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Abstract

Structural neural network pruning aims to remove the
redundant channels in the deep convolutional neural net-
works (CNNs) by pruning the filters of less importance to
the final output accuracy. To reduce the degradation of
performance after pruning, many methods utilize the loss
with sparse regularization to produce structured sparsity. In
this paper, we analyze these sparsity-training-based meth-
ods and find that the regularization of unpruned channels
is unnecessary. Moreover, it restricts the network’s capac-
ity, which leads to under-fitting. To solve this problem,
we propose a novel pruning method, named MaskSparsity,
with pruning-aware sparse regularization. MaskSparsity
imposes the fine-grained sparse regularization on the spe-
cific filters selected by a pruning mask, rather than all the
filters of the model. Before the fine-grained sparse regu-
larization of MaskSparity, we can use many methods to get
the pruning mask, such as running the global sparse reg-
ularization. MaskSparsity achieves 63.03%-FLOPs reduc-
tion on ResNet-110 by removing 60.34% of the parameters,
with no top-1 accuracy loss on CIFAR-10. On ILSVRC-
2012, MaskSparsity reduces more than 51.07% FLOPs on
ResNet-50, with only a loss of 0.76% in the top-1 accuracy.

The code is released at https://github.com/
CASIA—-IVA-Lab/MaskSparsity. Moreover, we
have integrated the code of MaskSparity into a PyTorch
pruning toolkit, EasyPruner, at https://gitee.com/
casia_iva_engineer/easypruner.

1. Introduction

Convolutional Neural Networks (CNNs) have demonstrated
a great success on a variety of computer vision tasks, like
image classification [30], detection [25], and semantic seg-
mentation [4]. However, the increasing depth and width of
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Figure 1. Visual comparison between the previous sparsity-
training-based methods and the proposed MaskSparsity method.
MaskSparity apply the sparse regularization only on the scaling
factors of less-important channels.

the CNNss also lead to higher computing resources demands
and excessive memory footprint requirements. Typically,
the widely used ResNet models [8] have millions of param-
eters, requiring billions of float point operations (FLOPs),
making it a great challenge to deploy most state-of-the-art
CNNs on edge devices. Network pruning is an effective
way to compress and accelerate CNNs. It is attracting much
attention from researchers. It can remove the parameters in
the deep CNNss and reduce the required FLOPs and memory
footprint while preserving the performance.

A typical scheme of network pruning consists of three
stages: (1) training an over-parameterized model normally;
(2) pruning the model under a certain criterion; and (3) fine-
tuning the pruned model to reduce the degradation caused
by pruning. Some of the existing network pruning methods
apply a sparsity training stage after step (1). These meth-
ods apply sparse regularization on the filter weights of the
convolution layers [1, 34] or scaling factors [14,26] of the
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Figure 2. The pipeline of the proposed MaskSparsity method.

batch normalization layers. After the sparsity training, the
corresponding filter weights or scaling factors of unimpor-
tant channels are considered to be near zero. Then these
channels could be safely pruned without affecting the out-
put values of the corresponding layers too much. We call
these methods sparsity-training-based methods.

In the sparsity-training-based methods, to get an ex-
pected sparse rate of the model, they adopt the global sparse
regularization. However, in these methods, the weights of
important channels are regularized in the sparsity training
stage, although they are preserved after the pruning. It
is generally regarded that proper regularization achieved a
good result by avoiding over-fitting. However, the model
will be under-fitted when the regularization coefficient is
too large. Since the weights of important channels are also
regularized by the sparse regularization, the magnitude of
these weights is usually decayed towards 0. This prevents
the coverage to better local minima of the network in the
sparsity training stage, which affects the final performance
of the fine-tuned pruned network. Moreover, the sparse rate
of the globally trained network is hard to control. This usu-
ally results in the inconsistency between the sparse mask
and the pruning mask if we want to prune a model to a pre-
defined FLOPS.

To address the problem mentioned above, we pro-
pose a novel sparsity-training-based channel pruning ap-
proach, MaskSparsity. Different from the previous sparsity-
training-based methods which impose the regularization on
all channels of each layer, MaskSparsity only imposes the
regularization on the specific channels selected by the prun-
ing mask, which indicates the unimportant channels, as
shown in Figure 1. Through this mask, MaskSparsity can
realize the strong correlation between pruning and regular-
ization, and carry out a pruning-aware regularization. In
other words, we only impose regularization on the channels
to be pruned and prune the channels where regularization
is applied. The perfect match between the sparse channels
and the pruning channels allows us to minimize the impact
of sparse regularization and maximize the accuracy of the
pruned networks.

