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Abstract

Adversarial examples have been well known as
a serious threat to deep neural networks (DNNs).
In this work, we study the detection of adversarial
examples, based on the assumption that the output
and internal responses of one DNN model for both
adversarial and benign examples follow the gen-
eralized Gaussian distribution (GGD), but with
different parameters (i.e., shape factor, mean, and
variance). GGD is a general distribution family
to cover many popular distributions (e.g., Lapla-
cian, Gaussian, or uniform). It is more likely to
approximate the intrinsic distributions of internal
responses than any specific distribution. Besides,
since the shape factor is more robust to different
databases rather than the other two parameters,
we propose to construct discriminative features
via the shape factor for adversarial detection, em-
ploying the magnitude of Benford-Fourier coeffi-
cients (MBF), which can be easily estimated using
responses. Finally, a support vector machine is
trained as the adversarial detector through leverag-
ing the MBF features. Extensive experiments in
terms of image classification demonstrate that the
proposed detector is much more effective and ro-
bust on detecting adversarial examples of different
crafting methods and different sources, compared
to state-of-the-art adversarial detection methods.

1. Introduction
Deep neural networks (DNNs) have achieved a remarkable
success in many important applications, such as image clas-
sification, face recognition, object detection, etc. In the
meanwhile, DNNs have been shown to be very vulnerable
to adversarial examples. However, many real-world scenar-
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ios have very restrictive requirements about the robustness
of DNNs, such as face verification for login, or semantic
segmentation in autonomous driving. Adversarial examples
are a serious threat to the applications of DNNs to these
important tasks. Since many kinds of adversarial attack
methods have been proposed to fool DNNs, it is more ur-
gent to equip effective defensive strategies to ensure the
safety of deep models in real-world applications. However,
defense seems to be more challenging than attack, as it has
to face adversarial examples from unknown crafting meth-
ods and unknown data sources. Typical defensive strategies
include adversarial training, adversarial de-noising, and ad-
versarial detection. Compared to the former two strategies,
adversarial detection is somewhat more cost-effective, as it
often needs no re-training or modifying the original model.

There are two main challenges for adversarial detection. (1)
The adversarial examples are designed to camouflage them-
selves to be close to the corresponding benign examples in
the input space. Then, where and how to extract the dis-
criminative information to train the detector? (2) The data
sources and the generating methods of adversarial examples
are often inaccessible to the detector. In this case, the detec-
tor can be stably effective across different data sources and
different attack methods? In other words, a good adversarial
detector is required to be not only effective to distinguish
adversarial and benign examples, but also robust to different
data sources and attack methods.

To satisfy the first requirement of effectiveness, we utilize
the other principle of crafting adversarial examples that the
outputs between benign and adversarial examples should
be large, to encourage the change of the final prediction. It
means that the imperceptible difference between benign and
adversarial examples in the input space is enlarged along
the DNN model, leading to the significant difference in the
output space. Inspired by this fact, we assume that the out-
put or the responses of internal layers of the DNN model
should include the discriminative information for benign
and adversarial examples. A few works have attempted to
extract different types of discriminative features from the
output or the internal responses, such as kernel density (KD)
(Feinman et al., 2017) and the local intrinsic dimensional-
ity (LID) (Ma et al., 2018), etc. To achieve the robustness,
the extracted discriminative features should model the in-
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trinsic difference between adversarial and benign examples,
rather than the difference from the changes of data sources
or attack methods. Many existing methods have shown the
effectiveness to some extent on detecting adversarial exam-
ples of specific data sources and attack methods. However,
their robustness, especially across different data sources,
has not been well studied and verified.

In this work, we propose a novel detection method based
on the assumption that the internal responses of both adver-
sarial and benign examples follow the generalized Gaussian
distribution (GGD) (Varanasi & Aazhang, 1989), but with
different parameters, including the shape factor, mean, and
variance. The rationale behind this assumption is that GGD
covers many popular distributions with varied shape fac-
tors (such as Laplacian, Gaussian, or uniform distribution),
such that GGD is more likely to approximate the intrinsic
response distributions rather than one specific distribution.
Moreover, mean and variance of GGD may vary signifi-
cantly with respect to different classes and data sources,
even for benign examples, while the shape factor is more
robust. For example, the mean and variance of two Gaussian
distributions could be totally different, but their shape fac-
tors are the same (i.e., 2). Thus, we propose to use the shape
factor as an effective and robust discrimination between
adversarial and benign examples. However, it is difficult
to exactly estimate the shape factor in practice. We resort
to the magnitude of Benford-Fourier coefficients (Pasquini
et al., 2014), which is a function of the shape factor. It can
be easily estimated using internal responses, according to
the definition of Fourier transform. Then, the magnitudes
estimated from internal responses of different convolutional
layers are concatenated as a novel representation. Finally,
a support vector machine (SVM) (Vapnik, 2013) is trained
using the new representations as the adversarial detector. Ex-
tensive experiments carried out on several databases verify
the effectiveness and robustness of the proposed detection
method. To further verify the rationale of our assumption,
we present the empirical analysis through the Kolmogorov-
Smirnov test (KS test) (Massey Jr, 1951). The KS test
verifies that 1) the posterior vectors of both adversarial and
benign examples predicted by the CNN model follow the
distribution of GGD, but with different parameters, and 2)
the MBF features of adversarial and benign examples follow
different distributions, and the MBF features of adversarial
examples crafted from different attack methods follow the
same distribution, as well as that the MBF features of adver-
sarial/benign examples from different data sources follow
the same distribution.

Moreover, we visualize the statistics (i.e., mean ± standard
deviation) of the extracted MBF features for adversarial
and benign examples. The visualization reveals the dis-
tinct difference between adversarial and benign examples.
These empirical analysis demonstrates the effectiveness and

robustness of the proposed MBF detector.

2. Related work
The general idea of most existing detection methods is learn-
ing or constructing a new representation to discriminate
adversarial and benign examples, utilizing the outputs or im-
mediate responses of an original classification network. (Li
& Li, 2017) trained a cascading classifier based on the prin-
cipal component analysis (PCA) (Pearson, 1901) statistics
of responses from each convolutional layer of the defended
convolutional neural network (CNN) model. An example
is recognized as benign if all single classifiers of the cas-
cade predict it as benign, otherwise adversarial. (Lu et al.,
2017) proposed SafetyNet by adding a RBF-SVM classifier
to detect adversarial examples, at the end of the original
classification network. (Metzen et al., 2017) proposed a
detection network along with an original classification net-
work, which takes the internal responses of the original
network as inputs. It shows effectiveness on detecting adver-
sarial examples generated by simple attacks (such as FGSM
(Goodfellow et al., 2014) and JSMA (Papernot et al., 2016)),
while performs much worse when facing more advanced
attacks (such as C&W (Carlini & Wagner, 2017a)). It tells
that this method is sensitive to attack methods. (Grosse et al.,
2017) attempted to detect adversarial examples using the
statistical test of maximum mean discrepancy (MMD). Al-
though above detection methods show effectiveness on some
attack methods and some databases, but a thorough evalua-
tion presented in (Carlini & Wagner, 2017b) has shown that
these methods are sensitive to attack methods or databases,
and they can be somewhat easily invaded by new attacks.

