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Abstract: In multi-dimensional classification (MDC), the semantics of objects are characterized by multiple class spaces from differ-
ent dimensions. Most MDC approaches try to explicitly model the dependencies among class spaces in output space. In contrast, the re-
cently proposed feature augmentation strategy, which aims at manipulating feature space, has also been shown to be an effective solu-
tion for MDC. However, existing feature augmentation approaches only focus on designing holistic augmented features to be appended
with the original features, while better generalization performance could be achieved by exploiting multiple kinds of augmented features.
In this paper, we propose the selective feature augmentation strategy that focuses on synergizing multiple kinds of augmented features.
Specifically, by assuming that only part of the augmented features is pertinent and useful for each dimension's model induction, we de-
rive a classification model which can fully utilize the original features while conduct feature selection for the augmented features. To val-
idate the effectiveness of the proposed strategy, we generate three kinds of simple augmented features based on standard kNN, weighted
kNN, and maximum margin techniques, respectively. Comparative studies show that the proposed strategy achieves superior perform-

ance against both state-of-the-art MDC approaches and its degenerated versions with either kind of augmented features.
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1 Introduction

Traditional supervised learning tasks usually charac-
terize the semantics of objects with one output variable,
i.e., single-output learning, among which multi-class clas-
sification is one of the most important learning frame-
works. However, in some real-world applications, it is bet-
ter to use multiple output variables to characterize the
rich semantics of objects, which results in the problem of
multi-output learninglll. Here, when the type of each out-
put variable is restricted to discrete-valued, the multi-di-
mensional classification (MDC) framework is obtained|2: 3.
Under the MDC setting, each object is represented by a
single instance while associated with multiple class vari-
ables, each corresponding to a specific class space charac-
terizing the object’s semantics along one specific dimen-
sion. Specifically, the MDC problem widely exists in
application such as bioinforma-

many scenarios,

ticsl4 3, text classificationl6 71, computer visionl810, re-
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source allocation(lll, etc. Fig.1 shows an illustrative ex-
ample of MDC on vehicle classification.

Formally speaking, let X € R? be the d-dimensional
feature space and Y = Cy x C2 x --- x Uy be the output
space. Here, ) corresponds to the Cartesian product of ¢

70'7Kj} (1 < j <q) which con-

sists of K possible classes respectively. Given a set of

class spaces C; = {c!,c,---

MDC training examples D = {(x;,y:) | 1 < ¢ < m}, where

,xid]T € X is a d-dimensional feature
}T

T, = [%17 Ti2, """
vector and y; = [yi1, Yi2, "+ ,Yiq] € Y is the ¢-dimension-
al class vector associated with @; with each element
yi; € Cj, the MDC task aims to learn a predictive model
f: X — Y from D which can return a proper class vec-
tor f(x«) € Y for unseen instance x..

It is obvious that the MDC problem can be solved di-
mension by dimension, i.e., training a multi-class classifi-
er for each class space. However, this independent decom-
position strategy does not consider potential dependen-
cies among class spaces which might impact the generaliz-
ation performance of the resulting model. The MDC
problem can also be solved by a single multi-class classifi-
er, where each distinct class combination is regarded as a
new class. However, this powerset-like strategy cannot
consider class combinations not appearing in the training
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Fig.1 An illustrative example of multi-dimensional
classification: Vehicle classification. For a vehicle, it can be
classified from the type dimension (with possible classes car,
SUV, bus, truck, etc.), from the brand dimension (with possible
classes Audi, Benz, YUTONG, JAC, etc.), and from the color
dimension (with possible classes black, white, red, blue, etc.).
Here, (a) is a red Audi car, (b) is a black Benz SUV, (c) is a red
YUTONG bus, and (d) is a white JAC truck.

set and usually suffers high computational complexity
due to a possibly large number of classes. In fact, one of
the key challenges for MDC studies is how to model de-
pendencies among class spaces in appropriate ways. Ex-
isting works mainly focus on modeling class dependencies
in output space, such as capturing pairwise class depend-
encies(12-14] specifying chaining order over class spacesl!5 16],
learning a directed acyclic graph (DAG) structure for
class spacesll™19, and partitioning class spaces into
groups(?, etc. Recently, feature augmentation strategy,
which aims at manipulating feature space, has been
shown as an effective solution for MDC. This strategy en-
riches the original feature space with a set of new fea-
tures that are generated by making use of some well-es-
tablished techniques, e.g., kNN[20 or deep learning(?ll. Ex-
isting works only focus on how to design more informat-
ive augmented features, while it might be beneficial to ex-
ploit multiple kinds of augmented features generated by
making use of different techniques. In this paper, we pro-
pose the selective feature augmentation strategy, which
makes the first attempt to synergize multiple kinds of
augmented features. The strategy is abbreviated as
SFAM, i.e., selective feature augmentation for multi-di-
mensional classification, in the following parts of this pa-
per for brevity. Specifically, SFAM assumes only part of
augmented features are pertinent and useful for each di-
mension’s model induction. In order to validate the effect-
iveness of SFAM, three simple kinds of augmented fea-
tures are generated by making use of standard kNN,
weighted kNN, and maximum margin techniques, respect-
ively. After that, for each dimension, SFAM derives a
classification model which can take full advantage of the
original features via /> regularization and conduct fea-
ture selection for the augmented features via ¢; regulariz-
ation (i.e., selective feature augmentation). Experimental

results demonstrate that SFAM achieves superior per-
formance against both state-of-the-art MDC approaches
and its degenerated versions with either kind of augmen-
ted features.

The rest of this paper is organized as follows. Firstly,
related works on multi-dimensional classification are
briefly discussed. Secondly, technical details of SFAM are
introduced. Thirdly, experimental results of comparative
studies are reported. Finally, we conclude this paper.