Compared with the typical pruning methods which di-

rectly prune the unimportant channels, the MaskSparsity
can gradually push the unimportant parameters towards
zero in a long period of iterations during the sparsity train-
ing stage. This prevents the model from a dramatic change
of structure or weight in the pruning stage. It is regarded
that the dramatic change may result in a certain amount of
information loss which is harmful to restoring the accuracy
of the model in the fine-tuning stage.
To summarize, our main contributions are three-fold:

* We analyze the previous sparsity-training-based meth-
ods in the previous work, which simply impose L1
regularization on all channels of the model. We find
out the over-regularization problem on important chan-
nels.

* We propose MaskSparsity to solve these problems by
more fine-grained sparsity training.

* The extensive experiments on two benchmarks show
the effectiveness and efficiency of MaskSparsity.

2. Related Work

We mainly focus on the structural pruning methods in
this paper. In this section, we first review the closely re-
lated works, i.e. the sparsity-training-based structural prun-
ing methods. After that, we list other structural pruning
methods.

2.1. Sparsity-training-based Pruning Methods

To make the network adaptively converge to a sparse
structure and alleviate the damage of the pruning process
to the network’s output, some sparsity-training-based prun-
ing methods are proposed. There are mainly two categories
of these methods according to the place where sparse regu-
larization is applied.

The first category of methods is the group-sparsity-
based methods that apply spare regularization on the fil-
ter weights. Alvarez and Salzmann [1] proposed to use a
group sparsity regularizer to determine the number of chan-
nels of each layer. Wen et al. [34] proposed a Structured



Sparsity Learning (SSL) method to regularize the structure
to obtain a hardware-friendly pruned structure. Alvarez and
Salzmann [2] added a low-rank regularizer to improve the
pruning performance. Li and Gu proposed the Hinge [20]
by combining the filter pruning and low-rank decomposi-
tion into the group sparsity training framework.

The second category of methods is the indirect group-
sparse methods, which apply the sparse regularization on
the scaling factors of each layer. The representative method
is NetSlim [26] method, which sparsely regularizes the scal-
ing factors of BN layers to get the sparse structure and re-
move less important channels. Huang and Wang [14] pro-
posed to add a new scaling factor vector to each layer to
apply the sparse regularization. Srinivas and Subramanya
[32] proposed to impose sparse constraint over each weight
with additional gate variables and achieve high compression
rates by pruning connections with zero gate values. Ye and
You [37] proposed to prune channels with layer-dependent
thresholds according to the different weight distribution of
each layer. [40] develop the norm-based importance estima-
tion by taking the dependency between the adjacent layers
into consideration.

These methods apply the global sparse regularization on
the network channels, which over-regularize the important
channels. Our MaskSparsity method solves this problem
and can improve the performance of sparsity-training-based
methods to the new state-of-the-art.

2.2. Non-sparsity-training-based Pruning Methods

Recently, many non-sparsity-training-based pruning
methods also show good performance. These methods usu-
ally evaluate the importance of each channel with a hand-
craft criterion first. After that, they directly prune the unim-
portant channels and finetune the network. For instance, Li
and Kadav [18] proposed to prune filters with smaller L1
norm values in a network. Based on the theory of Geo-
metric Median (GM) [5], He and Liu proposed FPGM [13]
to prune the filters with the most replaceable contribution.
Inspired by the discovery that the average rank of multi-
ple feature maps generated by a single filter is always the
same, Lin et al. [21] proposed to prune filters by explor-
ing the High Rank of feature maps (HRank). In this paper,
we compare the performance of the proposed MaskSparsity
with these methods and show good pruning performance.