Some recent works proposed to utilize neighboring samples
in the same database to construct a better representation of a
current sample. (Feinman et al., 2017) defined two metrics
based on the responses of the final hidden layer of the classi-
fication neural network, including kernel density estimation
(KDE) and Bayesian neural network uncertainty (BU). If the
metric score of KDE/BU is lower/higher than a pre-defined
threshold, then the example is predicted as adversarial. (Ma
et al., 2018) utilized the local intrinsic dimensionality (LID)
to measure the characterization of adversarial regions of
DNNs. LID describes the distance between one example
and its k-nearest neighboring sample in the feature space
of immediate responses of the original classification net-
work. The distances computed from different layers are
concatenated as the example representation, which is then
used to train a shallow classifier to discriminate adversarial
and benign examples. (Zheng & Hong, 2018) defined the
intrinsic hidden state distribution (IHSD) of the responses
of the original classification network to model different
classes. The Gaussian mixture model (GMM) was used
to approximate IHSD of each class. Then, the posterior
probability of one sample assigned to GMM is computed
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as the metric. If the probability is lower than a pre-defined
threshold, then it is recognized as adversarial. (Lee et al.,
2018) computed the class-conditional Gaussian distribution
of the responses of the original classification network based
on the whole training set. Then, the Mahalanobis distance
between one sample and its nearest class-conditional Gaus-
sian distribution is used as the metric for detection. If the
distance is larger than a pre-defined threshold, then it is
detected as adversarial. Compared to some aforementioned
single-representation-based detection methods, these joint-
representation-based methods showed better performances
on some databases. However, the detection cost for each
example is much higher, as the responses of its neighboring
samples should also be computed. Besides, since the repre-
sentation is highly dependent on the neighbors or all training
examples, the detection performance may be sensitive to
data sources, which will be studied in later experiments.

There are also some other approaches that do not construct
representations from the responses of the original classi-
fication network. (Hendrycks & Gimpel, 2016) adopted
PCA statistics to discriminate adversarial and benign im-
ages, independent of any DNN model. However, the study
presented in (Carlini & Wagner, 2017b) has demonstrated
that this method works for MNIST but not for CIFAR-10,
and PCA statistics are not robust features to detect adver-
sarial images. (Pang et al., 2018) proposed a novel loss
called reverse cross-entropy (RCE) to train the classifica-
tion network, such that the distance measured by kernel
density (Feinman et al., 2017) between adversarial and be-
nign examples could be enlarged. (Samangouei et al., 2018)
proposed Defense-GAN to model the distribution of benign
examples using a generative adversarial network (GAN).
If the Wasserstein distance between one example and its
corresponding example generated by GAN is larger than a
threshold, then it is detected as adversarial. However, above
three methods are much more costly than other methods.

3. Preliminaries
3.1. Generalized Gaussian Distribution

Assume that a random variable X ∈ Rd follows the gener-
alized Gaussian distribution (GGD) (Varanasi & Aazhang,
1989). Then, its probability density function (PDF) is for-
mulated with two positive parameters, including the shape
factor c and the standard deviation σ, as follows

PX (x) = A · e−|βx|
c

, (1)

where β = 1
σ

(Γ(3/c)
Γ(1/c)

) 1
2 and A = βc

2Γ(1/c) , with Γ(·) being
the Gamma function. Note that the mean parameter µ is
omitted above, as µ has no relation with the shape of dis-
tribution and we set it as 0 without loss of generality. A
nice characteristic of GGD is that it covers many popular
distributions with varied shape factors. For example, when
c = 1, then it becomes the Laplacian distribution; when

c = 2, then it is the Gaussian distribution with a variance
of σ2; when c → +∞, then it is specified as a uniform
distribution on (−

√
2σ,
√

2σ).

3.2. Benford-Fourier Coefficients
Although generalized Gaussian distribution (GGD) is able
to cover a bunch of distributions, it is hard to depict the exact
forms of GGD precisely. To this end, we further define a
random variable Z = log10 |X | mod 1 for detecting and
distinguishing different form of GGD, of which the PDF is
formulated by means of Fourier Series as (Pérez-González
et al., 2007), with the fundamental period being fixed as 2π,

PZ(z) = 1 + 2

+∞∑
n=1

[An cos (2πnz) +Bn sin (2πnz)]

= 1 + 2

+∞∑
n=1

|an| cos(2πnz + φn), (2)

where z ∈ [0, 1) corresponds to the domain of random
variable Z , the phase of Fourier Series is explained as
φn = arctan

(
− Bn

An

)
, and the magnitude denotes |an| =√

A2
n +B2

n. an = |an| · ejφn denotes the n-th Fourier
coefficient of PZ(z) evaluated at 2πn, and its definition is

an =

∫ +∞

−∞
PZ(z) · e−j2πn log10 zdz

=
2Ae

j2πn log β
log 10

βc
· Γ
(
−j2πn+ log 10

c log 10

)
. (3)

an is also called as Benford-Fourier coefficient. Note that
an is a complex number, and its magnitude is calculated as

|an| =
( +∞∏
k=0

[
1 +

( 2πn

log 10(ck + 1)

)2]−1) 1
2

. (4)

Note that |an| gets smaller as n ∈ N increases. And, an
interesting property of |an| is that it only depends on the
shape factor c, while is independent of the parameter σ.
Thus, one set of the absolute values of Benford-Fourier
coefficients {|an|}n∈N correspond to one identical c, i.e.,
one identical special distribution of GGD. In other words,
we could use {|an|}n∈N as features or representations to
discriminate different special distributions of GGD.

However, if it is often difficult to know or even estimate the
shape factor c, we cannot compute the value of |an|. But for-
tunately, recalling that an is the n-th Fourier coefficient of
PZ(z) evaluated at 2πn, we can derive an easy estimation.
Specifically, assume that x = {x1, . . . , xM} is a set of M
i.i.d. points sampled from GGD with the same shape factor
c. Then, the corresponding Benford-Fourier coefficients can
be estimated as follows (Pasquini et al., 2014):
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ân =

∑M
m=1 e

−j2πn log10 |xm|

M
= (5)

1

M

M∑
m=1

[
cos (2πn log10 |xm|)− j sin (2πn log10 |xm|)

]
.

The gap between ân and an is analyzed in Theorem 1. It
tells that ân gets closer to an as M increases. For clarity,
we firstly introduce a few notations: T = e−j2πn log10 |X | is
a random variable with X obeying the generalized Gaussian
distribution, and ân is an observation of the random variable
Y = 1

M

∑M
m=1 Tm. Due to the space limit, the proof will

be presented in supplementary material A.
Theorem 1 Assume that the estimation error εn = ân−an
is an observation of the random variable E = Y − an. |E|
follows the Rayleigh distribution (Papoulis & Pillai, 2001),
of which the probability density function is formulated as

P|E| (r) = 2Mre−Mr2 . (6)

And the expectation and variance are

E
(
|E|
)

=
1

2

√
π

M
, D(

∣∣E∣∣) =
4− π
4M

,

which implies that the estimation error εn gets closer to 0
as the number of samples M increases.

4. Adversarial Detection via Benford-Fourier
Coefficients

4.1. Training Procedure of Adversarial Detector

There are three stages to train the proposed adversarial de-
tector, including: 1) building a training set based on benign
images; 2) extracting novel representations of the training
set via Benford-Fourier coefficients; 3) training a SVM clas-
sifier as the adversarial detector. They will be explained in
details sequentially. And, the overall training procedure is
briefly summarized in Algorithm 1.

