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Abstract: Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling
bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accurate residual life prediction plays a crucial
role in guaranteeing machine operation safety and reliability and reducing maintenance cost. In order to increase the forecasting preci-
sion of the remaining useful life (RUL) of the rolling bearing, an advanced approach combining elastic net with long short-time memory
network (LSTM) is proposed, and the new approach is referred to as E-LSTM. The E-LSTM algorithm consists of an elastic mesh and
LSTM, taking temporal-spatial correlation into consideration to forecast the RUL through the LSTM. To solve the over-fitting problem
of the LSTM neural network during the training process, the elastic net based regularization term is introduced to the LSTM structure.
In this way, the change of the output can be well characterized to express the bearing degradation mode. Experimental results from the
real-world data demonstrate that the proposed E-LSTM method can obtain higher stability and relevant values that are useful for the
RUL forecasting of bearing. Furthermore, these results also indicate that E-LSTM can achieve better performance.
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1 Introduction

Rotating machinery has been widely used in electric
power, machinery, aviation, metallurgy, and some milit-
ary industries. Rolling bearings are one of the most im-
portant components in rotating machinery. It has a num-
ber of advantages such as high efficiency, low friction,
and convenient assembly. However, due to the extremely
harsh operating environment, the rolling bearing is also
one of the high-risk sub-systemslll. A literature review
shows that many rotating machinery faults are caused by
rolling bearing damagel?. The consequences of rolling
bearing failures include the reduction or loss of some sys-
tem functions. Therefore, the diagnosis and prognosis of
rolling bearing faults have become particularly urgent. As
a key component of bearing prediction, the remaining
useful life (RUL) of the running bearing has drawn in-
creasing attention recently.
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There are two popular categories of RUL prediction
methods: model-based approaches and data-driven ap-
proachesl3l. Model-based methods typically describe mech-
anical degradation processes by establishing mathematic-
al or physical models and using measurement data to up-
date model parameters(4. These models include the Gaus-
sian mixture modell®, Markov process modellsl, Wiener
process modell”), etc. Since the model-based approaches
are the combination of expert knowledge and mechanical
real-time information, the performance can be improved
in terms of the RUL prediction for the bearings.

However, there are also some drawbacks for model-
based approaches. For example, these methods can be
successfully applied to electronic components and small
circuits, but they have limited application to electronic
products or systems with complex structure, especially
wind turbine systems(8]. Moreover, due to the uncertain
measurement such as noise, it is difficult to achieve a
model-realistic match for accurate mathematical descrip-
tion of real wind turbinesl®. The identification of model
parameters also requires a large amount of experimental
and empirical datall?l. These shortcomings may inevit-
ably limit the effectiveness of most model-based methods
in practical applications.

However, the data-driven methods based on statistic-
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al theory and artificial intelligence theory can overcome
shortcomings of the above methods. It uses historical
fault data and existing observations to make predictions,
and does not rely on physical or engineering principles.
With the development of modern signal processing tech-
nology and intelligent pattern recognition techniqueslt~13],
the data-driven fault prognosis method for rolling bear-
ings has been used extensively in industrial applications
in recent yearsl!4. A two-stage bearing life prediction
strategy was proposed in [3] by estimating the degrada-
tion information and using the enhanced Kalman filter
(KF) and the expectation maximization algorithm to es-
timate the RUL of bearing. In [15], a novel method mix-
ing support vector regression (SVR), support vector ma-
chine (SVM), and Hilbert-Huang transform (HHT) was
proposed to monitor the ball bearing. Tobon-Mejia et
al.ll6] proposed a prediction model combining wavelet
packet decomposition and mixture of Gaussians hidden
Markov model. Singleton et al.ll7) presented a forecasting
model based on the extended KF, whose parameters were
estimated from the extracted features of evolutional bear-
ing faults. In [18], a deep belief network (DBN) based
feed-forward neural network (FNN) algorithm was
presented to forecast the RUL for the rolling bearing,
where DBN was used to extract the features of the vibra-
tion signal, and then this FNN algorithm was used for
prediction and achieved good results. In [19], an adaptive
model was proposed to forecast bearing health, which se-
lected the suitable machine learning method according to
the evolution trend of bearing data. Chen et al.20 pro-
posed a new prediction method by using historical data to
build an adaptive neuro-fuzzy reasoning system and es-
tablish a time evolution forecasting model of the fault.