3. Methodology
3.1. Notations

We assume that a convolutional neural network consists
of multiple convolutional layers and each convolution layer
is followed by a batch normalization (BN) [15] layer. For
the [-th convolutional layer, we use C; and V; to represent
the number of its input channels and output channels, and

k; x k; represent the kernel size

We use W = {W _____ S j(\l,l)} €
RNixCixkixki o represent the filters of the I-th convolu-
tional layer. The input feature maps and the output feature
maps to filters are denoted as Z() = {1(1) 12 .. '(l)} €
RExCixhixwe and OO = {o] o 0(21)7 . og\l[)l} €

!’ !
RBXNixhi'xwi  Here, h;, wy, h;’ and w;’ are the heights

and widths of the input and output feature maps respec-
tively. B is the batch size of the input images. The i-th
channel feature map 0() € RBxm'xw’ jg generated by
W(l) € ROt xkixki gnd T ¢ RBXCixhixw;
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For the ¢-th channel of the [-th BN layer with mean ,u(-l)

M

standard deviation agl), learned scaling factor «;”’ and bias

ﬂi(l), regardless of bias of the convolutional layer, we have
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3.2. Existing Sparsity-training-based Methods

Existing sparsity-training-based methods utilize sparse
regularization loss to produce structured sparsity. Usu-
ally, the sparse regularization is either applied on the filter
weights of convolutions or the channel scaling factors of
BNs.

(a) Sparsity on filter weights. When sparse regular-
ization is applied on the filter weights of convolutions, the
training objective function of this category of methods is
shown in Equation 2:

L N;
DA ST Ly,

1=1 i=1

2
where (Z° , y) denote the training samples and the la-
bels, W denotes the trainable weights, the L( f(Z°, W) )
is the objective function of normal training, HW( g
is a sparsity regularization penalty on the filter Welghts
W, here ||

LSparsity(IOa Y, W) = L(f(IO

- ||g is the group Lasso, HWi(f:)’:’:Hg
2
\/ZCZ Zkl Zkl (Wflj) ks kz) . A s the factor of control-

ling the strength of sparsity.

(b) Sparsity on channel scaling factors. When sparse
regularization is applied on the channel scaling factors of
the BN layer, the training objective function of this category
of methods is shown in Equation 3:

L N

DA S,
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where (Z° , y), L(f(Z° W),y), and X denote the same
mean as above. H%-(l) |4 is a sparsity regularization penalty

LSparsity(on Y, W) = L(f(IO



on the scaling factors -y of BN layers. || - ||4 is usually set as
L1 regularization, and L2 regularization is available either
as [7,33].

In this paper, we choose the sparsity regularization
penalty on the channel scaling factors for further inves-
tigation.

As with the normal regularization methods, the received
gradients of the scaling factors from the normal training loss
L and the sparsity regularization || - ||, are usually against
each other during training. The former aims at improving
the model performance on the training set. The latter aims
at restricting the range of the parameters and increasing the
structure sparsity, which tends to increase the loss on the
training set. The sparsity-training-based pruning method
thinks that the unimportant convolutional channels are eas-
ily pushed to near O by || - ||, while the value of important
channels is kept large by || - ||,

3.3. The Over-regularization Problem of Existing
Sparsity-training-based Methods

Figure 3 shows the statistical results of two sets of scal-
ing factors (absolute value) collected from the normally-
trained and sparsely-trained ResNet-50 on ILSVRC-2012.
In Figure 3, the purple histogram is the distribution of the
normally-trained network, while the green histogram repre-
sents that of the sparse-trained network. Figure 3 shows that
the scaling factors of the normally-trained network form
one peak and those of the sparsely-trained network form
two peaks. This is consistent with the bimodal-distribution
observation of OT [38].
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Figure 3. Distribution of scaling factors of ResNet50 before and
after global sparsity training.

Obviously, the left scaling-factors peak of the sparsely-
trained network represents the unimportant channels and the
right peak represents the important channels. With Figure
3, we demonstrate the over-regularization problem of the
existing sparsity-training-based methods, which are men-
tioned in the introduction.

It can be seen that the right peak of the sparsely-trained

network moves to 0 obviously, compared with their location
in the histogram of the normally-trained network. This is
a common phenomenon of the model regularization meth-
ods, i.e. the regularization cause a smaller magnitude of the
model parameters. A small regularization usually leaders
to better generalization performance on the test set. How-
ever, a too large regularization leads to under-fitting. This
is because the regularization limits the network’s capacity.

