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Abstract: Various few-shot image classification methods indicate that transferring knowledge from other sources can improve the ac-
curacy of the classification. However, most of these methods work with one single source or use only closely correlated knowledge
sources. In this paper, we propose a novel weakly correlated knowledge integration (WCKI) framework to address these issues. More
specifically, we propose a unified knowledge graph (UKG) to integrate knowledge transferred from different sources (i.e., visual domain
and textual domain). Moreover, a graph attention module is proposed to sample the subgraph from the UKG with low complexity. To
avoid explicitly aligning the visual features to the potentially biased and weakly correlated knowledge space, we sample a task-specific
subgraph from UKG and append it as latent variables. Our framework demonstrates significant improvements on multiple few-shot im-

age classification datasets.
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1 Introduction

Deep learning approaches have achieved impressive
performance on image classification tasks recently.
However, most of these approaches need huge data for
training. Furthermore, they are hard to be adopted to
perform classification on samples from unseen classes with
a limited number of examples. The challenges of learning
with limited labeled data can be categorized into the few-
shot learning problem. Due to the fact that annotated
data can be expensive to obtain, this challenge is gaining
more attention from the automation communityll4. In
this paper, we study the popular N-way K-shot image
classification task among the few-shot learning problems.
Many methods introduce external knowledge to address
the problem of insufficient samples, most of which adopt
textual domain knowledge from label descriptions/5-10l. In
particular, some works (e.g., CADA-VAEW Soravit's
methodl”], and ReViSEP!) align the features from the
visual feature domain to the textual feature domain.
Many of these methods intend to work on datasets (e.g.,
animal with annotation!!!! and CUB[I?]) that provide
highly correlated and structural textual descriptions.
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However, few such methods apply to datasets that only
provide weakly correlated descriptions, e.g., the Mini-Im-
ageNet and Tiered-ImageNet datasets. In these datasets,
the label descriptions are not strongly correlated with the
visual properties of the corresponding classes. It is shown
in Fig. 1.

Other methods like LSFSI and MNE!3] exploit other
information from different perspectives. For example,
MNE[!3] exploits information on the training set by keep-
ing an episodic memory and fetches K nearest neighbors
(KNN) to extend each sample in a task. LSFSE! uses a
hierarchical structure provided by the datasets. Here,
LSF'S still requires the dataset to provide an extra hier-
archical annotation of different classes, while MNE does
not utilize information in the label description. Integrat-
ing weakly correlated knowledge from different domain
sources is still an open problem in the literature.

In this paper, we propose a weakly correlated know-
ledge integration (WCKI) framework which can leverage
nonstructural and weakly correlated knowledge extracted
from different sources (i.e., visual domain and textual do-
main) to improve the few-shot classification performance.
An overview of our framework is shown in Fig. 2.

First, we propose a unified knowledge graph, which al-
lows the integration of knowledge transferred from differ-
ent domains. Distinctive to MNE[3 that models know-
ledge on the training set with a memory module with
hard-wired updating policy, the unified knowledge graph
allows end-to-end optimization. Also different from [14,
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Fig. 1 Differences in annotations of different datasets. Top: Sample from AWA2 dataset (Figure adapted from [11]) and CUB dataset
(Figure adapted from [12]), where the information in the description is structural and highly correlated to visual appearance. Bottom:
Samples from Mini-ImageNet with WordNet annotations, where the description is less correlated to the visual properties of the

corresponding object.
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Fig.2 Overview of our framework. In our framework,
knowledge extracted from different domains is modeled with the
united knowledge graph. For each specific task, we sample an
“optimal” subgraph. We then “merge” them with encoded sam-
ple features and use them as latent variables for the classifier to
improve accuracy.

15], our method can integrate knowledge transferred from
multiple domains. In this work, we adopt two commonly
used knowledge domains: textual domain knowledgell6]
and visual domain knowledge collected from historical
training episodes[!3 14l. Since the training set mainly con-
sists of images from the visual domain and the model is
trained to align the visual features of samples from the
same classes, such knowledge is considered as visual do-
main knowledge.

Second, our model utilizes a differential graph atten-
tion module to sample more “relevant” knowledge proved
to be able to improve both accuracy and efficiency. This
module helps to reduce the computational complexity and
improve the task-relevancy of the transferred knowledge.
Different from the rule-based KNN approach in MNE,
our graph attention module is differentiable and thus
trainable, leading to a fully end-to-end trainable frame-

work.

Finally, we take the transferred knowledge as latent
variables in our framework like MNE[', ARML[2 and
[17] to avoid aligning explicitly sample features and
weakly correlated transferred knowledge.

The contributions of this work are summarized as fol-
lows:

1) Proposing a weakly correlated knowledge integra-
tion framework which can transfer knowledge from mul-
tiple potentially biased sources to improve few-shot im-
age classification task.