With the development of sensor technology, massive
data collection in electromechanical equipment becomes
available, and data-based methods are utilized for the
rolling bearing condition monitoring, which makes the ap-
plication of artificial neural networks in RUL prediction
of rolling bearings receive more and more attention. For
example, in [21], the minimum quantization error (MQE)
of the self-organizing map (SOM) network was used as a
new degradation index. To deal with degraded raw data,
the back-propagation neural network and weight applica-
tion to failure times (WAFT) prediction technique are
used to establish the rolling bearing prediction model. In
[22], a RUL forecasting approach was presented by utiliz-
ing competitive learning, where the statistical properties
obtained by using the continuous wavelet transform
(CWT) to deal with the data were taken as an input of
the recurrent neural network (RNN). The similar defect
propagation stages of the monitored bearing are represen-
ted by clustering the input data.

The elastic nets can perform grouping in which the
factors with strong correlation are often selected or not
together. In order to avoid the over-fitting problem, de-
crease the complexity of the algorithm, and deal with the
correlation between features, a label-specific features
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learning model combining extreme elastic nets with joint
label-density-margin space was presented in [23]. The re-
quired label-specific features can be extracted because the
sparse weight matrix can be generated by adding the L1
regularization term. In [24], by considering the weighted
elastic net penalty and image gradient to solve the super
resolution problem, elastic networks were used in con-
strained sparse representation in face images.

It should be noted that traditional neural networks
are composed of shallow learning structures, which may
not always sufficiently capture all the most useful inform-
ation in raw data. With the recent breakthrough of deep
learning, RNN can effectively deal with sequence predic-
tion learning problems, such as machine translation,
traffic flow prediction and the applications in other fields.
However, RNN has a vanishing gradient problem which
makes the optimization difficult in some applications.
Long short-term memory (LSTM) architecture inherits
the traditional advantages in the hidden layer neural
nodes of RNN, developing a structure called a memory
unit to save history information, and adding three types
of gates to control the management of left or reserved his-
torical information, which is valid to capture long-term
temporal dependencies. In addition, the hard long time
lag problem can be also solved by training LSTMI25l. The
new LSTM structure is more robust and applicable than
the traditional RNN. Some storage units enable LSTM
frameworks to remember a longer period of information
and enhance the learning capabilities. Therefore, combin-
ing the LSTM network, the RUL prediction of rolling
bearings can obtain better performance. In [26], RUL pre-
diction was performed using vanilla LSTM nerves to im-
prove the cognitive ability of the model degradation pro-
cess, and dynamic differential techniques were used to ex-
tract inter-frame information. In [27], a deep learning
model based on a one-dimensional convolutional neural
network (CNN) and multi-layer LSTM network with at-
tention mechanism was presented to predict the RUL of
rotatory machine by extracting the useful features form
the original signal. Chen and Han[?8! proposed a RUL pre-
diction method based on the LSTM network and princip-
al component analysis (PCA) to predict the trend of
health indicator for bearing. LSTM is widely used due to
its excellent predictive performance, such as short-term
traffic language
recognition3], analysis of charge state of lithium batter-