Build a training set. Firstly, we collect N clean im-
ages {x1, . . . ,xN}, which can be correctly predicted by
fθ. Then, we adopt one adversarial attack method (e.g.,
C&W (Carlini & Wagner, 2017a) or BIM (Kurakin et al.,
2016)) to generate one adversarial image corresponding
to each clean image. The crafted N adversarial exam-
ples are denoted as {x̂1, . . . , x̂N}. Besides, to avoid that
the noisy image (polluted by some kind of non-malicious
noises but still can be correctly predicted by fθ) is incor-
rectly detected as adversarial, we also craft one noisy im-
age by adding small random Gaussian noises onto each
clean image. These N noisy examples are denoted as
{x̄1, . . . , x̄N}. Note that, hereafter benign examples include
both clean and Gaussian noisy examples. Consequently,
we obtain one training set with 3N examples, denoted as
Dtr = {(xi,−1), (x̄i,−1), (x̂i,+1)}i=1,...,N .

Extract novel representations. We firstly feed the i-th
training image from Dtr into fθ. We concatenate all re-
sponse entries of the l-th layer in fθ to obtain one vector
rli. Then, we estimate the corresponding Benford-Fourier
coefficients according to Eq. (5), as follows

(ân)li =
1

M l
i

M l
i∑

m=1

e−j2πn log10 |(rm)li|, (7)

where M l
i indicates the length of rli. The magnitude of

(ân)li is computed as follows

|(ân)li| =
1

M l
i

( M l
i∑

m=1

cos (2πn log10 |(rm)li|)2 (8)

+

M l
i∑

m=1

sin (2πn log10 |(rm)li|)2

) 1
2

Then, we extract one T -dimensional feature vector ali =
[|(â1)li|, . . . , |(âT )li|] ∈ RT+ for the i-th training image from
the l-th layer. We set T = 16 in experiments, as |(ân)li| of
larger n is too small for discrimination. Finally, we concate-
nate the feature vectors of all layers to form a long vector
âi = [â1

i ; . . . ; â
L
i ] ∈ RTL+ , with L being the number of lay-

ers in fθ. Consequently, we obtain a novel representation
of training images, denoted as Âtr = {(âi,±1)}i=1,...,3N ,
where the label +1 or −1 is directly obtained from Dtr.
Train an adversarial detector. Finally, we train a binary
SVM classifier based on Âtr. The trained SVM classifier
will serve as the adversarial detector for the CNN model fθ .

Testing. One novel testing example is firstly predicted as
adversarial or not by the trained adversarial detector . If
adversarial, then it is rejected; otherwise, it is fed into fθ to
predict its class label.

Remark. Note that in the derivation of an (see Eq. (3)),
the mean parameter of GGD is set to 0. In experiments, we
calculate the mean values of internal-layer responses of all
networks for every image, and find that mean parameters
at most layers are close to 0, while the mean parameters at
a few layers could be large. However, the mean value is
subtracted from each response entry when we extract the
MBF features in our experiments. Thus, the derived an is
applicable to our task. Besides, according to Theorem 1,
the estimation error of (ân)li is inversely proportional to
M l
i . It tells that the coefficient estimated from the larger-

sized layer is more accurate. In many neural networks
(e.g., AlexNet (Krizhevsky et al., 2012)), the response sizes
of high layers get smaller, which means the less accurate
estimation. However, we believe that the discrimination
between adversarial and benign examples in higher layers is
more evident than that in lower layers. There is a trade-off
between estimation accuracy and discrimination. This is
why we concatenate the estimated magnitudes of all layers
together to construct the novel representation.
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Algorithm 1 Training the adversarial detector via the mag-
nitude of Benford-Fourier coefficients.

Input: The trained CNN model fθ with L layers, and the train-
ing set Dtr

for i = 1 to |Dtr| do
for i = 1 to L do

Compute |(ân)
l
i| as Eq. (8), with n = 1, . . . , T

Concatenate {|(ân)
l
i|}n=1,...,T to obtain a vector âl

i

end for
Concatenate {âl

i}l=1,...,L to obtain a long vector âi

end for
Build a novel representation of the training set, denoted as
Âtr = {(âi,±1)}i=1,...,|Dtr|

Train a binary SVM classifier based on Âtr

Return The trained binary SVM classifier

4.2. Experimental Settings
Databases and network architectures We conduct experi-
ments on three databases, including CIFAR-10 (Krizhevsky
et al., 2014), SVHN (Netzer et al., 2011), and a subset of
ImageNet (Deng et al., 2009). In terms of CIFAR-10 and
SVHN, we adopt the same settings as the compared method
LID (Ma et al., 2018). Specifically, a 33-layer network pre-
trained on the training set of CIFAR-10 achieves 82.37%
accuracy on the testing set with 10, 000 benign images; a
19-layer network pre-trained on the training set of SVHN
achieves 92.6% accuracy on the testing set with 26, 032
benign images. Then, we add a small noise drawn from
N (0, σ2) on each testing image, with σ being the similar
level of the `2 norm of adversarial perturbations on the
same database. If both the benign and its noisy image can
be correctly predicted by the classification network, then
it is picked out for training the detection. We finally col-
lect 8, 175 and 23, 862 benign images from CIFAR-10 and
SVHN, respectively. These images are randomly partitioned
to the 80% training set and the 20% testing set, used for
the training and testing of the detector. We also collect a
subset from ImageNet, including 800 benign images of 8
classes (snowbird, spoonbill, bobtail, Leonberg, hamster,
proboscis monkey, cypripedium calceolus, and earthstar).
The 100 images of each class contain 50 testing images
and 50 randomly selected training images. We fine-tune
the checkpoints of both AlexNet and VGG pre-trained on
ImageNet1 on these 800 images to achieve 100% accuracy.
Then, 785 benign images are kept for detection, as both their
noisy images and themselves can be correctly predicted by
both the fine-tuned AlexNet and VGG models. These 785
images are then randomly partitioned to 480 training and
305 testing images used for detection. For each database,
as described in Section 4.1, one noisy and one adversarial
image are generated for each benign image; then, all of
benign, noisy, and adversarial images are used for detection.

Attack methods We adopt four popular adversarial attack

1https://pytorch.org/docs/robust/torchvision/models.html

methods to craft adversarial examples, including basic it-
erative method (BIM (Kurakin et al., 2016)), CarliniWag-
nerL2Attack (CW-L2 (Carlini & Wagner, 2017a)), Deep-
Fool (Moosavi-Dezfooli et al., 2016), and random projected
gradient descent (R-PGD (Madry et al., 2017)). They are
implemented by Foolbox2. The hyper-parameters of these
methods will be presented in supplementary material D.