2) Proposing a unified knowledge graph to represent
and index transferred knowledge adaptively for each spe-
cific task.

3) Proposing a graph attention module for adaptively
sampling transferred knowledge for each specific task to
reduce computing complexity and improve the task-relev-
ancy of knowledge.

The source code of this paper is released at:

https://www.dropbox.com/s/2ffd1dh6xyf3xzp/wcki-
eval.tar.gz?d1=0.

2 Related works

The N-way K-shot problem is a commonly re-
searched problem in the few-show learning field. In this
problem, the model is supposed to produce label predic-
tions for each sample as output. More specifically, S con-
tains Nx K labeled samples from N classes (K per class).
Q@ contains Nx K, samples drawn from the training set
and K, samples for each class in S. K, indicates the num-
ber of queries sampled for testing for each class. During
the evaluation stage, a number of evaluation tasks are
sampled from the testing set, and the average accuracy is
used to measure the model performance. Unlike typical
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deep learning tasks, each contains Nx K support samples
that can be used to fine-tune the model for the corres-
ponding task. An extra training set is provided to train
the model used in the evaluation process. Note that the
label set of the extra training set is always disjoint to the
label set of the testing set. In other words, the testing set
only contains samples of unseen labels in the training set.

Graph-based methods such as [18—20] are widely ap-
plied in few-shot learning for better modeling inter-class
relations to relieve the data insufficient problem. These
methods put support samples and query samples into one
graph and inference the relation between query samples
and support samples by processing the graph with a
graph neural network. More specifically, TPN[20 propag-
ates labels of each support sample to each query sample
with a graph network. FGNNU8] and EGNNI model the
input samples as graph nodes and the pairwise similarit-
ies by edges. The graph is updated by a graph network,
and classification results are derived according to query-
to-support edges. In this work, we adopt the second ap-
proach following EGNNI9,

However, these approaches still face the challenge of
insufficient information on novel classes. Different meth-
ods are proposed to transfer and utilize external know-
ledge to provide more information on unseen classes.
Methods like [21] use Siamese networks that transfer
knowledge from another potentially biased data source.
Alternatively, methods like [8, 16] exploit semantic in-
formation of class labels. However, most of such methods
explicitly align the semantic embedding of the text de-
scription of the label with visual features. The perform-
ance of these approaches highly depends on the quality of
label descriptionl® and the language model used to gener-
ate semantic embedding. To address the problem,
AM3[5]) learns a “convex combination” that acts as a
gate to filter out potentially biased textual domain know-
ledge.
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Other methods, on the other hand, like MNE[3],
Castlel?2l, ARMLM,
ledge extracted from the extra training set instead of the

and [17] propose adopting know-

textual domain to enhance the classification performance.
These methods use transferred knowledge as latent vari-
ables instead of aligning it with visual features of input
samples, which provide some extend of robustness against
bias and noise. This latent variable approach also re-
quires no explicit correspondence between transferred
knowledge data and novel classes. However, they utilize
only one knowledge source and do not exploit the inform-
ation of the labels. In this work, we propose a method
combining two commonly used sources and adaptively
sample the most relevant knowledge for each specific
task.

3 Main method

3.1 Framework

In this paper, we propose a weakly correlated know-
ledge integration framework, as shown in Fig.3. The pro-
posed framework aims to alleviate the sample insuffi-
ciency by utilizing knowledge from weakly correlated
sources. In the framework, the unified knowledge graph
Gy, is proposed to adaptively integrate knowledge from
different sources. In order to avoid introducing bias into
the transferred knowledge, the transferred knowledge is
used as latent variables instead of alignment referencesl!6l.
Further, a graph attention module is proposed, which ad-
aptively samples a task-specific subgraph from Gj to im-
prove the relevance of the latent variable. More specific-
ally, for each few-shot classification task, the encoder first
encodes each image sample into a feature vector with a
standard four-layer CNNI9 23, 24 Next, the observation
graph Geps is constructed based on the embedding of each
sample. The graph attention module then samples a task-
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Fig. 3 Pipeline of our method. Our framework integrates knowledge extracted from weakly correlated domains with a unified
knowledge graph Gy and adaptively uses a more relevant “subgrap” G, as latent variables according to one specific classification task.
More specifically, the input data is first encoded with a CNN encoder. Then, a latent subgraph G, is sampled from G}, for each specific
task for better task relevancy. Giq is merged into the observation graph Gops, which is constructed according to the encoded labels and

features. The combined graph G, is updated with a multi-layer GNN.
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relevant latent subgraph Gj,: from the unified knowledge
graph Gy according to the labels and embeddings from
the samples of the supporting set. We then merge Giu
and the observation graph G,s into the initial prediction
GO%;.. Like EGNNII GO, is iteratively updated with a
multi-layer edge-feature GNN. The prediction result is
obtained according to the updated edges of GZp. Like
existing methods [18, 19], we model each sample as graph
nodes. The similarities between samples are modeled as
the edges of the graph. Query samples are classified ac-
cording to their overall similarity to each class, which is
computed by averaging the similarity of all support
samples in the class. Key notations in this section and al-
gorithm block diagrams of our framework are summar-
ized in Appendix A.