The modern CNNs are usually trained with weight de-
cay, which is widely regarded to be similar to L2 regular-
ization, especially under the SGD optimizer [6]. This is
usually tuned to a proper magnitude to get the best perfor-
mance. Moreover, the sparse regularization is regarded to
push a large partition of a channel to be near 0. This requires
a large weight for the sparsity loss. Therefore, we think the
newly applied sparse regularization on the unpruned chan-
nels is over-regularization. It should be avoided.

3.4. Pruning-aware Sparse Regularization

Therefore, we propose a fine-grained sparsity training
method that only applies the sparse regularization on the
unimportant channels to keep a maximum representation
ability of the important channels.

The task of sparsity training consists of two sub-tasks
implicitly. The first sub-task is identifying the unimportant
channels. The second sub-task is pushing the filter weights
or scaling factors of unimportant channels to O by the sparse
regularization loss. Existing sparsity-training-based meth-
ods accomplish the two sub-tasks simultaneously in the
sparsity training stage. We propose to decouple the two sub-
tasks. By doing this, we can apply the fine-grained spare
regularization, which only sparse out the unimportant chan-
nels.

Figure 2 shows the training pipeline of the proposed
MaskSparsity. We transform the sparsity training stage of
the existing methods into two stages. The first stage is
the sparsity training stage with global sparse regularization,
which is aimed to get the indexes of the unimportant chan-
nels. The indexes are transformed into a binary pruning
mask in previous methods. In our method, we use the mask
to identify which channels to apply the sparse regulariza-
tion in the second stage. To get the pruning mask, we di-
rectly threshold the scaling factors of the normally trained
network. The details is shown in Equation 4:

M ={1(y <)y €T}, @)

where 1 is the indicator function, I" is all the scaling factors
of the network, and 0 is the predefined pruning threshold of
the pruning method. Actually, the pruning mask M consists
of the unimportant-channel mask of each layers, i.e. M =
{MD M) MENY where L is the layer count of the
network. According to Equation 4, the pruning masks M,
is a binary vector consisting of 0 and 1.



Algorithm 1 Algorithm Description of MaskSparsity

Input: training data: {X’, y}, pruning threshold 6.
1: Inmitialize: pretrained model parameter W = {W,;,0 <
i <L}
For:epoch = 1; epoch < epoch,qz.; epoch + +
2: Update the model parameter W based on {X,y} and,
using the global sparse regularization as in Equation 3;
Endfor:
3: Obtain the pruning mask M by thresholding v with 6;
4: Reinitialize: pretrained model parameter W =
{W;,0<i< L}
For:epoch = 1; epoch < epoch,,qz; epoch + +
5: Update the model parameter W based on {X,y} , the
mask-guided sparse regularization as shown in Equa-
tion 5 with the mask M; Endfor:
6: Obtain the compact model W* from W;
7: Finetune the compact model W*;
Output: The compact model and its parameters W*.

As discussed above, the over-regularization of the im-
portant channels limits the network capacity. Therefore, in
this paper, we design a fine-grained sparse training strat-
egy to alleviate the damage of the sparse regularization loss
on important channels. Specifically, we propose to apply
the sparse regularization only on the unimportant channels.
Based on Equation 3, we can describe our MaskSparsity
method as the Equation 5:

L N
LSparsity(Ianvw) = L(f(IO,W),y)-f—)\Z ZMgl)H%(l)Hg 9
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where M denotes the binary mask, indicating the unimpor-
tant channels of the whole network. For the important chan-
nels, the values in the channel mask are 0. Therefore, these
channels are not affected by the sparse regularization and
are trained as normal.

4. Experiments
4.1. Experimental Settings

Datasets. To demonstrate the effectiveness of Mask
Sparsity in reducing model complexity, we evaluate
MaskSparsity on both small and large datasets, i.e., CIFAR-
10 [16] ,and ILSVRC-2012 [30]. The CIFAR-10 dataset
consists of natural images of 10 classes with resolution
3232 and the train and test sets contain 50,000 and 10,000
images respectively. The ImageNet dataset consists natu-
ral images of 1000 classes with resolution 224 x 224 and the
train and test sets contain 1.2 million and 50,000 images re-
spectively. We experiment with ResNet-50 [9] on ILSVRC-
2012, and experiment with ResNet-56 [8] and ResNet-110

[8] on CIFAR-10.