Compared detection methods We compare with three
state-of-the-art and open-sourced adversarial detection meth-
ods, including KD+BU3 (Feinman et al., 2017), Maha-
lanobis distance4 (M-D) (Lee et al., 2018), and LID5 (Ma
et al., 2018). Note that another recent work called I-defender
(Zheng & Hong, 2018) is not compared, as its code is not
available. To ensure the fair comparison, the SVM classifier
is trained with all compared methods, implemented by the
fitcsvm6 function in MATLAB. There are two important
hyper-parameters in LID, i.e., the size of mini-batch and the
number of neighbors. On CIFAR-10 and SVHN, they are
respectively set as 100 and 20, as suggested in (Ma et al.,
2018); on ImageNet, as there are only 400 benign training
images, they are respectively set as 50 and 20 in experi-
ments. Moreover, we find that there are some unfair settings
in the implementations of compared methods. For exam-
ple, KD+BU utilizes the extra 50, 000 images of CIFAR-10
to compute the kernel density of each training and testing
image; M-D also uses these extra images to compute the
mean and co-variance of GMM. Since extra images of the
similar distribution with the training images are often un-
available, we believe that extra images should not be used to
ensure the fair comparison. Thus, extra images are not used
for KD+BU and M-D in our experiments. Besides, LID
utilizes other benign testing images as neighborhoods to
extract features for each testing image. It is unfair to utilize
the information of benign or adversarial for neighboring
testing images. In our experiments, we use benign training
images as neighborhoods. Moreover, we also compare with
Defense-GAN (Samangouei et al., 2018) and C1&C2t/u (Hu
et al., 2019), and show the computational complexities of
all compared methods. Due to the space limit, these results
will be reported in supplementary material C and E.
Three comparison cases and evaluation metrics We con-
duct experiments of three cases, including: 1) non-transfer,
both training and testing adversarial examples are crafted
by the same attack method; 2) attack-transfer, both training
and testing adversarial examples are crafted by different
attack methods; 3) data-transfer, both training and testing
adversarial examples are crafted by the same attack method,
but the data sources of training and testing benign examples

2https://foolbox.readthedocs.io/en/v1.8.0/
3 https://github.com/rfeinman/detecting-adversarial-samples/
4 https://github.com/pokaxpoka/deep Mahalanobis detector/
5 https://github.com/xingjunm/lid adversarial subspace detection/
6https://www.mathworks.com/help/stats/fitcsvm.html
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(c) BIM
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(d) CW-L2
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(f) R-PGD

Figure 1. Statistics (mean ± standard deviation) of MBF coeffi-
cients on train (top row), test (median row), and out-of-sample
(bottom row) set of ImageNet-VGG-16.

are different. Two widely used metrics are used to evaluate
the detection performance, including area under the receiver
operating characteristics (AUROC), and detection accuracy,
which is the diagonal summation of the confusion matrix, us-
ing 0.5 as the threshold of the posterior probability. Higher
values of both metrics indicate better performance.

4.3. Results
Detection results in the non-transfer case are shown in Table
1. The proposed MBF method shows the best performance
in all cases, and is much superior to all compared meth-
ods. LID performs the second-best in most case. KD+BU
gives somewhat good detection performance on CIFAR-10
and SVHN, but performs very poor on ImageNet. It tells
that KD+BU is very sensitive to different databases and
networks. M-D gives almost the degenerate results. Note
that the results of M-D on CIFAR-10 and SVHN reported
in (Lee et al., 2018) are very high, but their networks (i.e.,
ResNet (He et al., 2016) and DenseNet (Huang et al., 2017)
are different from that used in our experiments. It implies
that M-D may be suitable for very deep neural networks,
but not for shallower networks.

Detection results in the attack-transfer case evaluated by
AUROC and accuracy are presented in Tables 2 and 3, re-
spectively. MBF still shows much better performance in all
transfer cases than all compared methods, and the changes
among detecting different attacks are very small. It verifies
the robustness of MBF to different attacks.

We also conduct a data-transfer experiment on ImageNet.
Specifically, we collect extra 365 images of 8 classes (same
with the classes used for the detection training, see Sec-
tion 4.2) through searching the class names in Baidu and
Facebook. These 365 benign and their noisy images can be
correctly predicted by both the fine-tuned AlexNet and VGG
models. The results on these images are shown in Table 4.
MBF still shows the best performance. And, compared to
the corresponding results in Table 1, the AUROC/accuracy
scores of MBF on detecting different attacks change very
gently, verifying its robustness to different data sources.

4.4. Hypothesis Test via Kolmogorov-Smirnov Test
Kolmogorov-Smirnov test (KS test) (Massey Jr, 1951) is
a non-parametric test method in statistics, to test whether

a sample follows a reference probability distribution (one-
sample KS test), or whether two samples follow the same
distribution (two-sample KS test). Specifically, in one-
sample KS test, the distance between the empirical dis-
tribution function of one sample and the cumulative dis-
tribution function of the reference probability distribution
is measured. Then, the p-value corresponding to the ob-
tained distance is computed. If the p-value is larger than the
significance level α (here we set α = 0.05), then the null
hypothesis that the sample follows the reference distribution
is accepted; otherwise, rejected. Similarly, in two-sample
KS test, the distance between the empirical distribution func-
tions of two samples is computed. If the corresponding p-
value is larger than α, then it accepts that two samples follow
the same distribution. The KS test conducted below is im-
plemented by the python function scipy.stats.ks 2samp7.

Hypothesis test 1. Here we verify that whether the posterior
vectors of both adversarial and benign examples follow
GGD. We denote the posterior vector of one adversarial
example as padv, and that of one benign example as pben.
The distribution of GGD is denoted as PGGD. Then, we
conduct two one-sample KS tests, including:

• H1.1 The test of adversarial examples: H0: padv ∼
PGGD-adv; H1: padv 6∼ PGGD-adv.

• H1.2 The test of benign examples: H0: pben ∼
PGGD-ben; H1: pben 6∼ PGGD-ben.

In H1.1, the reference distribution PGGD-adv is firstly esti-
mated from padv, using the estimated method proposed in
(Lasmar et al., 2009). To alleviate the uncertainty of the esti-
mation, we draw 500 samples from the estimated PGGD-adv.
Then, we conduct the two-sample KS test between padv
and these 500 samples respectively. The average p-value
over 1000 tests is recorded. The mean of the average p-
values over the whole database is reported. H1.2 is con-
ducted similarly. The results tested on ImageNet-AlexNet
are shown in Table 5. Due to the space limit, results on
other databases and models will be presented in the supple-
mentary material B. In all cases, the p-values are larger
than the significance level 0.05. Hence, we can conclude
that the posterior vectors of both adversarial and benign
examples follow GGD. However, note that the parameters
of their corresponding GGD are different, which will be
verified in the following test.