3.2 Unified knowledge graph

The unified knowledge graph is proposed to integrate
and model the knowledge transferred from potentially
biased sources. In this paper, we adopt and integrate the
knowledge extracted from the training set!3l and the
glossary of all nouns in WordNet[l6l. These two domains
form two disjoint subgraphs of Gi. To keep it concise, we
denote these two sources as the visual domain knowledge
and textual domain knowledge, respectively.

First, for the visual domain knowledge, slightly differ-
ent from the memory module in MNE!3], we use a train-
able graph of N,;s nodes shared among all training tasks,
avoiding the non-differentiable procedure of updating the
memory entries. Since the graph is shared and optimized
for all training tasks, it can be interpreted as knowledge
that provides information for classification tasks on train-
ing classes. As the training tasks mainly consist of visual
information, this part is considered visual domain know-
ledge.

Second, we use another graph of N,; nodes to model
the textual domain knowledge extracted from WordNet
glossaries. In more detail, we first use the GPT2 model to
encode the label description into word vectors, which are
then averaged into the corresponding label embedding.

27

Since the semantic embedding is extracted with a model
trained on more data, we use the principal component de-
composition (PCA) approach to project the semantic em-
bedding to node features. Finally, we adopt a k-means
clustering algorithm to reduce the number of nodes,
where each center corresponds to a node in the graph.
Since the textual domain model is trained on a much lar-
ger dataset, corresponding node features are locked dur-
ing the training process.

Formally, the unified knowledge graph Gi (Fk, K,
Ey) is a graph with Ni = Nyis + Nypip nodes. Each node ¢
in Gy, is represented with the feature Fi(i) € R/ and in-
dexed by key Ki(i) € RC*. C;and Cj are channel num-
bers of node features Fj and keys Kj, respectively. The
keys K} for all nodes are random initialized trainable
tensors. The edges Ej are initialized according to the co-
sine distance between Fj(¢) and Fi(j).

3.3 Graph attention module

The graph attention module shown in Fig.4 is pro-
posed to improve the relevance of the transferred know-
ledge by sampling a more relevant part for each specific
task. This process also reduces the computational com-
plexity by reducing the total number of nodes in the
graph. More specifically, the module first encodes sup-
port samples and labels into task representation with the
projector module, then samples a task-specific latent sub-
graph Giq from Gy according to the task representation.
Then, the graph sampler samples Gj,: from Gy according
to the queries.

The projector module first summarizes textual fea-
tures from support sample labels L; and support image
embedding S; into the task feature 7;. It then decodes T;
into queries Q: for nodes in Gjqt, where each query Qq()
corresponds to a sampled node in Gigt, i.e., @Q(2) would
be the query for the i-th node in Gju. To generate task
feature T}, we first use the visual feature encoder Ts and
the textual encoder T} to encode the corresponding label
information. Then, we sum these two types of extracted
information into a feature T;, which represents the fea-
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Fig. 4

Illustration of graph attention module. We first build the representation for each task by encoding feature from support samples

and their labels into the task feature T; using encoder T and T}, respectively. T; is then decoded into queries Q; for nodes in the subgraph.
Then, a task-specific latent subgraph G, is obtained by sampling nodes and corresponding edges from the unified knowledge graph

according to Q.
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ture of a specific task:

T, = AT (St) + NTh (L) - (1)

The function Ts encodes the visual features of all sup-
port samples in the task. Here, function 7T} first projects
the feature vector of each sample from the support set in-
to a latent space with a multi-layer perception (MLP),
then averages all projected features into the visual “sum-
mary” of the task. Function T} encodes the label informa-
tion of tasks: We first look up the corresponding nodes of
the labels and then project the associated features into
the summary space with another MLP and average them
as the textual “summary”.

To sample a task-specific subgraph from Gj, we use
Nig: different decoders to decode them into Nj,; queries,
one corresponding to a node in the latent subgraph Gig:.
The G4 is sampled by applying attention on Gy with Q)
as the query, K}, as key, and Fy, E} as values, i.e.,

Qt (Z) = Deci (Tt)
A= CQthT
oA
Ny
S e
J
Fiot = My Fy,
Eiar = M6 (Ey) M 2)

Mt(ivj) =

where ¢ is a constant factor that controls the tendency
towards one-hot, and J is the sigmoid function that
restricts the range of elements in Ej.