2 Related work

The most related learning framework to multi-dimen-
sional classification is the widely studied multi-label clas-
sification (MLC)2224 which can be regarded as a special
case of MDC when the type of class variable in each di-
mension is restricted to binary-valued. However, MDC
usually assumes heterogeneous class spaces, which are
used to characterize the rich semantics of objects from
different dimensions, while MLC usually assumes homo-
geneous class space in which multiple concepts are relev-
ant to the polysemous objects.

The MDC problem can be solved via an independent
decomposition strategy, where a total of ¢ multi-class
classifiers are learned independently, one per dimension.
However, this intuitive strategy ignores possible depend-
encies among class spaces, and the induced model would
be suboptimal. An improved strategy is learning the ¢
multi-class classifiers in a chaining order, where predic-
tions of preceding classifiers are used as extra features by
the subsequent onesl!5: 16, However, the chaining order
would largely affect the generalization performance while
determining an optimal one is NP-hard. The MDC prob-
lem can also be solved via a powerset transformation
strategy where a single multi-class classifier is learned by
regarding all distinct class combinations in the training
set as new classes. However, this intuitive strategy can-
not consider class combinations not appearing in the
training set and usually suffers high computational com-
plexity due to a large number of new classes. An im-
proved strategy is partitioning the class spaces into
groups according to conditional dependencies?l. However,
the combinatorial nature still exists, which leads to that
the deficiencies cannot be fully addressed. A family of
MDC models called multi-dimensional Bayesian network
classifier?’l aims at learning different kinds of DAG struc-
tures over class spaces to explicitly model the class de-
pendencies. However, determining DAG structures is
computationally demanding, and only nominal features
can be tackled generally. The class dependencies can also
be modeled in a two-level strategyl!2-14, where pairwise
dependencies are captured in the first level, and then
high-order dependencies are captured in the second-level
based on the predictions from the first level. However,
capturing pairwise dependencies needs O(qz) complexity,
which is very time-consuming.

@ Springer



40

The afore-mentioned strategies mainly focus on dir-
ectly modeling class dependencies in the output space,
while the KRAM approach/2 attempts to manipulate the
feature space of MDC examples via feature augmenta-
tion by making use of kNN techniques. Helpful discrimin-
ative information is expected to be brought into feature
space which would facilitate the subsequent MDC model
induction. Based on deep learning techniques, the LEFA
approachl?ll further generates better-augmented features
which can depict the inter-class dependencies and the in-
tra-class exclusiveness simultaneously. However, these ap-
proaches simply treat the original and augmented fea-
tures equally, which might be less reasonable due to vari-
ous characteristics of different features. Moreover, it is
usually easier to design multiple kinds of simple augmen-
ted features than a terrific one, and it might be benefi-
cial to consider synergizing the discriminative informa-
tion residing in different kinds of augmented features.
Fig. 2 shows an intuitive comparison between existing fea-
ture augmentation techniques and the proposed one in
this paper. Existing works usually employ general MDC
algorithms to accomplish the training phase, while the
proposed one designs a novel training algorithm that can
accomplish the selective feature augmentation phase.

3 Technical details of SFAM

This section presents how we implement the selective

) Augmentation
b model
X, -
l Augmented-features
(z,¥) —| Training algorithm Predictive
model
(a) Existing feature augmentation
Augmentation
model 1
y) —
Augmentation
model N
x!
l Augmented-features
(%,3) —| Training algorithm Predictive
model

(b) Selective feature augmentation

Fig.2 An intuitive comparison of the training phase between
existing feature augmentation techniques and the proposed one
in this paper. Here, z; is the concatenation of x; and ;.
Specifically, existing feature augmentation techniques focus on
designing a better augmentation model to generate more
informative augmented features, while this paper focuses on
designing a novel training algorithm that aims at synergizing
multiple kinds of augmented features.
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feature augmentation strategy. In other words, the tech-
nical details in this section correspond to the part of the
training algorithm in Fig.2(b). For any instance x;, let &;
be the concatenation of all the corresponding augmented
features generated by the N augmentation models, and z;
corresponds to the concatenation of x; and ;, i.e.,
z; = [@;;@;], in the following, we derive a regularized
classification model which fully utilizes original features
x; and employs feature selection mechanism over aug-
mented features ;.

For simplicity, we employ the one-vs-rest decomposi-
tion strategy for each dimension where a classification
model with both ¢; and /2 regularization is derived to
solve the decomposed binary classification problems. Spe-
cifically, for the a-th decomposed binary classification
problem in the j-th dimension, we determine the optimal
model (wj,,b},) as follows:

(w;avb]a) = arg min L(wja7 bja) + )‘R(wja) (1)

Wjabja
where X\ is a trade-off parameter. The first term
L(wjq,bja) denotes the empirical loss function. In this

paper, we employ the cross-entropy loss, which is defined
as follows:

m

L(’LUja, bja) = — Z [lza X In h’wja.ybja, (Z»L)—‘r

1=1

(1= %) X (L = g0, (20))]-

Here, lga = 1Uv_7cj, the predicate 1, returns 1 if = holds
Yij=ci

and 0 otherwise, and hwja,bja(zi) is the logistic function

which is defined as follows:

1
h'w» o \Zi) =
.7a»b.7a( ) 1 +e7(<wja,zi>+bja)

where (-, ) returns the inner product of two vectors. The
second term R(wj,) denotes the regularization term,
which is defined as follows:

R(wja) = [|0jal13 + [18all:

where 0;, and §ja denote the first d elements and the
last remaining elements of wj,, respectively, i.e., wjq =
[6,0:6,4]. Tt is worth noting that the £y regularization
corresponds to the original features while the ¢;
regularization corresponds to the augmented features. By
doing this, we employ a feature selection mechanism over
the augmented features to synergize multiple kinds of
augmented features in a better way while the original
features are still fully utilized. In other words, the
selective feature augmentation strategy is implemented
here.