prediction(?,  continuous  sign
iesBl, and sea surface temperature prediction(32. In addi-
tion, the gated recurrent unit (GRU), as a variant of the
LSTM network, is also widely applied in fault prognosis
of bearing. For example, Shao et al.33 proposed a novel
prognosis approach based on enhanced deep GRU and
complex wavelet packet energy moment entropy to fore-
cast an early fault of the bearing, where GRU was used
to capture the nonlinear mapping relationship of the
monitoring index defined by complex wavelet packet en-
ergy moment entropy and achieved higher prognosis ac-
curacy.
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As an important industrial task, precise RUL forecast-
ing of a rolling bearing is still challenging, which mainly
includes the following three aspects: 1) There are many
factors causing bearing failure such as material deteriora-
tion, structure damage, and change of operating environ-
ment, which increase the complexity of bearing degrada-
tion analysis and greatly hinder the development of RUL
prediction technology. Because even for the same type of
rolling bearings, their useful life is also very different.
2) With the increase of time series, the traditional data-
driven methods may have insufficient ability for feature
extraction and difficulty characterizing the complex non-
linear function mapping relationship, which leads to the
lack of accuracy of long-term prediction. 3) Deep learn-
ing methods, such as LSTM, still have the problem of
over fitting and may fall into a local minimum, thus lead-
ing to failure of RUL prediction. For these reasons, a nov-
el LSTM method called E-LSTM to forecast the RUL of
rolling bearings is proposed in this paper. The E-LSTM
algorithm consists of an elastic net and LSTM, taking
temporal-spatial correlation into consideration to deal
with bearing degradation through the LSTM which is
made up of a large number of memory units. In the E-
LSTM framework, the over-fitting problem is solved by
utilizing the regularization term based on the elastic net
during the training process of the LSTM network. The
results demonstrate that the E-LSTM can obtain more
accurate correlation values and high stability that are
useful for the bearing RUL forecasting.

The major contributions of this paper are listed as fol-
lows:

1) To solve the over-fitting problem in the training
process of the LSTM model, an improved LSTM al-
gorithm, called E-LSTM, is presented in this paper. Reg-
ularized elastic networks and model parameter optimiza-
tion including regularization hyperparameters are used in
this algorithm, and can be used to perform time series
prediction.

2) To effectively represent the nonlinear and non-sta-
tionary characteristics of the rolling bearing fault data,
based on the proposed E-LSTM model, the rolling bear-
ings RUL forecasting algorithm is developed.

2 LSTM model

2.1 Recurrent neural network

RNNBY is a recursive neural network whose nodes are
directionally connected into a ring, exhibiting dynamic
time behavior by its internal state. Unlike the feedfor-
ward neural network, RNN can deal with time series ef-
fectively in a dynamic way based on its internal memory
unit, and can learn the latent features of time series. The
structure of the RNN and its hidden layer cell structure
are shown in Fig.1. The hidden layer has a self-circulat-
ing edge. As depicted by Fig.1, the output at time ¢ is
relevant to the input at time ¢ and the output at time

y 1
Output
layer

Hidden| ~
layer | RNN |

Input
layer x,

(a) RNN model

(b) Hidden layer structure

Fig.1 Structure of the RNN and its hidden layer cell structure.
Colored figures are available in the online version.

t—1.
Let the input sequence be x = (z1,%2, - - ,%n), and
y = (y1,Y2," - ,Yn) be the output data. Then, the results

of RNN can be described as follows:
he = f(Watxe + Whihe—1 + bp) (1)

yt = Whyhe + by (2)

where h; is the hidden layer state, f denotes the
activation function (e.g., tanh function), W represents
the matrix in which the weight is replaced (e.g., Why
denotes the weight matrix between hidden layer and
output layer), and b represents the bias matrix (e.g., by is
the bias matrix of hidden layer). The subscript ¢ indicates
the time.

Fig.1(a) shows that the RNN can be viewed as a spe-
cial case of deep neural networks. When deep neural net-
works perform the back propagation through time calcu-
lation, the deep output error has little effect on the calcu-
lation of shallow weights. In other words, the unit of the
RNN is mainly affected by the nearby units, meaning
that RNN has such a characteristic that its units only
have local influence. Therefore, RNN is not capable of
dealing with long-term dependencies. As concluded in
[35], RNN has the following disadvantages: 1) Due to the
gradient vanishing and gradient explosion problem, long
delay time series cannot be processed by RNN thor-
oughly. 2) The predetermined length of the time window
is required to train the RNN model. However, it is not
easy to automatically get the optimal value of these para-
meters in the training process.

To overcome these problems, the LSTM model is
presented as a special RNN structure. The LSTM model
cannot only avoid gradient vanishing, but also learn long-
term dependency information.

