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Abstract

Automated Machine Learning(Auto-ML) pruning meth-
ods aim at searching a pruning strategy automatically to
reduce the computational complexity of deep Convolutional
Neural Networks(deep CNNs). However, some previous
work found that the results of many Auto-ML pruning meth-
ods cannot even surpass the results of the uniformly pruning
method. In this paper, the ineffectiveness of Auto-ML prun-
ing which is caused by unfull and unfair training of the su-
pernet is shown. A deep supernet suffers from unfull train-
ing because it contains too many candidates. To overcome
the unfull training, a stage-wise pruning(SWP) method is
proposed, which splits a deep supernet into several stage-
wise supernets to reduce the candidate number and utilize
inplace distillation to supervise the stage training. Besides,
A wide supernet is hit by unfair training since the sampling
probability of each channel is unequal. Therefore, the full-
net and the tinynet are sampled in each training iteration
to ensure each channel can be overtrained. Remarkably,
the proxy performance of the subnets trained with SWP is
closer to the actual performance than that of most of the
previous Auto-ML pruning work. Experiments show that
SWP achieves the state-of-the-art on both CIFAR-10 and
ImageNet under the mobile setting.

1. Introduction

Deep convolutional neural networks(deep CNNs)[16}
341110, 118] have achieved outstanding results in many com-
puter vision tasks. However, deep CNNs comes with a huge
computational cost, which limits application on embedded
devices(i.e. mobile phone).

To expand the application scope of deep CNNSs, channel
pruning methods were proposed. Traditional channel prun-
ing methods always rely on human-design rules[12,|3]. Re-
cently, inspired by the Neural Architecture Search(NAS),
some AutoML-based pruning work[11} 27, 42] has been
proposed to automatically prune channels without a human-
design mode. Considering a network with 10 layers(each

layer contains 32 channels), the candidates of each layer
and the whole network could be 32 and 32'°, respec-
tively. Thus, AutoML-based pruning methods can be seen
as fine-grained NAS because of more candidates than nor-
mal NAS[8| 2| 25]] in each layer.

For above mentioned AutoML-based methods, some based
on reinforcement learning or evolutionary algorithm[/19} |11}
3] are quite time-consuming due to iterative retrain for
each pruned network. To reduce the computation in prun-
ing, some AutoML-based work[45] 44| 27| |42] shares the
weights through training a supernet for all candidate pruned
networks which are called subnets. A typical weight-
sharing pruning approach contains three steps: training a
supernet by iteratively sampling and updating different can-
didates, searching the best subnet based on the evolution-
ary or greedy algorithm and training the best subnet from
the scratch. However, Chu[J5] considered that the weight-
sharing method causes unfull training in the first step since
each candidate(subnet) has only a small sampling probabil-
ity in training. Moreover, unfull training leads to an inaccu-
rate evaluation in the second step, which means some candi-
dates perform well on weight-sharing while bad on training
from the scratch. The problem of inaccurate evaluation is
particularly obvious in AutoML-based pruning because of
more candidates contained in the supernet. Moreover, the
width of a supernet also has an impact on the effectiveness
of evaluation, which is analyzed in Sec. 3.1

To solve the above-mentioned problem, a stage-wise train-
ing and searching approach is proposed in this paper. In-
spired by [22], we consider to divide a deep supernet into
several stage-wise supernet(i.e. ResNet50[10] consists of 4
stages) for reducing the depth of the supernet. Since each
stage of the supernet can be trained and searched indepen-
dently, the candidate number in one stage is an exponential
reduction compared with the whole supernet. With a small
search space in each stage, the sampling probability of the
candidates is raised, which means that each supernet can be
fully trained. To alleviate the unfair training result caused
by the width of the supernet, both the fullnet and the tinynet,
which has the largest and smallest width respectively, are



trained in each iteration. Besides, we present a distributed
evolutionary algorithm where each stage can be searched in-
dependently in terms of an evolutionary algorithm(EA). The
constraints(i.e. FLOPs, latency) for each EA are provided
by another EA, called EA manager, where the EA manager
searches for the best combination of FLOPs in each stage.
Due to small and independent stage-wise search space, each
EA can be sped up in a parallel way.

