhythmia would cause various types

of irregular heart rhythm or pattern on ECG.

Chauhan and Vig[36] utilized stacked LSTM to format

a  deep  recurrent  neural  network.  The  deep  recurrent

neural  network  estimated  the  probability  of  the  input

ECG is normal. The output distribution was modeled by

a  multivariate  Gaussian  distribution,  and  a  maximum

likelihood estimator checked whether it is a normal or ab-

normal ECG. It is worth mentioning that, the deep mod-

el was trained by normal ECG only. Four different types

of  arrhythmias  could  be  detected,  namely  premature

ventricular contraction (PVC),  atrial  premature contrac-

tion  (APC),  paced  beats  (PB)  and  ventricular  couplet

(VC). The  dataset  is  extracted  from  MIT-BIH  ar-

rhythmia  database.  The  overall  precision  and  recall  are

0.975 0 and 0.464 7, respectively.

Yan  et  al.[37] constructed  a  deep  belief  network  and

the restricted  Boltzmann  machine  (RBM)  based  al-

gorithm was used in the ECG classification problem. The

algorithm was evaluated on the two-lead ECG dataset of

MIT-BIH dataset and got the performance with accuracy

of 98.829%. However, the dataset is not strictly person in-

dependent.  Although  there  is  no  overlap  between  the

training set and testing set,  they may be from the same

person. Person independent is a more practical scenario.

Al Rahhal et al.[14] extracted a suitable feature repres-

entation from the raw ECG data in an unsupervised way

using SDAEs with sparsity constraint. A softmax regres-

sion  layer  was  added  on  the  top  of  the  resulting  hidden

representation  layer.  During  the  interaction  phase,  the

expert  labeled  the  most  relevant  and  uncertain  ECG

beats of the test record during each iteration. The labeled

data  were  used  for  updating  the  model  weights.  Active

learning like this is a promising direction for ECG analys-

is. The only drawback is that the active learning system

needs experts for interaction, so it cannot run automatic-

ally. Results  usually  depend  on  how  much  data  the  ex-

pert could label.

Acharya et al.[38] designed a deep CNN with 11 layers

to  detect  myocardial  infarction.  Each  beat  of  the  ECG

was segmented as a sample,  which is  input of  the CNN.

The CNN checked whether this beat is normal or myocar-

dial  infarction.  The  model  was  tested  on  data  with  and

without  noise.  The  average  accuracy  was  93.53%  and

95.2% using  ECG beats  with  and without  noise  respect-

ively. However, the dataset was not person-independent.

Yao  et  al.[39] designed  a  multi-scale  convolutional

neural  networks  (MCNN).  First,  R  wave  was  detected

from ECG,  and  RR  (R  wave  to  R  wave)  interval  se-

quence was the input of the MCNN for atrial fibrillation

(AF) detection. The algorithm was tested on both public

and private  datasets.  They  got  the  best  detection  per-

formance on the public dataset. The accuracy is 98.18%,

compared  to  that  of  conventional  method  97.99%.  Test

result on private dataset showed that the deep learning is

more  sensitive  to  the  difference  between  training  and

testing datasets.  Transfer  learning  is  promising  for  solv-

ing this problem.

Rajpurkar et al.[40] collected the largest ECG dataset.

64 121  ECGs  were  recorded  by  a  single  lead  wearable

monitor from 29 163 patients. A special CNN named Res-

Net with 34 layers was built. 14 kinds of rhythms (13 ar-

rhythmia and 1 normal) were recognized. They got cardi-

ologist-level arrhythmia  detection  performance.  The  ag-

gregated F1-score is 0.809, compared to the averaged F1-

score of 6 certified cardiologists is 0.751.

 

Table 1    Summary of applications in EHR

Application Input Model References

Intervention
recommendation/
Decision making

EHR DBN+SVM [21]

RNN [32]

Mortality prediction IML(GBT mimics
SDAE&RNN)

[22]

RNN [26, 33]

Ensemble of deep NN [34]

Medical event
prediction

IML(GBT mimics
SDAE&RNN)

[22]

RNN [23, 25, 26]

Ensemble of deep NN [34]

Intelligent diagnosis RNN [24, 32]

Ensemble of deep NN [34]

Disease risk
prediction

CNN [30]

SDAE [12]

RNN [31, 32]

Hospital readmission
prediction

DNN [28]

Ensemble of deep NN [34]

Pattern and
association rule

discovery

DBM [27]

EHR De-
identification

RNN [35]

Chronological age
prediction

Blood
test

Ensemble of deep NN [29]
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Discussion. These works on ECG are listed in Table 2.