We merge the latent subgraph Gi,: and the observed
graph Gops into the initial prediction graph GOy via the
following process. We first concentrate on the node fea-
tures of Gops and Gy, formally:

FI?TE = Fops || Frat (3)

where || is the concatenation operator. For edges, we keep
the edges between Gops and Gig, and fill the missing
edges with 0.5, i.e.,

0 Eos 051
me-( o W) @
where I is the unit matrix, and all elements are ones. 0.5
is the wvalue that indicates unknown similarity in
EGNN[9L
In our graph attention module, Giq¢ will be a “relaxed
subgraph” of Gj and mathematically one subgraph of Gy

when the following three conditions are met. First, M; is
a binary matrix, i.e.,

M;(i,j) € {0,1}. (5)

Second, a node in the latent subgraph should consist
of one and only one node in the original graph,
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Z M(i,5) =1 (6)

where N, is the size of the unified knowledge graph Gj.
The third condition is that the united knowledge
graph nodes should be either sampled only once or not
sampled. When (5) holds, this condition reduces to that
nodes in Gy, shall not be sampled more than once, i.e.,

Niat

Z Mq(i,5) < 1. (7)

To make the subgraph sampling process differential,
our method (2) relaxes the above conditions, making our
“subgraph” a generalized case of the subgraph in terms of
discrete math. Moreover, since we use softmax activation
on the rows of M, condition two, i.e., (6), always holds.

Condition one, i.e., (5), will not be strictly met, but
can be considered approximately met because the rows of
M; will tend to be one-hot. This tendency is due to the
gradient property of the softmax function o. To simplify
0 (@)(0) 4 07 (@) (t£0)
Oz (1) Oz (1)

the representation, we discuss

separately, i.e.,

N
o () Z () _ g22(9)
J

00 (2) (i) _ _
9z (i) iem) iexm
o(z) (@) x (1 —o(z)(i)).
9o (z) (t # 1) _ e®Mer(®)
x (i)

ﬁ: 16 ﬁ: 16 B
—o(z) () (z) (). (®)

The gradient of the softmax function is close to 0
when its output is close to one-hot, i.e., max(o(z)(¢)) is
close to 1, and the other terms are consequently close to 0.

For condition three, we use a regularization term to
reduce the pairwise-node similarity of the subgraph to en-
force a close approximation. Having repeated nodes in
Giat is the only case where condition three is violated,
while conditions one and two are satisfied. To avoid this
situation, we add a regularization term to enlarge the
pairwise distance among node features in Gjq. Thus, we
consider Giq as a generalized subgraph of G} by relaxing
conditions one and three slightly.

3.4 Optimization

In order to improve the efficiency of the model, we
add a regularization term L, in the module. Lgy, is ap-
plied to increase the diversity of nodes in Gi. We en-
force the diversity by increasing the pairwise cosine dis-
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tance of node features, i.e.,

Niat Niat

1 (Flat(i))TFlat(j) (9)

Lsu = N AT - R .
"7 NiaeNiar 4 & [Frae(O)] X [Fran(5) +

This regularization term also helps to enforce condi-
tion three of (6) for the latent subgraph Giu to be close
to a strict subgraph of Gi. This is because repetitive
nodes will lead to larger losses due to the fact that
identical vectors always have the largest cosine similarity,

ie.,
cos(Fy, Fy) < cos(Fyu, F,) = 1. (10)

We adopt the edge classification loss Ly in EGNNIL
for classification and apply it to each layer of the graph
neuro network, i.e.,

T
Lcls :ZwLBCE(E;?&E*) (11)

i=1

Note that edges connected to latent nodes do not con-
tribute to the classification loss, and w is set to [0.5, 0.5,
1] following [19].

We also adopt a semantic branch25 to further im-
prove the performance. Slightly different from the origin-
al work, our implementation performs classification on all
labels in a batch instead of the whole training set to re-
duce computation. The module takes the label and visual
features as input and produces a classification loss Lsem.

The final objective function is the weighted sum of the
classification loss Ls, the semantic branch loss Lsem, and
the subgraph loss Lsyu, i.e.,

L = Leis + Asuv Lsub + AsemLsem.- (12)

In our experiment, Asyp and Asen are empirically set to
0.1 as these two are regularization terms, hence less im-
portant than L.

4 Experiments

4.1 Datasets

In this section, we use three datasets to validate the
proposed framework. More specifically, we use Mini-Im-
ageNet and Tiered-ImageNet, which provide less visual-
correlated label annotation. Mini-ImageNet is a subset of
ImageNet with 100 classes, consisting of 600 images per
class. The dataset is split into the training set (64
classes), the validation set (16 classes), and the testing
set (20 classes)26l. Tiered-ImageNet is also a subset of Im-
ageNet with 608 classes, and each class contains 600 im-
ages. Different from Mini-ImageNet, the Tiered-ImageN-
et dataset has structural information in label annotation.