Codebase and Baseline. We directly deploy our algo-
rithm on two popular codebases in github'-? for the experi-
ments on cifar-10, cifar-100, and ILSVRC-2012. We hardly
ever change any of the origin codes, except for adding the
codes of our algorithm. Due to the difference in the train-
ing strategy of the baseline with other methods, we have
the higher baseline accuracy on the evaluation datasets. It
should be pointed that a higher baseline makes it difficult
for the pruning algorithms to keep the accuracy after prun-
ing.

Evaluation Protocols. We use the number of parame-
ters and the FLOPS [£&] to evaluate the complexity of the
networks. To evaluate the accuracy, we use top-1 and top-5
score of full-size models and pruned models on ILSVRC-
2012 and top-1 score only on CIFAR-10.

Training and Pruning setting. All the training-related
hyper-parameters follow the two above-mentioned GitHub
repositories. We use the same hyper-parameters during the
normal training stage, the two sparsity training stages, and
the finetuning stage in Figure 2. Specifically, on CIFAR-
10, we train models for 200 epochs with a batch size of
128, a weight decay of 0.0005, a Nesterov momentum of 0.9
without dampening in every stage, and an initial learning
rate of 0.1 which is divided by 5 at epochs 60, 120 and 160
on four NVIDIA GTX 1080Ti GPUs; On ILSVRC-2012,
we train models for 100 epochs with a batch size of 256, a
weight decay of 0.0001, a Nesterov momentum of 0.9 with
dampening in every stage, and an initial learning rate of 0.1
which is divided by 10 at epochs 30, 60 and 90 on eight
GPUs.

We set \ as 2¢~4 and 5e~* separately for the global spar-
sity training stage and the mask sparsity training stage. We
only manually set them without too much tuning. We think
the former should be set lower since it affects all channels
of each layer. Moreover, in the two sparsity training stages,
we reinitialize the network with a normally-trained model.

For the pruning mask generation step after the global
sparse regularization stage, we use a threshold of le~2.
This thresholding step is to generate a sparse mask for the
mask sparse regularization stage. Also, we use this sparse
mask as our final pruning mask after the mask sparse reg-
ularization. In this way, we perform the pruning-aware
sparse regularization on the network.

After pruning, we fine-tune the pruned models with an
initial learning rate of 0.001, and keep other parameter set-
tings the same as the previous step, on both the datasets.

Uhttps://github.com/weiaicunzai/pytorch-cifar100
Zhttps://github.com/facebookresearch/pycls



Table 1. Evaluation results using ResNet-50 on ILSVRC-2012.

Method Base Base Pruned Pruned Top-1) Top-5) FLOPs|
Top-1(%) Top-5(%) Top-1(%) Top-5(%) (%) (%) (%)
NS [26] 75.04 - 69.60 - 5.44 - 50.51
OT [37] 75.04 - 70.40 - 4.64 - 52.88
SFP[11] 76.15 92.87 74.61 92.06 1.54 0.81 41.8
GAL-0.5 [23] 76.15 92.87 71.95 90.94 4.20 1.93 43.03
HRank [22] 76.15 92.87 74.98 92.33 1.17 0.54 43.76
Hinge [20] - - 74.7 - - 46.55
HP [35] 76.01 92.93 74.87 92.43 1.14 0.50 50
MetaPruning [27] 76.6 - 75.4 - 1.2 - 51.10
Autopr [29] 76.15 92.87 74.76 92.15 1.39 0.72 51.21
FPGM [13] 76.15 92.87 74.83 92.32 1.32 0.55 53.5
DCP [41] 76.01 92.93 74.95 92.32 1.06 0.61 55.76
ThiNet [28] 75.30 92.20 72.03 90.99 3.27 1.21 55.83
EagleEye*! [17] 77.21 93.68 76.37 92.89 0.84 0.79 50
MaskSparsity (ours) 76.44 93.22 75.68 92.78 0.76 0.44 51.07
HRank [22] 76.15 92.87 71.98 91.01 4.17 1.86 62.10

! The baseline of EagleEye* is obtained by evaluating the weight provided by the authors.