From these papers, we can find that ECG can be used for

heart  related  disease  diagnosis  and  detection.  RNN,

SDAE,  RBM and  CNN have  been  tried  for  these  tasks.

The input data could be ECG data itself,  or its derivat-

ives (such  as  RR-intervals).  According  to  the  results  re-

ported by the works, CNN is the most effective DL mod-

el for ECG analysis.

3.3   EEG

Electroencephalogram (EEG) is a noninvasive record-

ing  the  electrical  activity  of  the  brain,  with  electrodes

placed on scalp. Anomalous electroencephalography indic-

ates brain  function  problem.  EEG could  be  used  to  dia-

gnose conditions such as seizures, epilepsy, head injuries,

dizziness, headaches, brain tumors and sleeping problems.

It can also be used for simple thought reading.

Wulsin  et  al.[41] proposed  a  DBN approach  to  detect

anomalies in EEG waveforms. This model was tested by a

large  set  of  training  data.  DBNs  outperform  traditional

one  class  SVM.  The  F1-score  of  DBN  is  0.475 2, com-

pared to that of one class SVM 0.439 0. They also presen-

ted how the outputs of a DBN-based detector can be used

to aid visualization of anomalies in large EEG data set.

Page et al.[42] explored the use of a variety of repres-

entations  and  machine  learning  algorithms  to  detect

seizure. They compared conventional methods such as k-

nearest  neighbor  (KNN),  SVM,  Logistic  regression  with

DBN, and DBN gave the best performance.

Jia  et  al.[43] proposed  a  novel  semi-supervised  deep

learning  framework  for  affective  state  recognition.  First,

supervised  label  information  and  unsupervised  structure

information jointly made decision on channel selection. A

generative  restricted  Boltzmann  machine  (RBM)  model

was adopted  for  the  classification  task.  An  active  learn-

ing sketch was taken to solve the costly labeling problem.

Two  kinds  of  affective  states  were  recognized.  Although

the sample  sets  were  small  (32  participants),  the  pro-

posed method achieved better accuracy.

Sturm  et  al.[44] applied DNNs  with  layerwise  relev-

ance propagation (LRP) for EEG data analysis. Through

LRP, DNN decisions were transformed into heatmaps in-

dicating relevance of data for the outcome of the decision.

The single-trial  LRP  heatmaps  reveal  neurophysiologic-

ally  plausible  patterns,  resembling  conventional  common

spatial pattern (CSP)-derived scalp maps.

Schirrmeister et al.[45] studied deep convolutional neur-

al networks  with  a  range  of  different  architectures,  de-

signed  for  decoding  imagined  or  executed  movements

from  raw  EEG.  The  test  results  showed  that  the  CNN

methods  reach  or  surpass  that  of  the  widely-used  filter

bank common  spatial  patterns  (FBCSP)  decoding  al-

gorithm. The  two  methods  were  compared  on  recogniz-

ing  4  movements,  which  are  of  the  left  hand,  the  right

hand,  both feet,  and rest.  The accuracy of  deep CNN is

92.40%, while  that of  FBCSP is  91.15%. Moreover,  they

highlighted the potential of deep CNN combined with ad-

vanced  visualization  techniques  for  EEG-based  brain

mapping.

Discussion. The works on EEG analysis are listed in

Table 2. From these papers, we can find that EEG can be

used for brain related disease detection, affective recogni-

tion  and  mind  reading.  The  input  data  is  the  original

EEG.  DBN,  DNN,  RBM  and  CNN  have  been  tried  for

these tasks. According to the results, CNN is the most ef-

fective  DL  model  for  EEG analysis.  Combined  with  the

results of ECG analysis, we can find that although DBN

is  applied  to  ECG  and  EEG  analysis  very  early

(2010–2015),  the  performance  is  unsatisfactory.  CNN  is

good at handling uniformly sampled data, such as image

and time series (ECG and EEG).