The classes are categorized into 34 more general classes.
The splitting of this dataset is also based on the general
classes. The training set has 20 classes, the validation set
has 6 general classes, and the testing set has 8 classes.
We also use the CUB-2011 dataset that provides detailed
annotations closely related to visual traits. CUB-2011
contains images of 200 different bird species. The dataset
is split into the training set (100 classes), the validation
set (50 classes), and the testing set (50 classes)[2.

4.2 Implementation details

Our implementation is based on the EGNNI[Y code
base, which uses the Pytorch framework. For comparison
with the latest methods, we also trained a heavier model
on Mini-ImageNet using the pre-trained ResNetl2 back-
bone from FEATI[27. We locked the weight of the pre-
trained ResNet12 backbone to prevent overfitting.

We adopt two popular protocols used in the evalu-
ation. For the first protocol, 600 random tasks are
sampled from the testing set, where each task contains 15
query samples per class. We also adopt the one query
protocoll?8], where only one query image is used for each
class in a task. In this protocol, we sample 50 000 queries
in 10 000 tasks to evaluate the performance of our model.
For both protocols, the average accuracy of all evalu-
ation tasks is used as a performance metric.

During training, we train our framework for 100 000
iterations on the training set for all three datasets. We
use the Adam solver(??, and the learning rate is initially
set to 1073. The learning rate is set to decay by a half for
every 15000 iterations for Mini-ImageNet and 30 000 for
Tiered-ImageNet. We validate the model on the valida-
tion set for every 5000 iterations and select the best
model for testing. The batch size is set to 18 due to the
limit of hardware resources. For the CUB dataset, we ad-
opt the setup of Tiered-ImageNet with different batch
sizes according to available hardware resources.

4.3 Ablation study

For simplicity, we use the second training and evalu-
ation protocol (using one query per class) in this section.
We perform ablation studies to each module baseline
method. The experimental results of the ablation study
on the Mini-ImageNet dataset are shown in Table 1. In
Table 1, GAM denotes the graph attention module. “Tex-
tual” indicates knowledge transferred from the label de-
scription, and “Visual” indicates knowledge transferred
from the training set. We use base to indicate the
baseline method, and the other experiments are named
with three characters following the specified rule: The
first character indicates knowledge domains, the second
indicates different graph sampler configs, and the third
indicates whether the semantic branch is used.

The baseline method, indicated with gray background
in Fig.3, made a few implementation changes to make it
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Table 1 Ablation study of the proposed framework

Accurac Standard
Experiment Visual Textual GAM Lsem (%) Y deviation
° (%)
Base 60.15 8.32
A00 y y 61.02 8.29
VVo N Visual- 61.01 8.39
only
AVO N N Visual- 61.30 8.44
only
AAO N y  Visualt 61.64 8.66
Textual
VAD N Visualt 62.64 8.28
Textual
AAD N y o Visualb oy 62.93  8.62
Textual

compatible with our modules. The open-source EGNN
code produces the same results as our baseline when
trained with the same dataloader! and hyper-parameters.

Comparing base and AO00, we observe that using
transferred knowledge as latent variables can benefit clas-
sification performance. Experiments of VV0 VS. AV0,
VAD VS. AAD validate the effectiveness of the textual
domain in the unified knowledge graph. Comparing A00
and AVO0 shows the effectiveness of the graph attention
module, comparing AV0O and AAQ shows the effective-
ness of introducing textual information into the graph at-
tention module.

To sum up, each proposed module effectively in-
creases the classification accuracy, and the whole method
shows a significant improvement against the baseline
method by improving the accuracy on most classes. The
improvement can be seen in the intuitive comparison of
tasks sampled from the testing set in Fig.5. Statistical
changes for each class are shown in Fig.6. This result in-
dicates that our model is generally effective for most
classes. We visualize the difference between our method

Fig.5 Prediction results on tasks sampled from the training
set. The top row shows the results from the baseline, while the
bottom row shows the results of our method on the same tasks.
In each task, the predicted similarity between samples (ranging
from 0 to 1) is shown in color intensity, where zero similarity
leads to a black square. Here, blue means “correct” response, and
red indicates “wrong” responses. Pictures on the top row are
query samples, while those on the left-most column are support
labels.

L https://github.com/khy0809/fewshot-egnn/issues
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and the baseline method. To break down the improve-
ment shown in Fig.6 into more details, we then visualize
the delta between the confusion matrices of the baseline
method and our method in Fig.7. The delta suggests that
the improvement comes primarily from the misclassifica-
tion among different clusters. The evidence is that most
non-diagonal squares (indicating misclassification across
clusters) are dominated by purple cells. This observation
suggests that our method is able to utilize textual do-
main knowledge to improve discrimination between most
“general” classes (k-means centers).