2.2 LSTM model

The LSTM adopts an improved structure of the ori-
ginal hidden layer neural nodes of RNN, adding a struc-
ture called a memory unit to store history information. In
addition, input gate, output gate, and forget gate are ad-
ded in LSTM to determine whether historical informa-
tion should be removed. As shown in Fig.2, the hidden
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layer cell architecture is more complex than RNN. This
LSTM network consists of input gate, output gate, forget
gate, and cell state. The input gate controls how much
new data can be added to the cell state, the output gate
controls the output data of the cell, the forget gate con-
trols the information that should be saved by the cell
state, and the cell state is adopted to hold useful informa-
tion. The forward propagation process of LSTM is ex-

pressed as
it = 0(Waixe + Whiht—1 + Weice—1 + bs) (3)
Jt = o(Wapwe + Whphe—1 + Wepcr—1 + by) (4)

¢t = frei—1 + ¢ tanh(Waexy + Whehi—1 + be) (5>
ot = U(Wzoxt + Whoht—1 + Weoci—1 + bo) (6)

ht = ot taHh(Ct) (7)

where i, h, o, f and c are input gate, cell state, output
gate, forget gate, and output of the previous cell,
respectively. W and b are the weight matrix and bias
vector in corresponding units, respectively. ¢ and tanh
are sigmoid and hyperbolic tangent activation functions,
respectively.

The LSTM network utilizes the classic back-propaga-
tion algorithm to find the optimal parameters during the
training, which can be expressed as follows:

1) Based on the forward calculation algorithm, the cell
output value 7; of LSTM can be calculated as

g = o (wynhe + by) (®)

where 7; is the network prediction value at time ¢, h. is
the state output value of the hidden unit, wy, is the
output weight, and b, is the output layer bias vector.

2) Reverse calculation of the error term of each LSTM
cell. The mean square error of the network prediction is
as follows:

E;, = % Z (yti — Gri)* 9)

i=1

where y:; is the i-th true value from the real dataset at
time ¢, and @ is the i-th output value of the LSTM
network at time ¢. m is the number of cells in the output
layer of this model. The cumulative error of the model
can be obtained from (9) as

el

1 T
E=2> E. (10)
t=1

3) Based on the above error obtained, the gradient of
all the weights can be calculated. Then the weights will
be updated by using the gradient optimization algorithm.
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Fig.2 Hidden layer cell architecture of LSTM

As shown in Fig.2, it is obvious that the LSTM uses
memory cells whose natural behavior is long-term preser-
vation input. To copy the real value of the state and the
accumulated external signals, the memory cell in the hid-
den node can connect weights to itself in the next time
step. In addition, the forget gate can be used to determ-
ine when the memory contents are cleared. This struc-
ture makes it possible for LSTM to predict time series
that have long-term dependencies.

3 Proposed E-LSTM network for
predicting RUL of rolling bearings

The experimental data collected from traditional ro-
tating machinery are usually non-stationary and noisyl!36l.
Meanwhile, the traditional LSTM model has an over-fit-
ting problem due to the structural characteristics. Com-
plex working conditions, noise, and over-fitting problems
can all make it difficult to carry out accurate prediction.
In this paper, an improved regularized LSTM network,
called E-LSTM, is proposed to solve the RUL forecasting
problem of rolling bearings, and improve its prediction
accuracy. The proposed E-LSTM algorithm can not only
readily learn the long-term dependence of the process
data, but also overcome the over-fitting problem of
LSTM for time series prediction.

3.1 Elastic net based model regularization
algorithm

The elastic netB7 is the combination of Lasso regular-
ization4 and ridge regularization®8l. Although the lasso
regularization can usually work well for data without
strong correlation between features or variables, it is suit-
able for data modeling problems if there is a high correla-
tions between some features. Ridge regularization can
help reduce the variance of the fitted model, while Lasso
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regularization can help shrink model coefficients to result
in a sparse model, as shown in Fig. 3.