3.4   Community healthcare

Social  media  data  record  the  activity  on  internet,

which is a novel field for healthcare. It is a powerful sup-

plement  of  traditional  healthcare  data.  Social  media  is

helpful for monitoring of the mental health status and the

spread of infectious diseases.

Nie et al.[46] inferred diseases from Q&A on health-re-

lated web. There scheme builds a sparsely connected deep

architecture with  three  hidden  layers  with  sparse  con-

straint. Disease  inference  is  helpful  for  health  seeker  on-

line. The inference result was tested on dataset collected

from  medical  Q&A  website.  Result  showed  that  the

method  outperforms  SVM,  KNN,  Decision  tree,  Naive

Bayes and deep NN composed of stacked autoencoder and

softmax.

Zhao et al.[47] designed a social media nested epidemic

simulation model.  Twitter  data  were  used  to  continu-

ously track health states from the public. DNN was used

to mine epidemic features that are combined into a simu-

lated environment to model the progression and diffusion

of disease.

Zou  et  al.[48] employed  a  deep  learning  approach  for

creating  a  topical  vocabulary,  and  then  applied  a  linear

 

Table 2    Summary of applications in time series

Application Input Model References

Intelligent diagnosis ECG DBN [37]

SDAE [14]

CNN [40]

Disease detection RNN [36]

CNN [38, 39]

EEG DBN [41, 42]

Affective state recognition RBM [43]

Mind reading DNN [44]

CNN [45]
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elastic net as well as a nonlinear Gaussian process for in-

ference.  Test results  indicated that Twitter data contain

a signal that could be strong enough to complement con-

ventional methods for infectious intestinal disease surveil-

lance. Such method could be extended to other infectious

diseases.

Benton  et  al.[49] developed  a  deep  neural  multi-task

learning  (MTL)  model  for  10  prediction  tasks  (suicide,

seven  mental  health  conditions,  neurotypicality,  and

gender),  which  map  the  Twitter  data  to  each  kind  of

problem.  The  MTL  model  is  compared  with  single  task

learning  (STL)  models.  Results  showed  that  an  MTL

model performs significantly better than other models for

all the tasks. For example, the AUC for suicide is 0.848.

According to the result,  we infer that MTL with related

tasks is  helpful  for  improving  model  performance,  com-

pared to independent STL.

Discussion. The works on community healthcare are

listed in Table  3.  From these  papers,  we have seen that

the activities and texts on the internet, especially on so-

cial  networks,  can be used for physical  disease inference,

infectious disease surveillance and mental health monitor-

ing.  DNN  is  the  most  frequently  used  model  for  these

tasks.  Novel  models  such  as  RNN  should  be  attempted

for  these  tasks.  Moreover,  it  is  found  that  MTL  model

outperforms  STL  model.  We  can  also  see  that  training

with  more  tasks  typically  improves  the  performance  of

the DL models.

3.5   Wearable devices

Wearable devices are smart electronic devices worn on

the  body,  which  can  capture  data  consecutively.  Data

captured from wearable devices are valuable for they are

captured  in  daily  life,  not  in  a  special  environment  like

hospital. It is helpful for task such as disease monitoring

and activity recognition.

Hammerla  et  al.[50] assessed  the  states  of  Parkinson′s
disease by  movement  data  collected  in  naturalistic  set-

tings. 2 wearable sensing devices, with a tri-axial acceler-

ometer inside, were used to capture movement data. The

sensors  were  worn  on  each  wrist  of  the  participant.  91

hand-craft  features  were  extracted  from  each  minute  of

the sensor recordings. These features were used to train a

sequence of RBM, with a softmax top-layer to assess the

state of Parkinson′s disease. The mean F1-score is about

0.55, compared to F1-score of decision tree which is about

0.4.  The  authors  also  mentioned  that  this  handcrafted

feature extraction  would  be  substituted  with  a  convolu-

tional architecture in the future.