To optimize problem (1), we solve one of the three
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sets of parameters {0;a},{6;o} and {b;o} alternately,
while the remaining parameters are fixed.

1) Optimizing w.r.t. {6;,} when {8;,} and {b;.}
are fixed: When {8;,} and {b;,} are fixed, the optimiza-
tion problem (1) can be equivalently reformulated as fol-

lows:
min L1(8ja) + A 0jallz (2)
where
= [zg’“ x Inhe,, (2:)+
i=1
(1= ") x In(1 = ho, (2))]
and

1
1+ e_(<9javzi>+c%> ’

h9_7‘a, (zl) =

Here, C} = (6;a,%;) + bja is a constant which is not
dependent on the variables 0j,. In this paper, we use
gradient descent to solve the optimization problem (2).
Specifically, let 21(0;,) be the objective function, the
gradient is given as follows:

901(6;4) moo
Tj: == (H*— ho,, (2:)2i + 270

i=1

2) Optimizing w.r.t. {6;,} when {0;,} and {b;,}
are fixed: When {0.} and {b;s} are fixed, the optimiza-
tion problem (1) can be equivalently reformulated as fol-

lows:
réljlf La( Ja) + /\H93a||1 (3)
where
— Jja _ ,
3 [zi xInhg (2:)+
i=1
(1- l{a) x In(1 — hgja (Zl))]
and
1
hg,, (zi) = ——.
a 1 +e (<9javzz>+02)
Here, C% = (0, x;) +bj, is a constant which is not

dependent on the variables {§ja}. In this paper, we use
the accelerated proximal gradient method[2l to solve it.

Theorem 1. For the derivable function L2(§ja),
VLQ( ia) is Lipschitz continuous, and the Lipschitz con-
stant is

1=~
LT 4)
=1

where V denotes the differential operator.

Proof. For VL3(6;,), it can be calculated as

OL2Oia) _ S e _py (2

VL:(6;4) =
60Ja i=1

Given any 0;, and 6},, we have

IV L2(8}0) — VL2(6)0)|, =

é (hey, () = hg,, (=) & 2 <
Ej: a1, =)~ hs,, (20 il <
ii (0. 30) = (B30, N1, <
i 11— 000|130 <

> 6.

Here, the second “<” is due to the truth that the

~ 2
0| 17113

»Jk\'—‘

1
Lipschitz constant of logistic function equals T So then,

it is easy to know:

~ = .
HVLQ(Q,’;‘,‘) _YLQ(ON)’ EZH@-HE
167, — 85 =
2
which completes the proof. O

According to Theorem 1, given any initial value 5](2 of
gja, let Agja = gja O(t)

ja» the following inequation al-

ways holds:

HVLQ((Z-Q) . VL2(§§.’;’)H2 <L HAéja )

Then, the quadratic approximation of L2(§ja) around

B(t) can be given as follows:

~ o~ ~ ~ ~ L ~ 2
La(8y0) ~La(01)) + (VL2(8}.), 88,0) + =L | 205

Li 15 o|?
3 |8 ], + 0,

1 ~
where O, =~ VL2682

2 IO
+ L2(8;,,) is a constant
2 ~

which is not dependent on variables 6;,, and

1

V=61 - EVLz(éj(Q). (5)
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According to the descent lemmal?”l, the approxima-
tion is an upper bound of the original function, i.e.,
L2(6;4) < L2(64) always holds. Therefore, we can min-
imize the original function by iteratively minimizing the
approximation. Plugging the above approximation into
the optimization problem (3), we can obtain the follow-
ing iterative equation:

gu+y
Ja 1

Leil~ 2 ~
=arg mian ‘ 00 — w4+ ’ 0jq
2 2

6q

soft (u(t), %) . (6)

Here, soft(-,-) is the (element-wise) soft-thresholding
function which is defined as follows:

z—p, if z>p
soft(z, ) =< x+upu, if < —p
0, otherwise.

In [28], it is shown that the convergence rate of the it-
erative equation in (6) can be improved to O(t™?) from

1N - n(t) . . . (t).
O(t™") if we replace 0;, in (5) with the following v;"

® _pm , Tt—1—1 &0 Fe-1)
Uja, - Yja + ry (eja - Bja, ) (7)
14 4/14+4r2 |

where 7o =71 =1 and r; = when ¢ > 1.

2
3) Optimizing w.r.t. {b;o} when {6;,} and {6;.}
are fixed: When {6;,} and {6;,} are fixed, the optimiz-

ation problem (1) can be equivalently reformulated as fol-

lows:
min L3 (bja) (8)
ja
where
La(bja) == > [z{“ x I, (2i)+
=1
(1= 6%) X In(1 = ho,, (2:))]
and

1
a(20) = T S en
Here, C4 = (wja, 2;) is a constant which is not dependent
on variable {b;o}. In this paper, we use gradient descent
to solve it. Specifically, the gradient of the objective
function (i.e., Ls(b;a)) is given as follows:

OL3(bja) _  N~yja _
b, > (1 = by, ().

i=1
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Algorithm 1. The proposed SFAM approach.
Input: D: MDC training set {(xi,y:) | 1 <i < m}
A: trade-off parameter in (1)
Ap: augmentation model n (1 <n < N)
x,: unseen instance
Output: y.: predicted class vector for x.
1) D=g;
2) for i =1tomdo
3) forn=1to N do
4) Generate the n-th augmented features A}‘ for
the ¢-th training example x; via Ap;

5) end for
6) D =DU (zi,y;) where z; = [x;;Z;], ®; is the
concatenation of AT, -+ | AT

7)
8) for j=1togdo
9) fora=1to K, do
0) Initialize wjq = [0ja;654] = 0,bja = 0;
11) Repeat
12) Update 0;, by solving the optimization

end for

problem (2) via gradient descent;