w2

w2

L1
Fig. 3 L1 regularization and L2 regularization

From Fig.3, it can be seen that the principle of the
elastic network is very intuitive. The left side is L1 regu-
larization, and the right side is L2 regularization. The
green is the area where the loss function is minimized,
and the yellow is the regularization limit area. For L1
regularization and L2 regularization, the optimization
goal is to find the intersection of the green area and the
yellow area to satisfy the minimization condition of loss
function and the regularization limit condition. For L1
regularization, the defined area is a square, and the prob-
ability that the intersection of the square and the yellow
area is a vertex is very high. There must be wl or w2 at
the bump. Therefore, the L1 regularized solution is
sparse, which leads to the model preferring to select use-
ful features. For L2 regularization, the defined area is a
circle, so that the resulting solution wl or w2 is primarily
non-zero and very close to zero. According to the Occam
razor principle, a smaller weight means that the network
is less complex and the data fits better, thus it can effect-
ively avoid over-fitting problem. By combining the two,
the elastic net not only avoids the over-fitting problem
but also has stronger feature extraction capability.

The elastic net combines the two regularization meth-
ods to achieve complementary effects. After selecting im-
portant features, those features that have little or no ef-
fect on the life curve will be discarded. The expression of
regularization approach is given as follows:

min{Zl(yt7f(ut,w))+Z)\i/’i(w)} (11)

where [(-,-) represents the loss function, which can
measure the forecasting performance of the proposed
method over the training data set. w is the model
parameters to be estimated, and p(w) is a regular term
used to reduce or avoid over fitting, thus improving the
generalization ability of the proposed method. A is an
adjustable regularization parameter. The relationship
between the regular term and the loss function is
balanced by changing the value of A.

In this paper, the LSTM network combines the elast-
ic net, and its generalization is enhanced by regularizing
the initializing weight w in the network. The regulariza-

tion model is expressed as follows:

T m
1
D{TZZ (Yei — Yus) +)\1||w|1+)\2||w|§}, (12)

t=1 i=1

Four different combinations could be obtained by
modifying the regularization hyperparameters A1 and A2
n (12). When A1 =0 and A2 =0, it is a normal LSTM
model; when Al #0 and A2 =0, it is the L1 regulariza-
tion network; when A1 =0 and A2 # 0, it is the L2 regu-
larization network; when both A1 and A2 are not equal to
0, it is an elastic regularization network. Following [39],
this study employs the combination of L1 and L2 to facil-
itate important feature selection for LSTM.

The proposed E-LSTM optimization algorithm is util-
ized to preform RUL forecasting of rolling bearing, and
this network structure is illustrated in Fig.4, where H,_1
and C,_1 represent the output and cell state of the (n-1)-
th hidden layer node in the LSTM network respectively,
and n is the number of hidden layer nodes in the LSTM
network. The representative features of original vibration
signals, such as root means square (RMS) value, are ex-
tracted and split into training and test samples following
the length of the segmentation window as the input of
LSTM network. (z1,z2,- -
the length of the segmentation window and the number
of the input nodes in the LSTM network.

(P1, P2,---, Pj) represents the predicted outputs of
the LSTM network corresponding to (x1,z2,---,;), and
j is the number of the output nodes in the LSTM net-
work. In this study, the number of the output nodes is set
to 1. The E-LSTM block diagram consists of the follow-
ing five parts: input layer, hidden layer, output layer,
network optimization, and final prediction. The input lay-
er is in charge of the split and reorganization of the ori-
ginal data to satisfy the input dimensions of the network.
The LSTM cell unit shown in Fig.2 is used to construct

,Z;) is a input sample and 1 is

Final prediction '
[ Fault time series corresponding
to the test set i

Iterative prediction,
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layer |
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Fig.4 Training algorithm of E-LSTM model for RUL predic-
tion of rolling bearings
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the single hidden layer, and the output layer outputs the
predicted values. The elastic net algorithm combining
with LSTM network is adopted to train the network, and
then a grid optimization algorithm is used to find the op-
timal regular term hyperparameters. Finally, the step-
wise prediction is performed by using the iterative ap-
proach.

3.2 Training algorithm

The LSTM neural network is prone to over fitting in
the training process, while the elastic net regularization
algorithm can shrink the weight of the network by min-
imizing the loss function. Therefore, optimized by the
elastic net regularization algorithm, the LSTM model can
overcome the shortcomings of the whole network. Fig.4
illustrates the training algorithm of the proposed E-
LSTM model to forecast the RUL of rolling bearings, and
this algorithm is briefly summarized in Algorithm 1.