Ravi  et  al.[51] presented  a  human activity  recognition

technique  based  on  deep  learning  methodology,  which  is

designed  to  enable  accurate  and  real-time  classification

for low-power wearable devices. It is worth noting that all

the  inertial  data  was  collected  without  any  constraints.

To obtain  invariance  against  changes  in  sensor  orienta-

tion, sensor placement, and in sensor acquisition rates, a

feature generation process was applied to the spectral do-

main of the inertial data. To reduce the computation de-

mands,  a  CNN with  constraints  was  adopted  to  analyze

the spectrum for activity recognition. The proposed meth-

od outperformed traditional methods on 2 out of 4 data-

sets. The performance is not very extraordinary, the main

point is that the deep learning method is implemented on

a very resource constrained device.

Aliamiri and shen[52] utilized the wearable device with

build-in photo-plethysmography (PPG) sensor to provide

a  portable,  non-intrusive  and  low-cost  solution  for  AF

monitoring  and  detection.  An  end-to-end  deep  learning

AF detection system was built based on CNN, which can

filter out poor quality signals and make reliable AF detec-

tion. The models  achieved over  95% AUC in quality as-

sessment task and over 99% AUC in AF detection task.

Zhang  et  al.[53] proposed  a  DL  framework  adopting

sparse auto-encoder (SAE) to extract emotion-related fea-

tures, and logistic regression for emotion recognition. One

task was arousal classification and the other was valence

classification. Only  respiration  data  collected  from wear-

able  devices  was  used  for  recognizing  human  emotions.

The accuracy was about 80%.

Discussion. The works on analyzing data from wear-

able devices are listed in Table 3. Data captured by wear-

able devices can be used for disease detection, disease as-

sessment,  emotion  recognition  and  activity  recognition.

RBM, SAE  and  CNN  did  not  get  very  impressive  per-

formance  on  these  tasks.  A  key  limitation  is  that  DL

model  is  computation-intensive,  which  can  hardly  work

for  wearable  devices  with  limited  battery,  memory  and

computational  capacity.  Tradeoff  between  resources  and

performance is  necessary.  Some hardware specifically de-

signed for DL (such as [54]) may be helpful to overcome

 

Table 3    Summary of applications in novel healthcare data

Application Input Model References

Disease inference Health Q&A Stacked
AE+softmax

[46]

Infectious disease
surveillance

Social media DNN [47, 48]

Mental health monitoring DNN [49]

Motion analysis Accelerometer
(W)

RBM [50]

CNN [51]

Disease detection PPG(W) RNN [52]

Emotion recognition Respiration
(W)

SAE [53]

Drug activity analysis Structure DNN [55, 56]

AE with GRU [15]

Adverse drug effects
classification

ADE related
texts

CNN &
deviations

[57]

Cancer & survival
analysis

Genomics DNN [59]

SDAE [58, 13]
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this problem.

3.6   Drug & compound analysis

Conventional  drug  discovery  is  an  extended  process

that takes years to finish. Drugs should not only cure the

disease, but  also  restrict  toxicity  and adverse  drug reac-

tion. This can be inspected by molecular structure analys-

is, and drug related records mining.

Unterthiner  et  al.[55] built  a  system named  DeepTox.

DeepTox  normalized  the  chemical  representations  of  the

compounds. Then, it computed a large number of chemic-

al descriptors that are used as input to machine learning

methods. DNN with 5 layers was used to predict the tox-

icity of the compounds. Multi-task learning was taken to

enhance  the  performance.  A  dataset  of  12 000 environ-

mental chemicals  and  drugs  was  measured  for  12  differ-

ent toxic  effects.  This  system  was  compared  with  tradi-

tional machine learning method such as naive Bayes, sup-

port vector  machines,  and  random forests.  Deeptox  out-

performed all the other methods, the average AUC of 12

toxic effects was 0.846.

R2

R2

R2

Ma  et  al.[56] took  DNN  to  model  the  quantitative

structure activity relationships (QSAR). QSAR is a com-

monly used technique in the pharmaceutical industry for

predicting on-target and off-target activities. Such predic-

tions will reduce the experimental work that needs to be

done  during  the  drug  discovery  process.  The  metric  to

evaluate prediction performance is , the squared Pear-

son correlation  coefficient  between  predicted  and  ob-

served activities in the test set. The mean  of DNN is

0.496,  compared  to ,  of  random  forest  as  0.423.  The

authors also  found  that  the  DNN  for  QSAR  is  general-

ized.  DNN  with  recommended  parameters  can  achieve

better  performance  than  random  forest  for  most  of  the

datasets.