4.2. Results and Analysis
4.2.1 Results on ILSVRC-2012

As shown in Table 1, our proposed MaskSparsity achieves
the new state-of-the-art. NS [26] is the baseline method
of MaskSparsity, which adopts the global sparse regular-
ization on the scaling factors of BN layers. OT [37] is the
improved NS method, which sets an optimal threshold for
each layer. It can be seen that the MaskSparsity outperforms
them significantly in the respect of accuracy drop (Top-1 |
and Top-5 | in Table 1) under roughly the same level of
FLOPS drop. This shows that with the fine-grained sparse
regularization, we avoid the bad effect of the sparse regu-
larization on the unpruned channels. Moreover, as shown
in the ablation study 4.3, with MaskSparsity, the pruning
threshold on the scaling factors is easier to set.

In Table 1, it can be seen that we also outperform
the non-sparsity-training-based methods under the same
FLOPS decrease rate, e.g., FPGM [13] (53.5% FLOPS re-
duced), DCP [41] (55.76% FLOPS reduced), MetaPrun-
ing [27] (51.10% FLOPS reduced), and EagleEye [17]
(50% FLOPS reduced). While the FLOPS reduction of
MaskSparsity is less than HRank (53.76% vs 62.1%), the
accuracy of the pruned model is much higher than that of
HRank (0.93 vs 4.17 in Top-1 accuracy drop). This shows
MaskSparsity’s superiority over the previous state-of-the-
art methods.

4.2.2 Results on CIFAR-10

Table 2 shows the experimental results of ResNet-56 on
CIFAR-10. On this small dataset, MaskSparsity also
achieves the state-of-the-art performance. Under simi-
lar FLOPs reduction with FPGM [13] and Hinge [20],

Table 2. Evaluation results using ResNet-56 on CIFAR-10.

Base Pruned Top-1 ) FLOPs]
Method Top-1(%) Top-1 (%) (%) (%)
NISP [39] - - 0.03 42.6
Hinge [20] 93.69 92.95 0.74 50
AMC [12] 92.8 91.9 0.9 50
LeGR [3] 93.9 93.7 0.2 52
FPGM [13] 93.59 93.26 0.33 52.6
LFPC [10] 93.59 93.24 0.35 52.9
MaskSparsity (ours)| 94.50 94.19 0.31 54.88
GAL-0.8 [23] 93.26 90.36 2.9 60.2
HRank [22] 93.26 90.72 2.54 74.1

MaskSparsity achieves 0.31% Top-1 accuracy drop with
ResNet-56, which is slightly better than FPGM [13] (0.31%
vs 0.33%) and Hinge [20] (0.31% vs 0.74%).

Table 3 shows the experimental results of another net-
work, ResNet-110 on CIFAR-10. With this deeper network,
MaskSparity achieves a better performance. As shown in
Table 3, our MaskSparsity outperforms the other state-of-
the-art methods, like HRank [22] (at 58.2% FLOPS reduc-
tion), under roughly the same ratio of FLOPS reduction.
MaskSparsity has roughly the same accuracy increase with
FPGM [13] (0.02 vs 0.06 ) , but MaskSparsity has a larger
FLOPS reduction than these two methods(63.03% vs 52.3%
and 60.89%).

Table 4 shows the experimental results of VGG-16,
which is a straight network structure that is different from
ResNet. We compare MaskSparsity with NetSlim (NS)
[26], FPGM [13], and PFEC [19]. It shows that we outper-
forms NS [26] and PFEC [19] on both accuracy and FLOPS
reduction. Compared with FPGM [13], we are 0.04 % less



Table 3. Evaluation results using ResNet-110 on CIFAR-10.
Base Pruned Top-1J FLOPs|

Method Top-1(%) Top-1(%) (%) (%)
Lietal. [19] 93.53 9330 023  38.60
SFP[11] 9368 9386 -0.18 408
NISP-110 [39] - - 0.18 4378
GAL-0.5 [23] 9350 9274 076 485
FPGM [ 3] 9368 9374 006 523
HRank [27] 93.50 9336 0.4 582
LFPC [10] 93.68 9307 061 603
MaskSparsity (ours)| 94.70 94.72 -0.02  63.03
HRank [27] 93.50 9265 085 686
SASL [31] 93.83 9380 003 702

Table 4. Evaluation results using VGG-16 on CIFAR-10. FT: fine-
tuning.