Initialize ) = 6'.) = 0,0, o =r1=1,t =1

= =
o

>—~
~
ELESEX 32 8488

Repeat

—_
ot

Obtain v](fl) according to (7);

—_
(=]

1
Compute u) = vé? — L—fVLg(vj(-Z));
Obtain 0§Z+1) according to (6);

1++/144r7
2 ,

—
o

Compute 1441 =
t=t+1,;
Until Convergence
Update gja with 5](2)
Update bj, by solving the optimization

N NN =
N = O ©

problem (8) via gradient descent;

[\V]

3
24
25

) Until Convergence
)
)
6) Obtainz/, s augmented featuresz™ = [AT*;- -+ ; AR
)
)
)
)

end for
end for

N DD

7) for j =1togdo
8
29
30) Return yu = [Yu1, Yu2, - -+ » Y *-

[\

Determine the class y.; according to (9);
end for

As the above three alternating optimizing steps con-
verge, we can obtain the optimal values of w;, and bj,.
For unseen instance x., let . be its augmented features,
then its class label in the j-th dimension can be determ-
ined based on the augmented instance z. = [x.;®+] as
follows:

Yuj = ¢, where & = arg max (wja, z+) + bja. (9)
1<a<K;

The complete procedure of the proposed SFAM ap-
proach is summarized in Algorithm 1. Firstly, SFAM
transforms the original MDC training set D into D by
augmenting each instance'’s feature space (Steps 1)-7)).
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After that, the predictive model is induced via a classific-
ation model with both ¢ and ¢ regularization (Steps
8)—25)), where the ¢ regularization and the bias term are
updated via gradient descent, and the ¢; regularization is
updated via an accelerated proximal gradient method. Fi-
nally, the class vector of unseen instance is predicted
based on the augmented features as well (Steps 26)—30)).
As shown in Algorithm 1, it is worth noting that SFAM
should be regarded as a general framework and can be
coupled with any kind of augmented-features, while this
paper only aims at investigating the feasibility of syner-
gizing different kinds of augmented features.

4 Experiments

This section conducts comparative studies, and the
obtained experimental results clearly validate the superi-
ority and effectiveness of SFAM. Firstly, Section 4.1 in-
troduces the experimental setup, including the employed
benchmark data sets, the evaluation metrics, and the
compared approaches. Then, Section 4.2 reports the de-
tailed experimental results with statistical tests. Finally,
Section 4.3 further investigates SFAM'’s algorithmic
design and parameter sensitivity.

4.1 Experimental setup

1) Benchmark data sets

In this paper, a total of ten benchmark data sets are
collected for comparative studies. Table 1 summarizes the
detailed characteristics of all benchmark data sets, includ-
ing number of examples (#Exam.), number of dimen-
sions (#Dim.), number of class labels per dimension
(#Labels/Dim.), and number of features (#Features).
Here, for the “#Labels/Dim.” column, if all dimensions
contain the same number of class labels, then only this
number is recorded. Otherwise, the number of class la-
bels per dimension is recorded in turn. For the “#Fea-
tures” column, n and x denote numeric and nominal fea-
tures, respectively.

Table 1 Characteristics of benchmark data sets

Data Set #Exam. #Dim. #Labels/Dim. #Features

Flarel 323 3 3,4,2 10x
Enb 768 2 2,4 6n
WQplants 1060 7 4 16n
WQanimals 1060 7 4 16n
WaterQuality 1060 14 4 16n

BeLaE 1930 5 5 1n, 44x
Voice 3136 2 4,2 19n
TIC2000 9822 3 6,4,2 83x

Adult 18419 4 7,7,5,2 51, 5x

Default 28 779 4 2,7,4,2 14n, 6x

2) Evaluation metrics

In this paper, a total of three widely-used evaluation
metrics are employed for performance evaluation, includ-
ing Hamming score (HS), exact match (EM), and sub-ex-
act match (SEM)R 13, 14, 20, 291 Specifically, given the test
set S={(xi,yi)|1<i<p}, for the MDC model
f:X—Y to be evaluated, let g; = f(x;) = [¥i1, Ji2,
,g}iq]T be the predicted class vector for x; while the
]T, then the
number of correctly predicted dimensions corresponds to
r® = 37 1 1y,;=g,;- The detailed definitions of the met-

rics are given as follows:

ground-truth one is y; = [yi1, Yi2, ", Yiq

1 p
SEMs(f) = , > 1
=1

For the three metrics, it is easy to know that the lar-
ger the values, the Dbetter the performance. Ten-fold
cross-validation is conducted over each benchmark data
set, where both the mean metric value as well as stand-
ard deviation are recorded for comparative studies.

3) Compared approaches

In this paper, a total of six state-of-the-art MDC ap-
proaches are employed as compared approaches, includ-
ing BR, CP, ECCI¢ ESCE], gMML?9, and SEEM[3;

i) BR solves the MDC problem via training a number
of multi-class classifiers independently, one per dimen-
sion. BR serves as the baseline when all possible class de-
pendencies are ignored.

ii) CP transforms the MDC problem into a single
multi-class classification problem by treating the whole
output space as a compound one. Each distinct class com-
bination in the training set is regarded as a new class. CP
serves as the baseline when all possible class dependen-
cies in the training set are considered, but overfitting
might occur because CP cannot return class combina-
tions not appearing in the training set.

iii) ECC solves the MDC problem via training a chain
of multi-class classifiers, one per dimension, where predic-
tions of preceding classifiers on the chain are used as ex-
tra features by the subsequent ones.

iv) ESC preprocesses the MDC problem via partition-
ing the class variables into super-class, where each super-
class is used as a compound class variable.

v) gMML works by learning a regression model for
each class label as well as a Mahalanobis metric which
can shorten the distance between the regression outputs
and ground-truth label vector.

vi) SEEM models the class dependency via a two-level
strategy, where the pairwise and high-order class depend-
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encies are modeled in the first and second levels, respect-
ively.