Hypothesis test 2. Here we verify that whether the ex-
tracted MBF features of adversarial and benign examples
follow the same empirical distribution. We denote the MBF
feature vector of one adversarial example as madv, and the
corresponding empirical distribution is denoted as P̂adv-MBF.
Similarly, we define mben and P̂ben-MBF for benign examples.
Then, we conduct the following four two-sample KS tests:

7https://docs.scipy.org/doc/scipy-
0.14.0/reference/generated/scipy.stats.ks 2samp.html
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Table 1. Detection results in the non-transfer case.
database Detector AUROC (%) Accuracy (%)

BIM CW-L2 DeepFool R-PGD BIM CW-L2 DeepFool R-PGD

CIFAR-10

KD+BU (Feinman et al., 2017) 79.0 82.8 80.6 77.7 74.2 73.0 71.7 72.6
M-D (Lee et al., 2018) 51.7 48.4 53.7 52.0 66.7 66.7 66.7 66.7
LID (Ma et al., 2018) 87.9 87.4 86.6 82.7 72.6 78.5 78.0 70.2
MBF 99.6 99.6 96.9 99.4 98.8 98.3 91.8 98.5

SVHN

KD+BU (Feinman et al., 2017) 81.5 85.1 84.1 82.5 78.6 80.0 79.3 78.6
M-D (Lee et al., 2018) 49.7 50.0 49.6 50.1 66.7 66.7 66.7 66.7
LID (Ma et al., 2018) 91.7 88.7 92.2 90.5 83.3 80.8 84.0 81.5
MBF 99.7 99.9 99.3 99.5 98.8 98.3 91.8 98.5
KD+BU (Feinman et al., 2017) 50.8 52.6 51.1 51.5 34.4 36.8 34.9 35.3

ImageNet- M-D (Lee et al., 2018) 48.1 60.1 46.5 54.1 66.7 66.6 66.8 66.7
AlexNet LID (Ma et al., 2018) 71.7 70.9 71.9 72.3 68.7 60.5 65.8 68.3

MBF 99.9 99.6 99.9 99.8 98.6 97.8 98.8 98.4
KD+BU (Feinman et al., 2017) 57.1 57.7 56.2 58.6 42.8 43.6 41.7 44.8

ImageNet- M-D (Lee et al., 2018) 63.7 64.8 45.9 66.9 67.1 65.6 66.7 67.4
VGG16 LID (Ma et al., 2018) 82.6 84.2 89.5 84.2 77.8 76.7 83.3 76.4

MBF 99.8 100.0 100.0 100.0 99.6 99.6 100.0 100.0

Table 2. Detection results evaluated by AUROC (%) in the attack-transfer case.

database Test attack→ BIM CW-L2 DeepFool R-PGD
Train attack ↓ KD+BU (Feinman et al., 2017) / M-D (Lee et al., 2018) / LID (Ma et al., 2018) / MBF

CIFAR-10

BIM 79.0 / 51.7 / 87.9 / 99.6 78.1 / 52.2 / 85.7 / 99.4 76.4 / 52.4 / 86.4 / 87.8 78.6 / 50.9 / 87.6 / 99.4
CW-L2 83.4 / 47.9 / 90.3 / 99.6 82.8 / 48.4 / 87.4 / 99.6 80.3 / 46.5 / 87.0 / 88.6 82.9 / 48.2 / 88.9 / 99.5

DeepFool 83.6 / 53.5 / 89.7 / 99.3 83.1 / 51.4 / 86.1 / 99.1 80.6 / 53.7 / 86.6 / 96.9 83.1 / 53.6 / 87.9 / 98.9
R-PGD 78.1 / 51.5 / 86.1 / 99.6 77.3 / 51.9 / 84.5 / 99.5 75.8 / 52.4 / 84.9 / 88.3 77.7 / 52.1 / 82.7 / 99.4

SVHN

BIM 81.5 / 49.7 / 91.7 / 99.7 83.1 / 51.0 / 88.3 / 99.7 80.1 / 48.8 / 91.9 / 97.5 81.5 / 50.4 / 90.7 / 99.5
CW-L2 83.6 / 50.8 / 91.6 / 99.7 85.1 / 50.0 / 88.7 / 99.9 82.5 / 49.7 / 92.0 / 97.3 83.6 / 49.1 / 90.8 / 99.7

DeepFool 85.0 / 50.0 / 91.6 / 99.7 86.3 / 50.0 / 87.9 / 99.8 84.1 / 49.6 / 92.2 / 99.3 85.0 / 49.4 / 90.8 / 99.6
R-PGD 82.5 / 49.9 / 91.2 / 99.6 84.0 / 49.5 / 87.8 / 99.6 81.2 / 50.2 / 91.6 / 97.4 82.5 / 50.1 / 90.5 / 99.5

BIM 50.8 / 48.1 / 71.7 / 99.9 50.8 / 44.9 / 70.8 / 99.6 50.4 / 49.7 / 72.1 / 99.8 50.7 / 50.4 / 70.8 / 99.8
ImageNet- CW-L2 52.3 / 50.7 / 69.7 / 99.8 52.6 / 60.1 / 70.9 / 99.7 51.2 / 52.1 / 66.0 / 99.7 52.2 / 55.8 / 69.8 / 99.8
AlexNet DeepFool 51.8 / 53.6 / 71.3 / 99.9 51.9 / 53.5 / 69.7 / 99.7 51.2 / 46.5 / 71.9 / 99.9 51.8 / 51.2 / 71.2 / 99.8

R-PGD 51.6 / 52.4 / 72.5 / 99.8 51.3 / 50.4 / 72.3 / 99.6 50.3 / 50.5 / 72.2 / 99.7 51.5 / 54.1 / 72.3 / 99.8
BIM 57.1 / 63.7 / 82.6 / 99.8 57.1 / 57.2 / 84.3 / 99.5 53.8 / 54.4 / 90.4 / 100.0 57.1 / 65.4 / 84.2 / 100.0

ImageNet- CW-L2 57.3 / 64.3 / 81.9 / 100.0 57.7 / 64.8 / 84.2 / 100.0 53.8 / 56.6 / 90.2 / 100.0 57.5 / 67.6 / 84.3 / 100.0
VGG-16 DeepFool 58.7 / 45.5 / 80.2 / 99.7 59.4 / 46.1 / 79.1 / 99.3 56.2 / 45.9 / 89.5 / 100.0 59.0 / 44.0 / 80.9 / 99.7

R-PGD 58.6 / 62.3 / 81.1 / 100.0 58.9 / 60.8 / 83.7 / 100.0 55.3 / 54.4 / 90.8 / 100.0 58.6 / 66.9 / 84.2 / 100.0

Table 3. Detection results evaluated by accuracy (%) in the attack-transfer case.

database Test attack→ BIM CW-L2 DeepFool R-PGD
Train attack ↓ KD+BU (Feinman et al., 2017) / M-D (Lee et al., 2018) / LID (Ma et al., 2018) / MBF

CIFAR-10

BIM 74.2 / 66.7 / 72.6 / 98.8 73.0 / 66.7 / 66.9 / 97.4 71.7 / 66.7 / 70.2 / 87.3 73.8 / 66.7 / 61.3 / 96.8
CW-L2 74.2 / 66.7 / 80.3 / 98.1 73.0 / 66.7 / 78.5 / 98.3 71.7 / 66.7 / 77.9 / 89.5 73.8 / 66.7 / 73.6 / 98.2

DeepFool 74.0 / 66.7 / 80.4 / 95.2 72.8 / 66.7 / 77.4 / 95.2 71.7 / 66.7 / 78.0 / 91.8 73.4 / 66.7 / 74.8 / 95.4
R-PGD 73.1 / 66.7 / 77.7 / 98.6 71.9 / 66.7 / 75.1 / 98.5 71.0 / 66.7 / 75.4 / 89.7 72.6 / 66.7 / 70.2 / 98.5