Algorithm 1. E-LSTM training algorithm

Input: Training data X = {x1,22,- - ,2n} and test

data  Xie = {Tnt1,Tnt2, - ,Zm} from the feature
extracted from original vibration signal.
Output: The predicted RUL.

1) Randomly initialize the E-LSTM model;

2)  for number of training iterations do

3) for number of training data do

4) Calculate the predicted value of training data:
Yir = LSTM(X4r)

5) Calculate the loss by (12);

6) Update LSTM parameter by back-propagation
algorithm;

7 end for

8 end for

)
)
) Save the trained model LSTM™;
0
1

=]

1
1

) for number of test data do

)  Calculate the predicted value of test data:
Yie = LSTM*(X¢e)

12) end for

13) return predicted result Yie.

The whole RUL forecasting process is depicted in
Fig.5, which consists of the following two parts: offline
network training and online forecasting test. The offline
network training process performs elastic net based
LSTM training until the metric satisfies the requirement.
When the training is completed, it is easy to verify the
RUL forecasting performance in the testing data. Online
RUL forecasting can then be carried out using new E-
LSTM network inputs.

4 Experimental study and analysis

4.1 Data source and setup

To verify the effectiveness of the proposed E-LSTM
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Fig. 5 Schematic description of E-LSTM based rolling bearing
RUL prediction process

method, a real-world bearing dataset49 is used to test in
this experiment. These data were collected during the ac-
celerated degradation test of the bearing under different
parameters and load conditions through the PRONOS-
TIA platform (an experimental platform for bearings ac-
celerated degradation tests). The failure experiments are
performed and the experimental data are recorded, as
shown in Fig. 6.

Specifically, the motor rotation speed is 1800r/min,
the load is 4 000N, the sampling frequency is 25.6kHz,
and the data are recorded every 10s. There are 7 sets of
experimental data in total. Fig.7 shows the change pro-
cess of bearing used in the experiment before and after
the acceleration test, and Fig.8 shows the change of the
vibration amplitude data collected in a complete acceler-
ated degradation test.

4.2 Feature selection

For predicting the time series, it is essential to select
representative features. Commonly used feature values
are sometimes combined in the frequency domain, time
domain, and time-frequency domain. Different features of-
ten represent different physical implications. As reported
n [41], the RMS value fairly reflects the overall trend of
the rolling bearing data and the abnormal dissipation of
the vibration signal energy. Therefore, RMS is used as
the experimental feature, which is described as follows:

RMS(t) = (13)

where Xy; is the i-th original vibration signal at each
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Fig. 6 PRONOSTIA platform[40l

Fig. 7 Normal and degraded bearings[4l

50 . . .
Q
s
=
g 0
<
=50
0 2 6 8

Time (10° s)
Fig. 8 Original vibration signal curve

sampling point ¢. In addition, N represents the total
number of data points collected at the sampling point ¢,
and in this study N = 2 560.

Note that the RMS value is also subjected to mean fil-
tering and normalization under the unified standard to
further reduce the noise impact for the RMS signal. The
change of rolling bearing data in the whole data prepro-
cessing process is shown in Fig. 9.

4.3 Evaluation of prediction results

The three commonly used metrics for evaluating the
performance of time series prediction model are mean
square error (MSE), mean relative error (MRE), and
mean absolute error (MAE). The MSE metric is more
sensitive to the measurement error than the other twol2% 32],
Therefore, MSE is considered as an evaluation criterion
for the proposed E-LSTM algorithm. The computing for-
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Fig.9 Changes of bearing data in the preprocessing process

mula for MSE is as follows:

n

1 _ 2
MSE = > Z (yi — 7:) (14)

=1

where y; is the ¢-th real data, and ¥; is the i-th predicted
data.

4.4 Determination of the LSTM network

The LSTM prediction model involves a large number
of parameters. The length of the segmentation window for
the model and data should be considered and determined
firstly. In order to obtain better prediction performance,
the length of data window is investigated in the range of
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[1, 10] by trial and error method. The experimental res-
ults are shown in Table 1. Fig.10 shows the MSE value
changing as the length of the time window increases. It
can be seen that MSE attains its minimum value at 7,
meaning that the most acceptable time window length is 7.