Another observation is that our model slightly in-
creased the misclassification between cluster 4 (dogs) and
cluster 5 (mostly large mammals). This is likely due to
that these two clusters are semantically very close to each
other. Note that the only two classes with a performance
drop come from these two clusters. This shows that the

1 2 [3] 4 5 6 7[8] 9

Fig.6 Change of classification accuracy for each class on the
testing set. Green indicates our methods show accuracy
improvement against the base method, and purple indicates
dropping accuracy. Color intensity indicates the extent of
accuracy change. The numbers in the top ribbon indicate the
cluster ID in the k-means algorithm.

1 | 2 ]3] 5 [718]
(B zﬁm

I** S |

Fig. 7 Visualization of the differences of confusion matrices of
the baseline and our method. Ground truth labels are shown in
the top row, and prediction labels are shown in the left column.
Grid (4,j) indicates the number of cases where class 7 is
recognized as class j. Green indicates the case with an increasing
occurrence in our method, and purple indicates a decreasing case
number. Color intensity indicates the absolute value of the
number of differences. Labels from different clusters are split by
yellow lines. Note that some of the diagonal elements are clipped
for better visibility. The unclipped diagonal cells are shown in
Fig. 5.
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“noise” in the textual domain may not be completely
avoided, which is also a future topic for our research. It is
also noticed that a large margin between validation and
testing sets can be identified, mostly because the testing
set has a more skewed data distribution in both textual
and visual domains. We will also leave this as a future
topic.

4.4 Few-shot classification

We perform experiments mainly on two different data-
sets: Mini-ImageNet and Tiered-ImageNet. Following the
conventional wayl!!3 24, we train and evaluate our meth-
od with both 5-way 1-shot setup and 5-way 5-shot setup.
We also train our model both with and without the trans-
duction, which allows us to offer a fair comparison to
popular methods. Transduction20] indicates that the rela-
tions among testing samples are exploited. Methods
known to be using such tricks will be marked with
“BN)” or “(T)”, where “(BN)” means the model uses
the task statisticl9 during evaluation, and “(T)” means
more sophisticated approaches are applied. Methods in-
volving transduction can be sensitive to the total number
of queries in each task. Therefore, we also list this factor
in corresponding tables. We also observe that some works
may have different performance with different reimple-
mentation and training/evaluation policies. In such cases,
we will use the results from the original paper if not spe-
cified.

On the Mini-ImageNet dataset, our method shows
competitive performance with and without transduction.
Our model also shows competitive performance with
many popular few-shot classification methods. The res-
ults are shown in Table 2, as the evaluation protocol and
training methods may vary between different works, we
give more details on the comparisons of results. More spe-
cifically, we list the number of queries in each task, the
backbone used, and whether or not the validation set is
used for each method. Note that the number of queries
per class only affects the transduction setup. The per-
formance of our method produces better performance
than many state-of-the-art methods in transduction set-
tings. Our method also produces promising results on
non-transduction settings in both 5-way 1-shot and 5-way
5-shot problems. Particularly, our method generally leads
to an improvement of 2%—3% against the EGNNI[9 on
accuracy in all setups.

On the Tiered-ImageNet dataset, we perform experi-
ments using the transductive setups (QPC = 1 and QPC =
15), and the results are listed in Table 3. Our method
also demonstrates promising performance compared to
many popular methods. In more detail, our method en-
joys better performance with the 1-shot setup with both
protocols, i.e., around 4% higher than the TPN[20. On the
5-shot setup, our method’s accuracy is slightly lower than
the TPN method20] by 0.3%. The results indicate that
our framework can effectively utilize the transferred

knowledge.

We also conduct experiments on the CUB-2011 data-
set to validate the generalization ability on fine-grained
classification tasks. Our model demonstrates competitive
performance (presented in Table 4) with a simple Conv4
backbone. Our method outperforms Antreas’s method[42]
by 10% in terms of accuracy on 1-shot tasks. In 5-shot
tasks, our method again achieved a 6% improvement in
accuracy. This is possibly due to the better correlation
between the annotation and the visual features. These ex-
periments demonstrate the effectiveness of our proposed
framework in few-shot image classification tasks on differ-
ent datasets and with different protocols. Our framework
obtains reasonably good performance with the transduct-
ive evaluation and attains promising performance without
transduction where information among queries can be ex-
ploited. These results validate that the proposed frame-
work can utilize weakly correlated knowledge from differ-
ent sources (e.g., the visual domain and the textual do-
main) to reach promising and robust performance on dif-
ferent datasets.

5 Discussions

5.1 Computational complexity

Our proposed framework is not significantly larger
than the baseline EGNN model in terms of computation-
al complexity. The extra cost is brought by two parts:
the size incremental of graph Gj.. caused by the auxili-
ary latent subgraph and the newly introduced graph at-
tention module. Intuitively, the second part is not much
large since the latent subgraph is generally small, as we
control the size of the latent subgraph Gj,: with the pro-
posed graph attention module to avoid huge graphs for
GNN. As for the graph attention module, the projector is
a network much smaller than the encoder, and the graph
sampler also has low complexity.