SVHN

BIM 78.6 / 66.7 / 83.3 / 98.7 80.5 / 66.7 / 79.4 / 98.9 77.7 / 66.7 / 83.5 / 95.8 78.6 / 66.7 / 82.9 / 98.2
CW-L2 78.2 / 66.7 / 83.5 / 98.0 80.0 / 66.7 / 80.8 / 99.2 77.1 / 66.7 / 84.0 / 95.9 78.1 / 66.7 / 80.7 / 97.3

DeepFool 79.8 / 66.7 / 83.9 / 98.0 81.8 / 66.7 / 79.9 / 98.4 79.3 / 66.7 / 84.0 / 97.3 79.9 / 66.7 / 80.7 / 98.0
R-PGD 78.6 / 66.7 / 83.6 / 98.6 80.5 / 66.7 / 79.9 / 98.9 77.7 / 66.7 / 83.8 / 96.5 78.6 / 66.7 / 81.5 / 98.8

BIM 34.4 / 66.7 / 68.7 / 98.6 34.4 / 66.6 / 68.6 / 97.3 34.1 / 66.7 / 66.7 / 98.5 34.3 / 66.7 / 65.0 / 98.4
ImageNet- CW-L2 36.5 / 66.2 / 64.6 / 98.0 36.8 / 66.6 / 60.6 / 97.8 35.0 / 66.1 / 60.7 / 98.1 36.4 / 66.1 / 62.6 / 98.0
AlexNet DeepFool 36.0 / 66.7 / 69.4 / 98.8 36.0 / 66.8 / 65.8 / 97.9 34.9 / 66.8 / 65.8 / 98.8 35.9 / 66.6 / 68.3 / 98.6

R-PGD 35.4 / 66.7 / 67.5 / 98.5 35.2 / 66.7 / 67.7 / 97.6 34.1 / 66.7 / 67.0 / 98.3 35.3 / 66.7 / 68.3 / 98.4
BIM 42.8 / 67.1 / 77.8 / 98.6 42.8 / 66.8 / 74.5 / 97.3 38.4 / 66.0 / 82.7 / 98.5 42.7 / 67.9 / 76.9 / 98.4

ImageNet- CW-L2 43.1 / 64.8 / 75.2 / 98.0 43.6 / 65.6 / 76.7 / 97.8 38.4 / 62.5 / 82.5 / 98.1 43.3 / 67.2 / 73.9 / 98.0
VGG-16 DeepFool 45.4 / 66.7 / 76.2 / 98.8 46.1 / 66.7 / 72.9 / 97.9 41.8 / 66.7 / 83.3 / 98.8 45.8 / 66.7 / 74.4 / 98.6

R-PGD 44.8 / 66.3 / 76.3 / 98.5 45.4 / 66.6 / 74.1 / 97.6 40.6 / 64.9 / 82.4 / 98.3 45.8 / 67.4 / 76.4 / 98.4

• H2.1 The test between adversarial and benign exam-
ples: H0: P̂adv-MBF = P̂ben-MBF; H1: P̂adv-MBF 6=
P̂ben-MBF.

• H2.2 The test between adversarial examples crafted
from different attack methods: H0: P̂attack-1

adv-MBF =

P̂attack-2
adv-MBF; H1: P̂attack-1

adv-MBF 6= P̂attack-2
adv-MBF.

• H2.3 The test between adversarial examples from dif-
ferent data sources (i.e., train, test and out-of-sample
set): H0: P̂ source-1

adv-MBF = P̂ source-2
adv-MBF; H1: P̂ source-1

adv-MBF 6=
P̂ source-2

adv-MBF.

• H2.4 The test between benign examples from different
data sources (i.e., train, test and out-of-sample set): H0:
P̂ source-1

ben-MBF = P̂ source-2
ben-MBF; H1: P̂ source-1

ben-MBF 6= P̂ source-2
ben-MBF.

In above four two-sample KS tests, we test on the 16-
dimensional MBF features extracted from the soft-max layer.
Since the implementation scipy.stats.ks 2samp cannot

Table 4. Detection results evaluated by AUROC score (%) in the
data-transfer case. All detectors are trained on the train set, and
tested on the out-of-sample set (including 365 images) of the
ImageNet database. The best results are highlighted in bold.

ImageNet-AlexNet ImageNet-VGG-16
Detector BIM CW-L2 DeepFool R-PGD BIM CW-L2 DeepFool R-PGD
KD+BU 66.3 69.4 64.7 68.8 84.0 85.0 79.9 85.2

M-D 48.7 49.2 50.0 51.0 54.5 50.0 50.4 56.1
LID 69.1 67.6 72.9 71.4 84.2 88.4 89.2 83.7
MBF 99.1 99.0 99.6 99.4 99.3 99.5 99.3 99.5

Table 5. The p-value of KS hypothesis test among clean samples,
noisy samples, and adversarial samples crafted by four methods,
respectively, on ImageNet-AlexNet.

ImageNet-AlexNet clean noisy BIM CW-L2 DeepFool R-PGD
train set 0.116 0.116 0.253 0.235 0.242 0.253
test set 0.117 0.117 0.261 0.236 0.243 0.259

compare two vectors, we compare the feature of each di-
mension separately, then report the average p-value over all
dimensions. Specifically, when comparing two sets of sam-
ples, we firstly concatenate the feature of each dimension
across all samples in the same set, leading to 16 long vectors
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Table 6. The p-value of two-sample KS test among MBF coeffi-
cients of different types of examples.

ImageNet-VGG-16 (clean, noisy) (clean, BIM) (BIM, DeepFool) (CW-L2, R-PGD)
train set 0.998 0.000 0.000 0.236
test set 1.000 0.000 0.000 0.225

Table 7. The p-value of KS hypothesis test among MBF coeffi-
cients of different data sources.

ImageNet-VGG-16 clean noisy BIM CW-L2 DeepFool R-PGD
(train set, test set) 0.839 0.858 0.368 0.842 0.246 0.221

(train set, out-of-sample set) 0.049 0.054 0.094 0.407 0.737 0.088

for each set. Then, each pair of two long vectors correspond-
ing to the same dimension from two sets is compared by KS
test. The average p-value over all 16 dimensions is reported.
The p-values of H2.1 are shown in Table 6 (see the column
“(clean, BIM)”). The p-values on both train and test set are 0.
Thus, the hypothesis H0 is rejected, i.e., the MBF features
of adversarial and benign examples follow different distribu-
tions. The p-values of H2.2 are shown in Table 6. We pick
two groups of attack methods, i.e., (BIM, DeepFool) and
(CW-L2, R-PGD). The p-values of (BIM, DeepFool) are
0, while the p-values of (CW-L2, R-PGD) are larger than
0.05. It demonstrates that the distributions of adversarial
examples crafted from different attack methods are possible
to be different. The p-values of H2.3 are shown in Table
7. The p-values of all types of adversarial examples exceed
0.05. Thus, the MBF features of adversarial examples from
different data sources follow the same distribution. The
p-values of H2.4 are shown in Table 7. Only the p-value of
“(train set, out-of-sample set)” of clean examples is slightly
lower than 0.05, while the values of other cases exceed 0.05.
Thus, in most cases, the MBF features of benign examples
from different data sources follow the same distribution.