Xu et al.[15] proposed a deep auto-encoder (DAE) net-

work for molecular representation. A multi-layered gated

recurrent unit  (GRU)  network  was  used  to  map  the  in-

put molecule into a continuous feature vector of fixed di-

mensionality,  and  then  another  deep  GRU network  was

employed  to  decode  the  continuous  vector  back  to  the

original  molecule.  Such  an  auto-encoder  framework  was

expected  to  get  the  continuous  encoding  vector,  which

contains enough  information  to  recover  the  original  mo-

lecule (no information loss) and predict its chemical prop-

erties. The resulting continuous feature vector was fed in-

to Adaboost,  gradient  boost  and  random forest,  respect-

ively, for  chemical  properties  prediction.  In  the  wa-

teroctanol  partition  coefficient  experiment,  the  accuracy

is 0.766 4, compared to that of traditional method 0.608 0.

Huynh et  al.[57] investigated different  deep  NN archi-

tectures  for  adverse  drug  effects  (ADE) classification.  In

particular, they  proposed  two  new  neural  network  mod-

els,  convolutional  recurrent  neural  network  (CRNN)  by

concatenating convolutional  neural  networks  with  recur-

rent  neural  networks,  and  convolutional  neural  network

with attention (CNNA) by adding attention weights into

convolutional neural networks. Various deep NN architec-

tures were evaluated on a Twitter dataset containing in-

formal language and an adverse drug effects (ADE) data-

set constructed by sampling from MEDLINE case reports.

All  the  deep  NN  models  outperformed  traditional  ones,

where CNN came out to be the best model. The AUC of

CNN  on  Twitter  dataset  is  0.88,  compared  to  the  best

traditional  method  with  AUC  of  0.85.  On  MEDLINE

dataset, it is 0.97 versus 0.95.

Discussion. The works on drug & compound analys-

is are listed in Table 3. Chemical structure and ADE re-

lated  online  texts  were  adopted  to  predict  the  chemical

properties of the drug & compound. First of all, the data

should  be  preprocessed  for  the  DL  model.  DNN  is  the

most popular model for chemical structure analysis. CNN

is the best model for ADE detection task, even it can be

compared  to  some  carefully  designed  DL  models,  which

implies that CNN is so powerful that it is difficult to im-

prove it.

3.7   Genomics analysis

Genomics  analysis  is  the  identification,  measurement

or comparison of genomic features such as deoxyribonuc-

leic acid  (DNA)  sequence,  structural  variation,  gene  ex-

pression, or  regulatory  and  functional  element  annota-

tion at a genomic scale. Despite model architecture com-

plexity and mathematical connotation reconditeness, deep

learning  methods  have  shown  promising  practical  values

in genomic researches,  especially in cancer detection and

survival prediction.

TP53 KRT19 EPCAM BIRC5

Chaudhary  et  al.[58] studied  survival  expectations

among  different  subgroups  of  hepatocellular  carcinoma

(HCC) by  integrating  multi-omics  data  of  various  pa-

tient cohorts. They built a deep learning model (autoen-

coder) by training 360 HCC patients′ data gathered from

the Cancer Genomic Atlas (TCGA) database. They found

that  mutations  of , ,  and 

genes, and activated Wnt and Akt signaling pathways are

strongly  associated  with  patient′s  survival  expectation,

which was validated by five external datasets containing

various cohorts and omics types. They had expected their

workflow to be practical for HCC prognosis prediction, as

it  is  the  first  study  employing  deep  learning  to  identify

multi-omics features  in  order  to  predict  differential  sur-

vival of HCC patients.

In another study which was focused on detecting and

identifying breast  cancer  biomarkers,  deep  learning  ap-

proaches showed their practical values as well. Danaee et

al.[13] used  SDAE  to  deeply  extract  functional  features

from gene expression profiles, and then evaluated the per-

formance of  the  extracted  representation  through  super-

vised classification models to verify the usefulness of  the

new features in cancer detection. As a result, they identi-
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fied  a  set  of  highly  interactive  genes  to  be  useful  cancer

biomarkers for the detection of breast cancer.