In more details, the addition computation complexity
is derived as following: For the additional cost caused by
Gpre, the complexity is changed from

O (| Gobs|*Cy) (13)

to
O ((|Gobs| + |Grat| )*Cy) (14)

and the delta (the difference of (14) and (13)) is

O((|G1at] )*Cr) + 20 (|G1at| % |Gops| Cy) =
O (|Ghat] X |Gobs| C}). (15)

Because |Giq is always smaller than |Geps| in this pa-
per, the extra complexity in this module is just a con-
stant factor less than 3.

For the graph attention module, the projector is much
smaller compared to the CNN encoder. Therefore, we fo-
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Table 2 Comparative results on Mini-ImageNet. The method * indicates results from code and model released by the authors of
EGNNU[9L,

Accuracy (%)

Method Venue Backbone Train with val Query per class
N=5, K=1 N=5, K=5

Matching network![30] NIPS 16 Conv4 Yes / 46.6 60.0
Reptilel28] CoRR 18 Conv4 - / 47.07 62.74
IMP31] ICML 19 Conv4 No / 49.2 64.7
Prototypical net32 NIPS 17 Conv4 Yes / 49.42 68.20
ARML[] ICLR 20 Conv4 No / 49.2 64.3
Relation network!33] CVPR 18 InceptionV2 No / 50.44 65.32
GNNLs] ICLR 18 Conv4 No / 50.33 66.41
R2D2034] ICLR 19 Conv4 No / 51.8 68.4
SAMLI35] ICCV 19 Conv4 No / 52.22 66.49
GCRI39] ICCV 19 Conv4 No / 54.61 71.21
PARNEB7] ICCV 19 Conv4 No / 55.22 71.55
EGNNL[9] CVPR 19 Conv4 No / 52.86 66.85
STANet-S[27] AAAI19 Conv4 No / 53.11 67.16
Ours - Conv4 No / 55.66 70.28
SNAILPS] ICLR18 Res12 No / 55.71 68.88
AdaResNet /39 ICML18 Res12 No / 56.88 71.94
Ours - Res12 No / 57.01 71.97
Reptile (T)[28] CoRR18 Conv4 No 1 49.97 65.99
EGNN(T)*[9l CVPR19 Conv4 No 1 59.18 76.37
Ours (T) - Conv4 No 1 62.93 79.51
Ours (T) - Res12 No 1 65.76 82.01
TEWAM (T)[40l ICCV19 Conv4 No 15 60.07 63.11
MAML (BN)24] ACL19 Conv4 No 15 48.70 63.11
Relation net (T)[33] CVPR18 Conv4 No 15 50.44 65.32
TPN (T)[20 ICLR19 Conv4 No 15 53.75 69.43
MNE (T)[13] CoRR19 Conv4 No 15 59.92 71.76
Ours (T) - Conv4 No 15 60.65 72.84
Ours (T) - Res12 No 15 61.44 72.21

cus on analyzing the graph sampler submodule. Comput-
ing M; takes the complexity:

O (| Grat |x| Gk |C) (16)

where C}, is the dimension of keys in G. Sampling nodes
takes

O (| Grat [X| Gk |Cy) (17)

and sampling edges takes

O (| Grar x| Gi[*). (18)

In this work, we have a small Gj, due to the concern of
training variance and the magnitude of the gradient in
the attention module. Hence, this part is also consider-
ably light-weighted. However, the only quadratic term of

@ Springer

|Gyl in our entire framework, which appears in (18), does
not include the feature dimension, Cy. This property of-
fers our framework further potential to work with a large
knowledge base () without losing the relationship FEj
while maintaining a reasonable speed.

5.2 Textual domain

Quantity results (Table 1) have shown that the textu-
al domain provides useful information. However, intuit-
ively the description is not always highly correlated to
their visual traits, which can be observed in Fig. 1. This
can also be supported by the visualization of the result of
the k-means clustering results shown in Fig. 8. We can
see that classes may or may not have intuitive common
visual properties when the description vectors are se-
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Table 3 Performances on Tiered-ImageNet with Conv4
backbone. QPC stands for query per class. Results marked
with * are derived from TPNI[20],

Accuracy (%)

Method QPC
N=5,K=1  N=5 K=5
MAMLI24] No 51.67 70.30
Reptilel28] / 48.97 66.47
Prototypical net[32+ / 48.58 69.57
MAML (BN)[24] 15 53.23 70.83
Relation net (BN)[33)+ 15 54.48 71.31
TPN (T)[20 15 57.53 72.58
Ours (T) 15 61.82 72.28
Reptile (T) 28 1 52.36 71.03
EGNN (T)[19] 1 - 80.15
Ours (T) 1 61.45 80.55

Table 4 Performances on CUB200 with Conv4 backbone. QPC
stands for query per class.