For BR, CP, ECC, ESC, and SEEM, the multi-class
base learner is implemented via LIBLINEARBY with the
parameter setting “L2-regularized logistic regression
(primal)” for a fair comparison. Following [2], for en-
semble approaches ECC and ESC, a total of 10 base
models are trained over 67% examples randomly selected
from the training set, and the predictive results are com-
bined via majority voting. For gMML and SEEM, the re-
commended parameters are used according to respective
literature.

In order to validate the effectiveness of the selective
feature augmentation strategy for the proposed SFAM
approach, a total of three simple kinds of augmented fea-
tures are generated. Two of them are generated using
standard and weighted kNN techniques, respectively, and
the remaining one is generated using maximum margin
techniques. Specifically, the two kinds of kKNN-based aug-
mented features are generated by KRAM~Y, To be more
specific, for each instance @, let Ni(x) = {ir | 1 <r <k}
be the set of indices for the k nearest neighbors of « iden-
tified in the training set D, we can define an indicating
vector v%, = [v%,(1),v%,(2), -+ ,v% (k)]T€ {0,1}* which is
defined as follows:

(1 <r <k, ir € Np(z)).

Yirj=Ca

Here, 1 <a < K;,1<j <q. yi, = [yi,1, -
ponds to the class vector of the neighboring MDC

Yirg] T COITes-

example x;, for x. Based on vj,, the following discrete
version of statistics 87 = [051,052, -+, jij]T can be

defined w.r.t. the j-th class space:
0o = (Ix, vja) (1< a<Kj)

where [ is a column vector of all ones with length k. By
concatenating all the ¢ counting statistics vectors, the
first kNN-augmented feature vector A¥yy; based on
standard kNN techniques for & can be obtained:

Alny = [67,85,---,67]". (10)

Moreover, let 8 =[1,1/v/2,---,1/Vk]T, a bias vector
C;B = [CfvafQ: e

,Cij}T is defined as follows:

C;‘va = <ﬁ’ ,U]a':a> - min(vfa) (Cmax - Cmin) + Cmin-

max(v¥,) — min(v¥,)

Here, (max and (min are two hyper-parameters ami set as
0.5 and 0 respectively, and max(vj,) = Zij;l (r),
min(vy,) = Zi:m B(r) where ro =k — 07, +1 and B(r)
denotes the r-th element of the weight vector (. Then,
the second kNN-augmented feature vector AN, based
on weighted kNN techniques for  can be obtained:
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Ajnne = AN + [CT,¢5, ,CﬂT- (11)

For the maximum margin-augmented features, SFAM
employs the real-valued predictions, which are returned
by the multi-class support vector machine to generate the
maximum margin-augmented features. Specifically,

SFAM  solves the
formulationl for the j-th dimension (1 < j < q):

following maximum  margin

K,
Ll 5 G
min > lpjalls +v x> &
Piti 2 i=1

st (Pjas, i) — (Pja, Ti) > € — &ji,
1<a<Kj;, 1<i<m

where z; = [zi; @i, Pj = [pj1, pj2, -
the  weight matrix to be  determined, and
& =1&1,62, - ,Em]T € R™! is the slack variable
vector. Suppose yi; :cﬁi, then ef; =1 if yi; # d (ie.,

7ijj] E RdXKj iS

a; # a) and 0 otherwise. Furthermore, v is a trade-off
parameter. Let P =[P, Ps,---
margin-augmented feature vector Agy,; for each instance

,P,l, the maximum
x can be defined as follows:

Afyy = Pz (12)

Then, the MDC training set D can be transformed in-
to:

D={(ziy:) | 1 <i<m}

where z; = [x;;%;], and T; = [AzﬁNﬁA:&m;A?@M]
denotes the augmented features of x;. Here, we reiterate
that we make use of standard kNN, weighted kNN, and
maximum margin techniques to generate the augmented
feature only for the purpose of simplicity. The
experiments in this paper mainly aims at validating the
effectiveness of the selective feature augmentation
strategy. In the future, it is interesting to further
investigate synergizing multiple kinds of augmented
features which are generated by making use of more
advanced techniques such as deep learning/2!].

4.2 Experimental results

Table 2 reports the detailed experimental results with
the performance rank shown in the parentheses.
Moreover, the Wilcoxon signed-ranks test[32 (at 0.05 sig-
nificance level) serves as the statistical tool to show
whether SFAM achieves better performance against the
compared approaches over the whole benchmark data
sets. The corresponding test results are summarized in
Table 3.

According to the reported experimental results, we
can make the following observations:

1) Among all the 30 cases (10 data setsx3 evaluation
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Table 2 Experimental results (mean+std. deviation) of each MDC approach. In addition, the performance rank on
each data set is also shown in the parentheses.

Data set

Hamming score

SFAM

BR

CP

ECC

ESC

gMML

SEEM

Flarel
Enb
WQplants
WQanimals
wQ
BeLaE
Voice
TIC2000
Adult

Default

0.925+0.035(2)
0.865+0.036(1)
0.666+0.016(1)
0.641+0.012(1)
0.653+0.012(1)
0.441+0.013(1)
0.94740.009(1)
0.94640.003(1)
0.72440.005(1)
(

0.671£0.003(3)

0.925+0.034(2)
0.774£0.023(3)
0.658+0.014(3)
0.631£0.013(3)
0.644+0.011(3)
0.427+0.017(2)
0.90040.012(3)
0.91540.006(3)
0.721+0.004(2)
)

0.669+0.003(5

0.923+0.033(7)
0.764+0.031(5)
0.649+0.016(7)
0.628+0.013(7)
0.625+0.011(7)
0.383+0.023(7)
0.898+0.011(4)
0.905+0.006(6)
0.709%0.004(6)

0.669+0.004(5)