The range of the two hyperparameters {1, A2} is set
to [0, 0.1]. The grid search approach is utilized to find the
two optimal hyperparameters in this paper. Compared
with other hyperparametric optimization methods (e.g.,
Bayesian algorithm, genetic algorithm, and particle
swarm optimization), the grid search approach is simple,
which well meets the experimental requirements of fault
diagnosis through time series prediction. For the conveni-
ence of calculation, the two hyperparameters are roughly
selected from the range of [0, 0.1], and the experimental
results are shown in Fig. 11.

From Fig.11, MSE has an increasing trend with the
increase of A1 and A2, but, MSE reaches its minimum
(the predefined value obtained by experimental statistic-
al analysis) in the triangle near the zero points (shown in
Fig.12). The regular item parameters are searched iterat-
ively so as to obtain more precise results, and the optim-
ization results are shown in Fig.12.

From Fig.12(b), it is known that the MSE value be-
comes smaller and smaller in the lower right corner re-
gion, and thus the optimal values of Al and A2 are ob-
tained. When Al = 0.009 and A2 = 0.004, E-LSTM has
the best prediction performance. For comparing the pre-
diction accuracy of this proposed model with L1-LSTM
(i.e., LSTM with L1 regularization) and L2-LSTM (i.e.,
LSTM with L2 regularization), it is necessary to find the
best performing L1-LSTM method and L2-LSTM method.

Table 1 MSE results of different time window lengths

Length MSE Length MSE
1 0.156 17 6 0.077 20
2 0.100 36 7 0.075 29
3 0.090 15 8 0.083 83
4 0.086 29 9 0.086 40
5 0.077 51 10 0.096 71
0.16
0.14 |
0.12

[Sa]

=
0.10
0.08
0.06

0 2 4 6 8 10

Length of time window

Fig. 10 MSE results of different time window lengths
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The hyperparameters of the two models are optimized
within a limited range in the experiment, and the results
are shown in Fig.13.

In Fig.13(a), it is obvious that the MSE value is relat-
ively stable between 0 and 0.02 with the change of A1,
but increases rapidly when Al > 0.02. In order to ob-
serve the trend of MSE more accurately, the local ampli-
fication of the 0—0.02 range is performed. It is noted that
the MSE value decreases first and then increases. Simil-
arly, it is noted from Fig.13(b) that MSE is stable in the
range of 0—0.05. However, the subsequent increase in the
MSE value is more stable than that in Fig.13(a). From
the analysis of experimental results, it is concluded that
when A1 = 0.013, the L1-LSTM model works best, and
when Ar2 = 0.034, the L2-LSTM model has the best per-
formance.

4.5 Analysis of experimental results

Through the above experiments for model structure
determination and model parameter estimation, three dif-
ferent LSTM models are developed. For making the com-
parison of the performance of these forecasting methods,
i.e., L1-LSTM, L2-LSTM, and E-LSTM, each model is
trained and predicted for rolling bearing data. To avoid
the influence of accidental factors, 10 independent tests
are performed respectively. The statistical values of each
group of errors are shown in Table 2.
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Table 2 Comparison of three models with ten tests
Model MSE value Mean Variance
L1-LSTM 0.0094 0.0166 0.1113 0.0954 0.0697 0.06562 0.0184 0.0098 0.0765 0.0911 0.056 34 1.50X1073
L2-LSTM 0.0606 0.1079 0.0762 0.0479 0.0769 0.0105 0.0834 0.0504 0.1555 0.0302 0.069 95 1.70X1073
E-LSTM 0.0298 0.0481 0.0311 0.0181 0.0289 0.0197 0.0181 0.0099 0.0187 0.0169 0.023 93 1.17X104

Shown in Table 2, it can be observed that the pro-
posed E-LSTM model outperforms L1-LSTM model and
L2-LSTM model in terms of both the mean and variance
of the model forecasting errors. For a clearer visualiza-
tion, the data in Table 2 is presented in Fig. 14.