Deep learning methods have to digest high-dimension-

al  data  generated  by  genomic  platforms  in  most  cases,

which conveys  either  low  accuracies  of  predicting  out-

comes or expensive costs in selecting, labeling and verify-

ing  such  numerous  data.  Yousefi  et  al.[59] had  a  strong

confidence in  that  deep  learning  methods  could  be  re-

markably  successful  in  cancer  prediction  tasks  by  using

general high-dimensional data. Hence, they compared the

result  of  survival  analysis  between  Bayesian  optimized

deep  survival  models  and  other  state-of-the-art  machine

learning  methods.  They  eventually  improved  prognostic

accuracy by transferring information across diseases.

Nevertheless, deep learning methods can be employed

to pursue precision and personalized medical care by find-

ing  comprehensive  and  reasonable  biomarkers  of  certain

diseases. Deep learning architectures have great potential

to  integrate  and  analyze  various  data  from  different

sources,  e.g.,  DNA  sequence  data,  gene  expression  data,

protein structure data, etc.

Discussion. The works  on  genomics  analysis  are  lis-

ted in Table 4. Genomics analysis is employed for cancer

detection and survival prediction. AE and DNN are used

to model the genomic data for these tasks. Novel models

such  as  CNN  and  RNN  should  be  attempted  for  these

tasks. Because genomic data has strong relationship with

its neighborhood, CNN and RNN may work better for ge-

nomics analysis.

4   Insights

After reviewing all the works, we give some insights of

DL models in healthcare in Table 4. The DL models are

divided into general  models and specific models.  General

models refer to those models that are capable to be used

in various tasks, and compatible with input data in vari-

ous  formats.  Specific  models  refer  to  those  models  that

are  designed  to  accomplish  certain  task,  and  the  input

data is strictly restricted.

DNN  is  conventionally  a  general  model,  which  has

been used in nearly all the tasks. As mentioned in Section 2,

AE  is  generally  used  for  feature  extraction,  which  is  an

unsupervised learning model. However, it is usually com-

bined with  other  supervised  learning  models  to  accom-

plish certain tasks. AE is the most general deep learning

model,  it  could  be  used  in  almost  all  kinds  of  tasks.

DBN\DBM is general model, too. DBN\DBM can be used

in  various  tasks,  and  is  compatible  with  input  data  in

various formats.

CNN and  RNN  are  specific  models,  which  are  de-

signed for specific tasks. CNN is first designed for image

classification,  and  it  is  easily  extendible  to  time  series,

thus we  conclude  that  CNN  is  good  at  handling  uni-

formly  sampled  data.  Data  in  other  formats  has  to  be

transformed  to  similar  structure  if  CNN  is  adopted  to

handle it. As for RNN, it is designed to handle sequences,

such as speech, language and text. RNN is easy to be ex-

tended  to  any  event  sequences  like  EHR.  If  the  input

data is not a sequence, it has to be transformed to a se-

quence first.  It  is  worth noting that,  since RNN is  more

robust to local (short time) change, the input of RNN is

not necessary to be uniformly sampled.

5   Challenges and limitations

Although  deep  learning  models  have  shown  their

power in so many healthcare applications, there are still a

few major challenges. We summarize them as follows:

Data. The  deep  NN  models  are  data  driven.  The

number of model parameters is much higher than that of

conventional  models.  Huge  volume  of  data  is  needed  to

train  the  models.  However,  in  healthcare  applications,

data collection is not easy, a dataset with 10 000 samples

is  often  considered  large  and  is  hard  to  get  large.  This

scale is small if compared to Imagenet dataset, which has

14 197 122 images.  Furthermore,  data in healthcare is  of-

ten unbalanced. For disease screening tasks, patients with

target  outcome are  typically  scarce  compared to  healthy

cohorts. Building big, representative dataset is an import-

ant and time-consuming task.