0.926+0.034(1)
0.773£0.034(4)
0.654+0.016(5)
0.629+0.013(6)
0.642+0.012(5)
0.424+0.021(3)
0.89640.012(6)
0.91540.006(3)
0.72040.003(4)
(

0.670£0.003(4)

0.925+0.035(2)
0.754+0.029(6)
0.653+0.016(6)
0.631+0.014(3)
0.642+0.014(5)
0.420+0.022(4)
0.897+0.011(5)
0.91540.006(3)
0.710%0.005(5)
)

0.672%0.004(1

0.925+0.034(2)
0.742+0.027(7)
0.655+0.015(4)
0.630£0.015(5)
0.643+0.013(4)
0.417+0.020(5)
0.84240.009(7)
0.895+0.007(7)
0.705+0.004(7)
(

0.666+0.004(7)

0.925%0.032(2
0.777%0.031(2
0.661%0.023(2
0.635%0.015(2
0.646+0.014(2
0.416%0.020(6
0.910%0.011(2
0.91740.005(2

0.72140.004(2

—_ e D O DO DO DD

0.672+0.003(1

Data set

Exact match

SFAM

BR

CP

ECC

ESC

gMML

SEEM

Flarel
Enb
WQplants
‘WQanimals
wQ
BeLaE
Voice
TIC2000
Adult

Default

0.824+0.073(1)
0.729+0.071(1)
0.100£0.037(1)
0.058+0.013(5)
0.009+0.006(1)
0.028+0.011(1)
0.897+0.018(1)
0.846+0.009(1)
0.28440.010(5)
(

0.185+0.006(4)

0.821+0.075(4)
0.548+£0.045(3)
0.092+0.033(5
0.058+0.017(5
0.005+0.008(4
0.021+0.008(7
0.809+0.023(3
0.762+0.017(3

0.275+0.008(6

N NG N N N A 2

0.181+0.007(6

0.817+0.068(7)
0.529+0.063(5)
0.093+0.031(3)
0.065+0.018(1)
0.0000.000(7)
0.026+0.014(3)
0.807+0.021(4)
0.739+0.017(6)
0.31740.010(1)

0.19440.008(1)

0.824+0.073(1)
0.546+0.069(4)
0.092+0.034(5)
0.059+0.017(4)
0.005+0.008(4)
0.023+0.010(5)
0.802+0.022(6)
0.762+0.017(3)
0.28740.007(4)
(

0.185+0.006(4)

0.824%0.073(1)
0.508+0.057(6)
0.093+0.036(3)
0.064+0.019(2)
0.005+0.008(4)
0.027+0.009(2)
0.803+0.019(5)
0.762+0.016(3)
0.31240.011(2)
)

0.187+0.007(3

0.821£0.075(4)
0.483+0.053(7)
0.092+0.035(5)
0.062+0.023(3)
0.006+0.008(3)
0.022+0.009(6)
0.699+0.017(7)
0.706+0.018(7)
0.230+0.009(7)
(

0.17740.007(7)

0.81840.075(6)
0.554+0.063(2)
0.096+0.034(2)
0.049+0.022(7)
0.009+0.006(1)
0.026+0.011(3)
0.831%0.020(2)
0.770%0.015(2)
0.289+0.010(3)
)

0.190£0.009(2

Data set

Sub-exact match

SFAM

BR

CP

ECC

ESC

gMML

SEEM

Flarel
Enb
WQplants
‘WQanimals
wQ
BeLaE
Voice
TIC2000
Adult

Default

0.954+0.039(5)
1.000£0.000(1)
0.292+0.035(1)
0.246+0.034(1)

0.061+0.022(1)

(

(

(

(

0.137£0.024(1)

0.998+0.003(1)

0.993+0.002(1)

0.690+0.007(1)
(

0.604+0.007(1)

0.957+0.039(2)
1.000£0.000(1)
0.286+0.044(3)
0.229+0.030(5
0.047+0.019(6

0.134+0.025(2

0.983+0.003(4

)
)
)
0.991+0.006(2)
)
0.685+0.009(2)

)

0.601£0.006(4

0.954+0.039(5)
1.000£0.000(1)
0.285+0.052(5)
0.232+0.032(3)
0.034+0.017(7)
0.117£0.019(7)
0.989+0.006(5)
0.978+0.002(6)
0.637+0.007(7)

0.59440.008(6)

0.957+0.039(2)
1.00040.000(1)
0.285+0.053(5)
0.226+0.026(7)
0.048+0.022(4)
0.130+0.025(3)
0.989+0.008(5)
0.984+0.003(2)
0.679+0.008(4)

0.600%0.007(5)

0.954+0.039(5)
1.0000.000(1)
0.282+0.049(7)
0.2310.029(4)
0.048+0.019(4)
0.128+0.024(5)
0.991+0.007(2)
0.984+0.003(2)
0.644+0.007(6)
)

0.604£0.008(1

0.957+£0.039(2)
1.00040.000(1)
0.286+0.053(3)
0.227+0.033(6)
0.049+0.024(3)
0.130£0.020(3)
0.985+0.011(7)
0.978+0.003(6)
0.669+0.008(5)
(

0.593+£0.008(7)

0.960+0.033(1)
1.000£0.000(1)
0.28740.042(2
0.2414+0.029(2
0.0504+0.025(2
0.1254+0.022(6
0.99040.006(4
0.98240.003(5

0.68040.006(3

NN N NS N N

0.604+0.007(1

metrics), SFAM ranks first

in 24 cases, second in 1 case,

third in 1 case, fourth in 1 case, fifth in 3 cases, and nev-

er ranks last.

2) BR solves the MDC problem by dealing with each
dimension independently, where potential class dependen-

cies are fully ignored. Although SFAM also induces classi-

fication models for each dimension independently, the

class dependencies can be considered by the augmented

features2l. It is shown that SFAM achieves superior per-
formance against BR in terms of each metric, which re-
veals that considering class dependencies is important for
learning MDC models.