From above analysis, we obtain the following conclusions:
1) The extracted MBF features of adversarial and benign ex-
amples follow different empirical distributions. It explains
why MBF features are effective for detecting adversarial
and benign examples; 2) The extracted MBF features of
adversarial/benign examples from the train, test and out-
of-sample sets follow the same empirical distribution. Al-
though the extracted MBF features of adversarial examples
crafted from different attack methods may not follow the
same empirical distribution, the significant difference be-
tween benign and different adversarial distributions can still
lead to the good detection performance in the attack-transfer
case. It explains why MBF features are robust across dif-
ferent attack methods and different data sources. Moreover,
we visualize the statistics of each dimension of MBF fea-
tures, i.e., mean and standard deviation, as shown in Fig. 1.
These visualizations also support above conclusions. Due
to space limit, more KS tests and visualizations on different
databases and networks will be presented in the supplemen-
tary material B.

5. Conclusion
This work has proposed a novel adversarial detection
method, dubbed MBF. The assumption behind is that the
internal responses of the classification network of both ad-
versarial and benign examples follow the generalized Gaus-
sian distribution (GGD), but with different shape factors.
The magnitude of Benford-Fourier coefficient is a function
w.r.t. the shape factor, and can be easily estimated based on
responses. Thus, it can serve as the discriminative features
between adversarial and benign examples. The extensive
experiments conducted on several databases, as well as the
empirical analysis via KS test, demonstrate the superior ef-
fectiveness and robustness to different attacks and different
data sources of the proposed MBF method, over state-of-
the-art detection methods.
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Supplementary Material:
Effective and Robust Detection of Adversarial Examples via

Benford-Fourier Coefficients

A. Proof
A.1. Proof of Theorem 1

Assume that all the variables {Tm}m=1,...,M are indepen-
dent and identically distributed. Applying the central limit
theorem (Rosenblatt, 1956) to the real and imaginary parts
of Y , we can obtain that both parts asymptotically follow
the Gaussian distribution

Y =
1

M

M∑
m=1

Tm ∼ N
(
E(T1),

1

M
D(T1)

)
, (9)

where

E(T1) = E
(
e−j2πn log10|X1|

)
=

∫ +∞

−∞
PX1(x) · e−j2πn log10|x|dx

= an, (10)
(11)

D(T1) = E
(
|T1|2

)
− |E (T1)|2

= E
( ∣∣∣e−j2πn log10|X1|

∣∣∣2 )− |an|2
= 1− |an|2. (12)

The PDF of Y can be rewritten as follows:

Y ∼ N (an,
1− |an|2

M
). (13)

Thus, we obtain

E ∼ N (0,
1− |an|2

M
). (14)

Besides, the pseudo variance (Goodman, 1963) of T1 is

JT1,T1 = E(T 2
1 )− E(T1)2

= E
(
e−j2πn log10|X 2

1 |)− a2
n

= a2n − a2
n. (15)

Correspondingly,

JE,E =
1

M
JT1,T1 =

a2n − a2
n

M
. (16)

Since (a2n − a2
n) is bounded, we have limM→∞ JE,E =

0. Thus, we obtain that the random variable E follows
circularly-symmetric complex Gaussian distribution, be-
cause the sufficient and necessary condition is that mean
value and pseudo variance equal zero (Goodman, 1963). It
implies that both the real and imaginary part of E follow
the same Gaussian distribution and they are independent.
Thus, the magnitude of this complex random variable fol-
lows the Rayleigh distribution (Papoulis & Pillai, 2001), and
the probability density function of |E| can be formulated as

P|E| (r) =
r

s2
e−r

2/2s2 , (17)

where s is the scale parameter. Knowing the properties of
the Rayleigh distribution(Papoulis & Pillai, 2001), we have:

s2 =
1

2
D(E) =

1− |an|2

2M
. (18)

Utilizing the fact that |an|2 is close to 0 when n is a modest
number, we obtain that D (E) ≈ 1

M , leading to s2 = 1
2M .

Then, we obtain

E
(
|E|
)

=
1

2

√
π

M
,D
(
|E|
)

=
4− π
4M

. (19)

It is easy to observe that bothE
(
|E|
)

andD
(
|E|
)

are close
to zero when the number of samples M increases. It implies
that the estimation error εn gets closer to 0 as M increases.

B. Additional Empirical Analysis
Here we present additional empirical analysis on more
databases and networks, as shown in Tables 8, 9 and 10.
The p-values in most cases also supports the conclusions
obtained in the main manuscript. We also present more
visualizations in Figs. 2, 3 and 4. These visualizations
also demonstrate the distinct difference of MBF features
between adversarial and benign examples.

C. More Comparison Experiments
C.1. Comparison with Defense-GAN

Defense-GAN (Samangouei et al., 2018) has been recently
proposed to detect and restore adversarial examples. Differ-
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Table 8. The p-value of KS hypothesis test among clean samples, noisy samples, and adversarial samples crafted by four methods,
respectively.

clean noisy BIM CW-L2 DeepFool R-PGD

CIFAR-10 train set 0.074 0.074 0.158 0.139 0.155 0.159
test set 0.072 0.072 0.158 0.138 0.216 0.216

SVHN train set 0.104 0.104 0.249 0.194 0.222 0.245
test set 0.106 0.106 0.249 0.193 0.219 0.239

ImageNet-AlexNet train set 0.116 0.116 0.253 0.235 0.242 0.253
test set 0.117 0.117 0.261 0.236 0.243 0.259

ImageNet-VGG-16 train set 0.114 0.114 0.236 0.228 0.240 0.235
test set 0.114 0.114 0.231 0.228 0.239 0.232

Table 9. The p-value of two-sample KS test among MBF coefficients of different types of examples. We cannot reject the hypothesis that
the posterior vectors of both clean and non-malicious noisy images follow a same probability distribution, while clean and adversarial
posterior vectors follow different probability distribution.

(clean, noisy) (clean, BIM) (BIM, DeepFool) (CW-L2, R-PGD)

CIFAR-10 train set 0.640 0.000 0.000 0.003
test set 0.764 0.000 0.030 0.000

SVHN train set 0.559 0.000 0.030 0.000
test set 0.685 0.000 0.000 0.000

ImageNet-AlexNet train set 1.000 0.000 0.002 0.134
test set 0.993 0.000 0.477 0.000

ImageNet-VGG-16 train set 0.998 0.000 0.000 0.236
test set 1.000 0.000 0.000 0.225

Table 10. The p-value of KS test among MBF coefficients from different data sources. Since all the p-values exceed 5%, we cannot reject
the hypothesis that the posterior vectors of examples from both training dataset and testing dataset follow a same probability distribution.

clean noisy BIM CW-L2 DeepFool R-PGD
CIFAR-10 (train set, test set) 0.120 0.188 0.333 0.456 0.584 0.223

SVHN (train set, test set) 0.494 0.708 0.523 0.147 0.491 0.645

ImageNet-AlexNet (train set, test set) 0.153 0.148 0.370 0.605 0.410 0.386
(train set, out-of-sample) 0.000 0.000 0.169 0.101 0.206 0.158

ImageNet-VGG-16 (train set, test set) 0.839 0.858 0.368 0.842 0.246 0.221
(train set, out-of-sample) 0.049 0.054 0.094 0.407 0.737 0.088
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Table 11. Comparison with Defense-GAN on detection results evaluated by AUROC score (%) among nearly 4000 images from the test
set of MNIST. The best results are highlighted in bold.