Interpretability. In  the  tasks  of  image  recognition

and speech recognition, we care more about whether the

model  works  accurately,  and  care  less  about  why  it

works.  Although  some  visualization  of  the  feature  maps

may help us understand the intermediate results, most of

the deep  NNs  are  end-to-end  black-boxes  and  not  inter-

pretable.  In  healthcare  task,  interpretability  is  far  more

important  than  other  applications.  We  need  to  analyze

risk factors,  and find out what is  the best  treatment for

certain  disease.  Che  et  al.[22] attempted to  distill  know-

ledge  from  deep  NN  by  Interpretable  Mimic  Learning.

 

Table 4    Insights of DL in healthcare

Architecture Applications Scope Comments

DNN EHR, EEG, community, drug, genomics General Conventional, various tasks

AE EHR, ECG, community, wearable, drug, genomics General Feature extraction, usually combined with other models

DBN&DBM EHR, ECG, EEG, wearable General Various tasks, sometimes as feature extractor

CNN EHR, ECG, EEG, wearable, drug Specific Uniformly sampled data, such as image & time series

RNN EHR, ECG, wearable Specific Sequences
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This idea  is  helpful  for  model  interpretation.  Further-

more, data visualization is still the most powerful tool for

model interpretation.

Data  representation. In  many  traditional  learning

tasks, such as image or speech, the data is homogeneous

and neat. In healthcare, some data (such as EHR) are ir-

regular and  poorly  structured.  Moreover,  many  data  of-

ten have  missing  values.  For  example,  vital  signs  manu-

ally  collected  at  hospitals  often  have  missing  fields.  At

present,  EHR  data  is  represented  as  a  temporal-events

matrix and missing values are often handled by simple in-

terpolation[27, 30]. A better representation may help to im-

prove the performance.

Generalization  ability. In  other  applications,  the

difference between training dataset and testing dataset is

not significant, because the training and testing datasets

are often generated by the same or similar underlying dis-

tribution.  Therefore,  the  learned  models  generalize  well.

In healthcare, the difference between training and testing

data is prone to be significant. For example, model train-

ing  on  dataset  from  Americans  would  not  suit  for

Chinese[39].  Transfer  learning would be  helpful.  For  deep

NN, if the model is trained based on Chinese population,

corresponding  adjustment  is  needed  when  the  model  is

applied  to  other  populations.  Transfer  learning  is  a

powerful method for such settings and its uses in health-

care can be a future direction of research.

Computational complexity. The deep NNs are one

of  the  most  complex  machine  learning  models.  They are

time,  space,  and memory consuming.  Lots of  parameters

need to be stored in memory. Huge number of operations

takes time for model  running.  This problem is  especially

severe for wearable devices with limited memory, comput-

ing power and battery. Simplified model may be helpful,

Che et al.[22] have given a good attempt. Chen et al.[60, 61]

have  tried  to  reduce  complexity  in  deep  NN,  which

shrinks the storage requirements of neural networks sub-

stantially while mostly preserving generalization perform-

ance. Another solution is to design energy-efficient hard-

ware accelerators for deep NNs. For example, on a num-

ber of representative neural network layers, it is possible

to achieve  a  speedup  of  450.65x  over  a  graphics  pro-

cessing unit (GPU), and reduce the energy by 150.31x on

average for a 64-chip DaDianNao system[54].

6   Conclusions

In this paper, we have surveyed recent applications of

deep  learning  in  healthcare  areas,  including  EHR,  ECG,

EEG, community healthcare, data from wearable devices,

drug analysis and genomics analysis. We have shown that

deep  learning  has  achieved  remarkable  results  in  these

areas.  We have shown that,  although deep learning first

got its success in computer vision and speech, it also has

shown great potential in promoting the revolution in the

healthcare  industry.  The  unmatched  learning  ability  of

deep learning  has  made  it  an  attractive  and  indispens-

able technology for analyzing clinical and healthcare data.

One interesting future direction is using deep learning to

learn from multi-dimensional, complex, and non-structur-

al  personal  data,  such  as  demographics,  diets,  habits,

sleeping,  mental  health,  medical  imaging,  vital  signs,

medication, lab tests, etc. Such fusion of information can

lead to  new  breakthrough  in  data-driven  healthcare  de-

cision making.
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