3) Both ECC and gMML explicitly consider the class
dependencies, where a chaining order over class spaces or
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Table 3 Wilcoxon signed-ranks test for SFAM against each
compared approach where the p-values at 0.05 significance level
are also shown in the brackets.

Evaluation metric

SFAM against

HS EM SEM
BR win[3.91e-03]  win[3.91e-03]  win[7.81e-03]
CP win[1.95e-03] tie[2.75e-01] win[7.81e-03]
ECC win[3.91e-03]  win[3.91e-02]  win[7.81e-03]
ESC win[7.81e-03] tie[2.62e-01] win[1.56e-02]
gMML win[3.91e-03]  win[9.77e-03]  win[7.81e-03]
SEEM win[9.77e-03] tie[7.42e-02] win[3.91e-02]

a Mahalanobis metric is employed to accomplish this
task. It is shown that SFAM also achieves superior per-
formance against ECC and gMML in terms of each met-
ric, which validates the superiority of SFAM's selective
feature augmentation strategy.

4) CP solves the MDC problem by dealing with all di-
mensions jointly via powerset transformation, which can
be viewed as optimizing exact match. ESC and SEEM
can be regarded as two improved versions of CP, where
class spaces are grouped into super-classes according to
conditional dependencies, or each pair of class spaces are
considered in the first level learning. It is shown that
SFAM still achieves comparable performance against CP,
ESC, and SEEM in terms of exact match and superior
performance against CP, ESC, and SEEM in terms of
Hamming score and sub-exact match.

4.3 Further analysis

1) Effectiveness of algorithmic design

In this paper, SFAM generates three kinds of augmen-
ted features according to (10)—(12), respectively. To fur-
ther investigate the effectiveness of SFAM's algorithmic
design, we also compare SFAM with its three degener-
ated versions which generate either kind of augmented
features. The one with the discrete version of kNN-aug-
mented features in (10) is denoted as DeV1, which is also
known as the KRAM, approach2V, the one with the con-
tinuous version of kNN-augmented features in (11) is de-
noted as DeV2, which is also known as the KRAM. ap-
proach20], and another one with maximum margin-aug-
mented features in (12) is denoted as DeV3. It is worth
noting that the baseline BR actually serves as another de-
generated version without any kind of augmented fea-
tures, whose experimental results have been reported and
analyzed in Section 4.2.

Detailed experimental results are shown in Table 4.
Table 5 summarizes the test results of the Wilcoxon
signed-ranks test (at 0.05 significance level). It is shown
that SFAM achieves superior performance against DeV1
in terms of Hamming score and exact match, and DeV3
in terms of all metrics. For DeV2, although SFAM
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achieves comparable performance against it in terms of
all metrics, as shown in Table 4, among the 19 cases
where the performance of SFAM is different from DeV2,
there are a total of 14 cases where the performance of
SFAM is better than DeV2. These results clearly valid-
ate that SFAM can identify the pertinent and useful fea-
tures from the three kinds of augmented features. Be-
sides, it is shown that both DeV1 and DeV2 achieve sim-
ilar results compared to SFAM. A possible reason is that
the two kinds of kNN-augmented features contain more
useful discriminative information than the maximum
margin-augmented features. Nonetheless, SFAM is able to
utilize all the available information in hand to achieve
better generalization performance.

Furthermore, Fig.3 shows the weight matrix (abso-
lute value) of the learned model w.r.t. the ¢; regulariza-
tion. Specifically, following the notations in Section 3,
Fig.3 shows the absolute value of the weight matrix
o= [511,~-- , 51}(1,“' ,§q1,--- ,quq]T for the data set
Voice, TIC2000, Adult, and Default. For each figure,
each row corresponds to the binary classification model of
one class label. The first third of the columns correspond
to the discrete version of kNN-augmented features in
(10), the middle third of the columns to the continuous
version of kNN-augmented features in (11), and the last
third of the columns to the maximum margin-augmented
features in (12). It is shown that, for each third of all
columns, the diagonal element usually takes the largest
value in its corresponding row. Note that each element in
all the three kinds of augmented features (i.e., each
column in Fig.3) corresponds to one class label, and each
binary classification model (i.e., each row in Fig.3) also
corresponds to one class label. In other words, the largest
value corresponds to the augmented feature w.r.t. its own
class label. It is also shown that each binary classifica-
tion model is only related to a part of the augmented fea-
tures, where the model weights w.r.t. the two kinds of
kNN-augmented features are usually larger than the mod-
el weights w.r.t. the maximum margin-augmented fea-
tures. This observation further supports the afore-men-
tioned conjecture that the two kinds of kKNN-augmented
features contain more useful discriminative information
than the maximum margin-augmented features. Besides,
we can also observe that the model weights w.r.t. the ¢;
regularization for some binary classification models are al-
most all zero, which means that not all binary classifica-
tion models rely on augmented features.

2) Parameter sensitivity analysis

The regularized classification model (1) has one trade-
off parameter, A. In this section, we investigate how the
performance of SFAM changes with different values of A.
Fig. 4 illustrates SFAM's performance fluctuation when A
ranges in {0.01, 0.1, 1, 10, 100} over data sets Flarel,
WQplants, WQanimals, and BeLaE. It is shown that the
performance of SFAM degenerates with either a small or
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Table 4 Experimental results (mean+std. deviation) of SFAM and its three degenerated versions. In addition, the performance rank on

each data set is also shown in the parentheses.