Base before FT Top-1] FLOPs|

Method Top-1(%) FT(%) (%) (%) (%)
PFEC [19] 93.58 77.45 93.28 0.3 34.2
FPGM [13] 93.58 80.38 94.00 -0.42 34.2
NS [26] 93.66 - 93.80 -0.14 51

MaskSparity(ours)| 93.86 94.16 94.24 -0.38 52.21
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Figure 4. Distribution of scaling factors of ResNet50 on ILSVRC-
2012 before and after the MaskSparsity’s sparsity training.

than FPGM on the increase of the accuracy, which is very
minor. However, we decrease 18.01% more FLOPS than
FPGM. Therefore, we also outperform FPGM in general
pruning performance. Moreover, we also compare the ac-
curacy drop of the pruned model without the fine-tuning
stage. It can be seen in the third column of Table 4 that
the MaskSparsity suffers a weaker accuracy drop than the
other methods.

4.3. Ablation Study

Visualization of the distribution of the scaling factors
after using MaskSparsity. In Section 3.3 and Figure 3, we
show that the distribution of scaling factors meets the over-
regularization problem that might damage the pruning per-
formance. In Figure 4 we draw the distribution of the same
set of scaling factors after the mask-guided sparse regular-
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Figure 5. The gradients of the scaling factors of some certain chan-
nel at the end of the sparsity training stage. Both important and
unimportant channels are visualized. (a) The important channel,
global sparsity. (b) The unimportant channel, global sparsity. (c)
The important channel, MaskSparsity. (d) The unimportant chan-
nel, MaskSparsity.

ization and compare it with that of the pre-trained networks.
It can be seen that the two problems are alleviated signifi-
cantly. The right peak of the sparsity trained network does
not move towards O like in Figure 3. Moreover, the two
peaks are well distinguishable, with almost no in-between
bars in the middle area. This demonstrates the effectiveness
of the fine-grained sparse regularization of MaskSparsity,
which would benefit the pruning performance.

The convergence analysis by visualizing the gradi-
ents. To validate the statement that the sparse regularization
on unpruned channels restricts the network’s capacity, we
visualize the gradients of important and unimportant chan-
nels after the sparsity training using global and fine-grained
sparse regularization, respectively. The result is shown in
Figure 5. The gradients are collected by continuing train-
ing for 1,000 iterations from the end of the sparsity training
stage of ResNet-50 on ILSVRC-2012. In Figure 5 (a), it
can be seen that the gradient norm of the important chan-
nels is still large for the important channels with the global
sparse regularization, while Figure 5 (b) shows the impor-
tant channel has a small gradient norm with our fine-grained
MaskSparsity sparse regularization. Figure 5 (b) and (d)
shows that both the gradients of unimportant channels with
the two kinds of sparse regularization methods are almost
the same. According to these figures, although the net-
work’s accuracy and sparsity have converged, the global
sparse regularization leads to a larger gradient on the im-
portant channels. We infer that the large gradient prevents
the network converges to a better local minimum.

Comparing fine-tuning and train-from-scratch. In
Table 5, we list the network model’s accuracy and computa-
tional complexity at different pruning stages. Moreover, we
also list the result that trains the pruned model from scratch



Table 5. The stage-wise performance in the case of pruning
ResNet-56 on CIFAR-10.

Table 7. Evaluation results of MaskSparsity based on uniform
pruning mask of ResNet-50 on ImageNet.

Model state ‘ Top-1(%) FLOPs Parameters

Normally trained 94.50 126M 853K
MaskSparsity trained 94.02 126M 853K
Pruned 92.67 5T™M 419K
Finetune 94.19 5T™M 419K
Train from Scratch 93.60 5™ 419K

Table 6. Evaluation results of MaskSparsity using the pruning
mask of EagleEye.

Model state ‘Top-l(%) Top-5(%) FLOPs|(%)

Unpruned Resnet-50 77.21 93.68 -
EagleEye [17] 76.37 92.89 50.0
MaskSparsity + EagleEye 76.69 93.22 50.0

without exploiting its weights. It can be seen that the train-
from-scratch result is lower than the fine-tuning result. We
think this demonstrates the effectiveness of the fine-grained
sparsely-trained pre-trained weights.