From Fig. 14, the curve of E-LSTM is not only lower
than the other two curves (for most experiments), but
also the trend is more stable. It shows that the proposed
E-LSTM prediction method can obtain better perform-
ance and fairly good robust performance. The algorithm
is quite appropriate for RUL forecasting of rolling bearings.

In order to further validate the bearing prediction per-
formance, the comparison is performed between the pro-
posed E-LSTM forecasting algorithm and other five exist-
ing approaches, i.e., back propagation neural network
(BP), SVM, radial basis function neural network (RBF),
DBN, and LSTM network combined with CNN (CNN-

LSTM). According to the experimental results, the per-
formance (MSE value) of the six methods is drawn in
Fig.15. It can be seen that the BP and SVM algorithms
show roughly the same performance. The performance of
the RBF algorithm is slightly better than that of BP and
SVM. In addition, deep learning methods (DBN, CNN-
LSTM, and E-LSTM) can learn latent features from lots
of data and obtain higher prediction accuracy than tradi-
tional methods. CNN-LSTM and E-LSTM are the com-
bination of LSTM network and other methods, but the
proposed E-LSTM algorithm combines elastic net to
avoid over fitting problem in training process and outper-
forms the CNN-LSTM method.

In order to make detailed comparison, four datasets of
bearings obtained in the same work environment (the
same speed and loads) are randomly selected, and the
prediction is conducted for each case. The datasets are

@ Springer



590 International Journal of Automation and Computing 18(4), August 2021

- L1-LSTM )
0.15 - L2-LSTM /\
E-LSTM [\

0.10

MSE

0.05

Number of experiments

Fig. 14 Comparison of three models with ten tests

0.05
SVM = DBN-BP
0.04 = BP CNN-LSTM
o 0.03 RBF ®E-LSTM
wn
= 0.02
0.01
0

BP RBF

SVM DBN CNN-LSTM E-LSTM

Fig. 15 Comparison of mainstream prediction models

denoted as Bearings 1-4. The forecasting results are
shown in Fig. 16.

In Fig.16, the blue curve represents the predicted
data, the red curve represents the training data, and the
black curve represents the real data. Following [37], in
this study, the failure threshold of the bearing data is
chosen to be RMS = 0.7 (the solid red line parallel to the
X coordinate axis in Fig.16). Ea represents the intersec-
tion abscissa of the actual data curve and the fault
threshold line, and FEp represents the intersection ab-
scissa of the predicted data curve and the fault threshold
line. The value Fa — Ep describes the discrepancy of the
predicted value and the actual value. The value Fa — Ep
can be used as an indicator of the model prediction per-
formance. Bearing 4 shows the best predictive perform-
ance (Fa and Ep have been overlapped); followed by
Bearings 1 and 2, the prediction performance on Bearing
3 is the worst, there is a lag between the true value and
the estimated value but the errors of Bearing 3 are not
very large. It shows that the E-LSTM algorithm works
well for RUL prediction of bearing time series. Mean-
while, the algorithm has good robustness and can fore-
cast the RUL of different bearings in the same work en-
vironment.

5 Conclusions

In this paper, an elastic-net regularized LSTM (E-
LSTM) method is proposed to forecast the RUL of rolling
bearings. The E-LSTM algorithm consists of an elastic
net and LSTM, taking temporal-spatial correlation into
consideration to deal with the bearing degradation pro-
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cess through the LSTM. The elastic net based regulariza-
tion term is introduced to the LSTM structure to avoid
the overfitting problem of the LSTM neural network dur-
ing the training process. The E-LSTM approach shows
better performance than RNN and effectively solves the
long-term dependence problem. The combination of the
elastic net regularization and the learning ability of
LSTM enables the generalization performance of the
method proposed which plays an important role in im-
proving the machinery safety of the rolling bearing.
However, while the overall forecasting performance of the
E-LSTM algorithm is better than the compared methods,
the training process of E-LSTM takes more time. So, the
future work would be to investigate algorithms to acceler-
ate the calculation speed of E-LSTM and further im-
prove its overall performance for rolling bearing RUL pre-
diction.
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