Iteration number in each GD run Number of GD runs BIM CW-L2 DeepFool R-PGD
200 10 0.744 0.980 0.702 0.746
100 10 0.689 0.973 0.650 0.690
100 5 0.664 0.969 0.628 0.666
100 2 0.612 0.959 0.586 0.614

MBF 1.000 0.991 1.000 1.000

Table 12. Comparison with C1&C2t/u on detection results evaluated by AUROC score (%) among 334 images from the test set of MNIST.
The best results are highlighted in bold.

CW PGD
LR=0.001 LR=0.01 LR=0.03 LR=0.1 LR=0.001 LR=0.01 LR=0.03 LR=0.1

C1 0.574 0.908 0.930 0.929 0.948 0.918 0.919 0.897
C2t 0.531 0.800 0.888 0.914 0.858 0.749 0.553 0.528
C2u 0.609 0.769 0.765 0.769 0.925 0.865 0.879 0.846
C1&C2t/u 0.554 0.810 0.889 0.912 0.961 0.906 0.938 0.926
MBF 0.892 0.995 0.995 0.994 0.992 0.976 0.977 0.976

Table 13. Comparison on running time (ms) of crafting features of a single image among all compared methods and MBF.

KD+BU M-D LID Defense-GAN C1&C2t/u MBF
CIFAR-10 11.3 16.7 110.8 - - 369.0

SVHN 13.6 72.9 241.6 - - 322.1
ImageNet-AlexNet 150.9 1.4 96.0 - - 234.3
ImageNet-VGG-16 318.9 4.4 241.3 - - 486.5

MNIST - - - 590 - 97.0
CIFAR-10-VGG-19 - - - - 576 380.2
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Figure 2. Statistics (mean ± standard deviation) of MBF coeffi-
cients on train (top row) and test (bottom row) set of CIFAR-10.
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Figure 3. Statistics (mean ± standard deviation) of MBF coeffi-
cients on train (top row) and test (bottom row) set of SVHN.
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Figure 4. Statistics (mean ± standard deviation) of MBF coeffi-
cients on train (top row) and test (median row), and out-of-sample
(bottom row) set of ImageNet-AlexNet.

ent with other compared methods in the main manuscript
which directly extracted the detection features from the
intermediate activation, Defense-GAN should firstly train
a dataset-specific generative adversarial network (GAN).
Then, the norm of the difference between the image gen-
erated by GAN and the detected image is computed as the
detection feature. The image is considered as adversarial if
the norm is large than a given threshold. We adopt official
code8 of Defense-GAN and train an generative model on
train set of MNIST after 133, 500 iterations with the mini-
batch size (note that the official code of Defense-GAN only
supports three datasets, including MNIST, Fashion-MNIST,
and CelebA). The trained model achieves an accuracy of
98.7% on the test set of MNIST. We still utilize four attack
methods, including BIM, CW-L2, DeepFool and R-PGD.
After removing images that are misclassified and failed to at-
tack, we pick 6000 images to train SVMs based on our MBF
features, and leave nearly 4000 images for testing. There
are two key hyper-parameters in Defense-GAN, including
the iteration number in each gradient descent (GD) run, and
the total number of GD runs. We have tried multiple settings
of this two hyper-parameters and report the best results. The

8 https://github.com/kabkabm/defensegan/
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AUROC scores on nearly 4000 test images are shown in
Table 11. Our MBF method exceeds Defense-GAN by a
large margin on quantitative performance.

C.2. Comparison with C1&C2t/u

A recent paper called C1&C2t/u (Hu et al., 2019) discussed
the property of adversarial perturbations around benign ex-
amples, and came up with two paradoxical criteria for de-
tection. It is assumed that the adversarial example cannot
satisfy this two criteria simultaneously, while the benign
example could them both. We also adopt official code9 of
C1&C2t/u. The pre-trained classification neural network is
VGG-19 which achieves 93.4% accuracy on 1000 images
picked from CIFAR-10 (Krizhevsky et al., 2014). 600 out
of 934 correctly classified images are randomly chosen as
training images for detection, and the remaining 334 images
are used as testing images. Besides, the learning rate (LR) in
crafting white-box adversarial examples significantly affects
the detection performance of C1&C2t/u. Different values
of LR are tested, and the corresponding results are reported
in Table 12. Note that C1, C2, C2u are different variants
of C1&C2t/u. Please refer to (Hu et al., 2019) for details.
Our MBF method shows much better detection performance
than C1&C2t/u in all cases.

D. Detailed Parameters of Adversarial Attack
Four popular adversarial attack methods are adopted
to craft adversarial examples, including basic itera-
tive method (BIM), CarliniWagnerL2Attack (CW-L2),
DeepFool, and random projected gradient descent (R-
PGD). We emphasize detailed parameters of these
attack strategies for reproducibility, which are BIM
(eps=0.3, stepsize=0.05, iterations=10), CW-L2 (bi-
nary search steps=5, confidence=0.0, learning rate=0.005,
max iterations=1000), DeepFool (max steps=100), R-PGD
(eps=0.3, stepsize=0.01, iterations=40). All of the attack
strategies are implemented by Foolbox.

E. Computational Complexity
Crafting discriminative feature Compared with KD+BU
(Feinman et al., 2017), LID (Ma et al., 2018), and M-D (Lee
et al., 2018), our MBF method requires no neighboring sam-
ples to craft discriminative feature for each input example.
Recalling Eq. (8) in the main manuscript, the time complex-
ity of crafting feature â is O(N), where N = T

∑L
l=1 dl,

where dl denotes the number of response entries in l-th layer,
and T indicates the demension of the extracted MBF fea-
tures. In contrast, the main bottleneck of KD+BU lies in the

9 https://github.com/s-huu/TurningWeaknessIntoStrength/

computation of KernelDensity10, which requires the internal
response of the whole train set. As for LID, it describes the
distance between one example and its k-nearest neighbor-
ing samples in the dl-dim feature space of intermediate re-
sponses. The KNN algorithm can be quite time-consuming.
In terms of M-D, it computes the class-conditional Gaussian
distribution of the responses based on the whole train set, so
the computation of mean vector and covariance matrix of
the whole train set burdens most.

In terms of Defense-GAN (Samangouei et al., 2018), the
time complexity of generate an virtual image is O(LR),
with L being the iteration number in each gradient de-
scent (GD) run, and R being the total number of GD runs.
C1&C2t/u turns out to be the slowest algorithm, since both
C1 and C2 need to add perturbation to the input image
iteratively until misclassified. Both feed-forward and back-
forward propagation are executed during each iteration step.

The running time of our method and all competing methods
are shown in Table 13. Note that some entries in the table
are missing, as the corresponding experiments are not con-
ducted. For example, Defense-GAN is only evaluated on
MNIST, while other databases are not adopted.

Testing with SVM Since we test each sample with a RBF-
SVM, the computational complexity only depends on the
dimension of input discriminative feature d, which is O(d2),
as discussed in (Claesen et al., 2014). As a result, the
running time of MBF detection is a little longer than other
compared methods, because the feature dimension of MBF
is TL, while other methods utilize a L-dim vector or even a
scalar as feature. However, we have tested that the difference
is up to 0.05 second and can be negligible in practice.

10https://scikit-learn.org/stable/modules/generated/sklearn
.neighbors.KernelDensity.html