The performance on the pruning mask generators.
As discussed above, the above pruning process consists of
two key elements, i.e. identifying the unimportant channels
and pushing them to 0 by sparse regularization. This paper
uses global sparsity training to generate the pruning mask.
To show the MaskSparsity’s generalization on other pruning
mask generators, we apply it to two other pruning methods
and show the superiority on the performance. Except for
the pruning mask generating method, the other stage is the
same as the pipeline in Figure 2.

Firstly, we directly use the codebase of EagleEye [17]
and use the pruning mask after its searching process to
conduct our mask sparse regularization stage. We reuse
the hyper-parameters of EagleEye’s finetuning stage in our
sparse regularization. Table 6 shows the experimental re-
sults. Under the same pruning mask after pruning, the top-1
accuracy increased by 0.32% over the original EagleEye.
This shows the scalability of MaskSparsity on state-of-the-
art methods.

Secondly, we try the naive pruning method that directly
pruning the same portion of channels of each layer. We call
this naive pruning method as Uniform Pruning. Experimen-
tal results on ResNet-50 are shown in Table 7. It can be seen
that MaskSparsity improves this naive pruning method to
SOTA-level performance. This demonstrates the effective-
ness of MaskSparsity on pushing the unimportant channels
to near 0 without too much damage on the important chan-
nels.

Masksparsity with different Regularization. In this
paper, we mainly use the L1 regularization to generate the

Top-1 Top-5 FLOPs|

Model state (%) (%) (%)

Unpruned Resnet-50 76.44 93.22 -
Direct pruning with Uniform Mask | 74.23 9228  53.46
MaskSparsity with Uniform Mask | 75.62 92.68  53.46

Table 8. Evaluation results of MaskSparsity with different regular-
izations of ResNet-56 on CIFAR-10.

Model state ‘Top—l(%) Top-5(%) FLOPs|(%)

Unpruned Resnet-56 94.50 99.79 -
MaskSparsity with L1 94.19 99.81 54.88
MaskSparsity with L2 93.99 99.8 54.88

Table 9. Evaluation results of MaskSparsity on an YOLOvVS5s-
based face detector on WiderFace.

Model state ‘mAP[Easy] FLOPS Param

92.38% 4.1G 3.5M
91.86% 2.0G 1.6M

YOLOVSs
YOLOv5s+MaskSparsity

network sparsity. To show the compatibility of MaskSpar-
sity with other specific forms of regularizations, we replace
the L1 regularization with L2 regularization in the mask
sparse training stage. We conduct this ablation study us-
ing ResNet-56 on CIFAR-10. The experimental results are
shown in Table 8. It can be seen that there is little differ-
ence in accuracy between the result of L1 regularization in
MaskSparsity stage and L2 regularization. The accuracy of
L1 regularization in MaskSparsity stage is 0.2 points higher
than L2 regularization.

4.4. Application on Other Tasks

To validate the generalization ability, We apply the
method to two different object detection tasks. The first is
the face detection based on YOLOV5® evaluated on Wider-
Face [36]. The second is the car detection based on Faster-
RCNN-FPN [24] evaluated on PASCAL VOC. The results
are listed in Table 9 and Table 10. For Faster-RCNN-FPN,
we only prune the backbone part and report the backbone’s
FLOPS and parameters. From these experimental results,
the pruned models of both tasks maintain roughly the same
level of accuracy. It can be concluded that MaskSparsity
applies to other tasks.

5. Conclusion

In this paper, to solve the problem that existing sparsity-
training-based methods over-regularize the important chan-

3https://github.com/ultralytics/yolovs



Table 10. Evaluation results of MaskSparsity on an FPN-based
car detector on PASCAL VOC. The input size is 1000x600 and
the backbone is ResNet-50.

Model state

| mAP  FLOPS Param

Faster-RCNN-FPN
Faster-RCNN-FPN+MaskSparsity

89.7% 49.95G 23.5M
89.3% 23.773G 11.4M

nels, we design a pruning-aware sparse training method,
named as MaskSparsity. MaskSparsity only applies the
sparse regularization on the unimportant channels which
are to be pruned. Therefore, MaskSparsity can minimize
the negative impact of the sparse regularization on the im-

portant channels.

The method is effective and efficient.

The experimental results show that it outperforms the other
sparsity-training-based pruning methods and achieves the
state-of-the-art on the benchmarks. In the future, we plan to
work on how to obtain better pruning masks.
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