Accuracy (%)

Method QPC
N=5, K=1 N=5, K=5

Chen et al.l41] / 47.12 64.16

ARML (T)4] / 52.91 -
Matching networkI30] / 61.16 72.80
Chen et al. ++[41] / 60.52 79.34
MAML (BN)[24] 15 55.92 72.09
Self-Critique (T)42] - 65.56 77.09
Ours 15 75.44 83.67
Ours 1 80.59 92.30

mantically close, i.e., the samples in cluster 5 are mostly
dogs, while cluster 2 contains a lot of things that are
visually different. We can also observe that not all

u?’ d

clusters are interpretable, indicating that the description
and the GPT2 encoder may introduce bias. Due to these
two reasons, we decided to use the transferred knowledge
as latent variables rather than applying direct distance
constraints.

6 Conclusions

To address the insufficient data problem in few-shot
image classification tasks, we propose a weakly correl-
ated knowledge integration framework. In the proposed
framework, we use a unified knowledge graph to integ-
rate knowledge from different domains into one feature
space where relations among different domains are
modeled with corresponding edges. The proposed atten-
tion-based graph attention module adaptively improves
both the effectiveness and efficiency of our framework.
The ablation studies show that each module is effective
with few-shot learning tasks. Our framework also demon-
strates promising results on different datasets.
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Fig. A.1 Algorithm block diagram of our framework

Table A.1 Notation table

Notation Defined in Brief information
Gy, S3 (1+4) The proposed unified knowledge graph is used to model transferred knowledge.
Globs S3 (2+4) Graph constructed with visual features S;. Most conventional GNN-based methods use this as Gpre.
GOre S3 (2-) Combination of Git and Gops. This graph is the input of GNN.
Gipre S3 (2+) Ghpre after the i-th GNN layer.
N S3.1(1-) Number of nodes in Gy.
Ej. S3.1(1+) The edges in Gj.
K, S3.1 (14) Keys of nodes in Gj. Used as keys in the proposed graph attention module.
Fy S3.1 (14) Node features in Gj. Represent entries in transferred knowledge, e.g., cluster center of word vectors.

The latent subgraph, which is an optimal subgraph of G\, with regard to task ¢. Used as a latent variable in

Glat §3.1(2) the framework.
St S3.2(1-) Embedding of samples in support set for task ¢, i.e., CNN features of N X K support set images in the task.
Ly S3.2(1-) Embedding of N labels in task ¢, i.e., GPT features of N corresponding label descriptions.
T, S3.2 (1-) Visual feature encoder, encodes S; to visual representation of the task t.
T S3.2(1-) Textual feature encoder, encodes L; to textual representation of the task ¢.
T S3.2 (1+) “Summary” of task ¢, i.e., a combination of outputs from T() and T().

Niat S3.2 (14) Size of the latent subgraph Gig.

Dec; S3.2 (1+4) The i-th decoder mapping task summary T; to query Qy(z) for the i-th node in Gy for task ¢.
Qt S3.2 (1+) Queries for Gjq nodes for task t. Generated by decoding T; with Nj, decoders.

M S3.2 (2-) Affinity matrix between knowledge entries (nodes in Gi) and task ¢.

Fia(2) S3.2 (2+) The i-th node in the latent subgraph Giq;.
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cence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creat-
ive Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the
copyright holder.

To view a copy of this licence, visit http://creative-
commons.org/licenses/by/4.0/.

Appendix A

This paper contains many notations. To make it more
clear, we list the important ones in this lookup table
(Table A.1). For each notation, we list the section where
it is defined. The text in the bracket may help locate it
faster, e.g., S3 (14) means the notation is defined in the
latter half of the first paragraph in Section 3. We also
provide the algorithm block diagrams shown in Fig.A.1
for the training and evaluation process to make the whole
framework clearer.

Appendix B

In this appendix, we provide more details on model
dynamic and hyper-parameter sensitivity. For model dy-
namics, we show the curve of each loss term shown in
Fig.B.1 of our method (AAD in Table 1) in the 5-way 1-
shot training process. All loss terms drop alongside the
training process. Occlusions in L, and L.s are possibly
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Fig. B.1  Algorithm block diagram of our framework

due to the noisy ImageNet dataset. L, indicates that
the average pairwise distance of node features in the lat-
ent subgraph is properly controlled. The sensivity against
different loss weights in (12) is also analyzed and shown
in Table B.1.

Table B.1 Sensitivity against different loss weights

Experiment Asub Aemb Accuracy (%)
Ours 0.1 0.1 62.93
1 0.3 0.1 61.31
2 0.5 0.1 61.95
3 0.1 0.3 61.46
4 0.1 0.5 61.37
5 0.3 0.3 61.53
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