Data set

Hamming score

SFAM

DeV1

DeV2

DeV3

Flarel
Enb
WQpla.
WQani.
wQ
BeLaE
Voice
TIC2000
Adult

Default

0.925+0.035(1)
0.865+0.036(1)
0.666+0.016(1)
0.641+0.012(1)
0.653+0.012(1)
0.441+0.013(1)
0.94740.009(1)
0.94640.003(2)
0.72440.005(1)
(

0.671£0.003(1)

0.924+0.036(4)
0.852+0.036(2)
0.664+0.016(2)
0.641+0.015(1)
0.650+0.011(3)
0.436+0.008(2)
0.94540.010(3)
0.94640.003(2)
0.72440.004(1)
(

0.671£0.003(1)

0.925+0.035(1)
0.848+0.043(3)
0.664+0.016(2)
0.641+0.015(1)
0.652+0.010(2)
0.434+0.011(4)
0.94640.010(2)
0.94740.003(1)
0.72440.005(1)
(

0.671+£0.003(1)

0.925+0.035(1)
0.807+£0.029(4)
0.659+0.015(4)
0.632+0.013(4)
0.645+0.012(4)
0.435+0.019(3)
0.91340.010(4)
0.91440.006(4)
0.72140.004(4)
(

0.669+0.003(4)

Data set

Exact match

SFAM

DeV1

DeV2

DeV3

Flarel
Enb
WQpla.
WQani.
wQ
BeLaE
Voice
TIC2000
Adult

Default

0.824+0.073(1)
0.729+0.071(1)
0.100+0.037(1)
0.058+0.013(3)

0.009+0.006(1)

(

(

(

(

(

0.02840.011(1)

0.89740.018(1)

0.84640.009(3)

0.284+0.010(1)
(

0.185+0.006(2)

0.821+0.079(4)
0.705+0.072(2)
0.097+0.038(2)
0.058+0.011(3)

0.008+0.005(2)

(

(

(

(

(

0.02540.007(2)

0.89340.020(3)

0.84740.008(2)

0.28440.009(1)
(

0.185+0.006(2)

0.824+0.073(1)
0.696+0.086(3)
0.097£0.037(2)
0.061+0.016(1)

0.008+0.005(2)

(

(

(

(

(

0.02440.007(3)

0.89440.021(2)

0.84940.008(1)

0.284+0.010(1)
(

0.186+0.006(1)

0.824+0.073(1)
0.613£0.058(4)
0.095+0.034(4)
0.059+0.018(2)

0.005+0.008(4)

(

(

(

(

0.02440.008(3)

0.83440.018(4)

0.760%0.018(4)

0.27440.008(4)
(

0.181+0.006(4)

Data set

Sub-exact match

SFAM

DeV1

DeV2

DeV3

Flarel
Enb
WQpla.
WQani.
wQ
BeLaE
Voice
TIC2000
Adult

Default

0.954+0.039(1)
1.000£0.000(1)
0.292+0.035(3)
0.246+0.034(1)
0.061£0.022(1)
0.137£0.024(1)
0.998+0.003(1)
0.993+0.002(1)
0.690+0.007(1)
(

0.604+0.007(1)

0.954+0.039(1)
1.00040.000(1)
0.294+0.037(1)
0.244+0.031(2)
0.059+0.019(2)
0.133£0.021(4)
0.998+0.003(1)
0.992+0.002(3)
0.690+0.007(1)
(

0.604+0.007(1)

0.954+0.039(1)
1.00040.000(1)
0.294+0.036(1)
0.243+0.035(3)
0.058+0.020(3)
0.134+0.022(2)
0.998+0.003(1)
0.993+0.002(1)
0.689+0.007(3)
(

0.604£0.006(1)

0.954+0.039(1)
1.00040.000(1)
0.289+0.042(4)
0.231£0.032(4)
0.048+0.020(4)
0.134+0.023(2)
0.993+0.006(4)
0.983+0.003(4)
0.685+0.008(4)
(

0.60140.007(4)

large value of \ generally, and A =1 is usually a better

choice. Therefore, we set A to 1 in all the previous com-

parative studies.

5 Conclusions

Feature augmentation has been shown as an effective

strategy for solving the MDC problem. Existing works
only focus on generating better augmented features, while
it might be beneficial to exploit multiple kinds of aug-
mented features generated using different techniques.
This paper makes a first attempt to synergize the dis-

criminative information residing in multiple kinds of aug-
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Table 5 Wilcoxon signed-ranks test for SFAM against its three variants where the p-values at 0.05 significance level are also shown in
the brackets.

Evaluation metric

SFAM against

HS EM SEM
DeV1 win[3.13e-02] win[4.69e-02] tie[3.13e-01]
DeV?2 tie [1.25e-01] tie [3.52e-01] tie [1.88e-01]
DeV3 win[3.91e-03] win[7.81e-03] win[7.81e-03]
Data set: Voice Data set: TIC2000
' 1} S 3.0
2.5 ) |
3 2.5
2.0 4l
2.0
5 L
1.5
6 1.5
7 [
1.0
8 1.0
I 97
' 05 10 0.5
' 11
55 L — — 0 — —_— 0
2 4 6 g§ 10 12 14 16 18 5 10 15 20 25 30 35
(a) Voice (b) TIC2000
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4t i i | ' 0.30
il il
6 0.5 47 i T 1 0.25
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16 i 1 1
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(c) Adult

(d) Default

Fig. 3 The weight matrix (absolute value) of the learned model w.r.t. the ¢ regularization

mented features. Accordingly, a novel strategy named se-
lective feature augmentation is proposed, which assumes
that only part of the augmented features is pertinent and
useful for each dimension’s model induction. Comparat-
ive studies clearly validate the effectiveness of the pro-
posed strategy.

Current feature augmentation works simply concaten-
ate the original and augmented features, though the pro-
posed SFAM has treated them differently via different
regularization terms. In fact, the original and augmented
features (even different kinds of augmented features) can
be regarded as features from different views[33. In the fu-
ture, other ensemble strategies borrowing from multi-view
learning can also be used instead of merely using the con-

@ Springer

catenation operation. Besides, this paper only generates
three simple kinds of augmented features to validate the
proposed selective feature augmentation strategy, it is
also worth investigating generating more kinds of aug-
mented features.
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