However, the stage-wise supernet in each stage cannot be
trained without internal ground truth. To solve such the
problem, an existing pre-trained neural network was used to
generate stage-wise feature maps that are viewed as ground
truth in each stage. Nevertheless, It is also time-consuming
to obtain a pre-trained neural network as the teacher net-
work. Besides, the structural difference between the teacher
network and the student networks has a strong impact on
distillation results. Hence, a stage-wise inplace distillation
method is put forward for the fullnet(the largest width sub-
net) to supervise the learning of subnets. It is worth noting
that the fullnet is jointly trained with other subnets. Thus,
there does not exist an extra cost for obtaining the fullnet.
Our contribution lies in four folds:

e We propose a stage-wise training and searching
pipeline for both channel pruning and NAS. By split-
ting a CNN into several stages, the number of stage-
wise candidates is exponential reduction in contrast to
the net-wise candidates. Hence, each candidate obtains
full training, which is the essence of accurate evalua-
tion for searching.

* To conveniently provide stage-wise ground truth for
each stage, a stage-wise inplace distillation method
is presented through the joint training of the fullnet
and subnets. Thus, the fullnet can easily supervise the
learning of the subnets by offering stage-wise feature
maps.

* To accelerate the searching process, a distributed evo-
lutionary algorithm is suggested. Each stage can be
searched by the EA with constraints given by an EA
manager in a parallel way.

e Experiments shows that the proposed method can
enhance the ranking effectiveness of searching and
achieve the state-of-the-art in several datasets.

2. Related Works

Neural Architecture Search. The purpose of neural
network structure search is to automatically find the opti-
mal network structure with reinforcement learning(RL)[47,
48], evolutionary algorithm(EA)[31], gradient [25] [39] 4]
and parameter sharing methods[30l 12, [8]. RL-based and

EA-based methods need to evaluate each sampled net-
work by retraining them on the dataset, which is time-
consuming. The gradient-based method can simultaneously
train and search the optimal subnet through assigning a
learnable weight to each candidate operation. However, the
gradient-based approach causes unfair training results be-
cause some candidates obtain more learning resources than
others[S]. Moreover, since gradient-based approaches need
more memory for training, it cannot be applied to the large-
scale dataset. Parameter sharing methods can search on the
large-scale dataset by only activating one candidate in each
training iteration. Nevertheless, parameter sharing methods
cause unfull training results[S]]. Unfull or unfair training re-
sults will cause an inaccurate evaluation of searching, which
means that the best-searched architecture is not the opti-
mal one after retraining. To solve such a problem, Li[22]
proposed a blockwisely searching method, which can more
fully train each sampled subnets.

Pruning for CNNs. Pruning some redundant weights is
a prevalent method to accelerate the inference of CNNs.
According to the different granularity of pruning, it is di-
vided into weight pruning and channel pruning. For weight
pruning, the individual weights in the channel are removed
based on some rules[9], which causes unstructured sparse
filters and cannot be accelerated directly on most hardware.
Therefore, much recent work focus on channel pruning.
Channel pruning methods [26] [13| [19} |40} [12] can accel-
erate the inference of CNNs on general-purpose hardware
by reducing the number of filters since the remaining fil-
ters are structural. Though the above methods achieve re-
markable improvement in the practicality of pruning, it still
needs human-designed heuristics to guide pruning.
Auto-ML pruning. Recently, inspired by NAS work, Au-
toML pruning methods|[l11} 27, 42| 45! 44] have attracted
growing interest in automatically pruning for deep CNNss.
Different from NAS, the candidate choices are consecu-
tive in the channel pruning task. Compared with pruning
methods based on the human-craft rule, AutoML pruning
methods aim to search for the best configuration without
manual tuning. AMC|L1]] adopted a DDPG agent to sam-
ple a pruned network. And the performance of the pruned
networks is evaluated by training from the scratch, which
is time-consuming and cannot be applied to a large-scale
dataset. MetaPruning[27] trained a PruningNet that can pre-
dict weights for any pruned networks, while the parameter
amount of the PruningNet is several times of the target net-
work, which leads to unfull train. AutoSlim[42] first trained
a slimmable network[45] where the weights between dif-
ferent widths are shared through the supernet, and then
searched the best subnet in terms of the greedy algorithm.
However, the width of the convolutional layer in each sub-
net must be the same in training. This leads to the prob-
lem that the best subnet achieves the highest accuracy with
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Figure 1. (a) The expectation of top-1 accuracy collected from ResNet56(10] with different candidate number in one layer. The blue and
red dash line denotes ResNet56 trained on CIFAR10[35] under 100 epoches and 500 epoches, respectively. (b) The expectation of top-1
accuracy collected from ResNet18[10] , ResNet34[10] and ResNet56 with different candidate number in one layer. All models are trained

under 100 epoches on CIFAR10[35].

weight sharing, but at the same time, the best subnet gets
poor performance when trained from the scratch. To keep
the consistency of searching and retraining results, the pro-
posed stage-wise pruning method splits a CNN into several
stages and trains them separately under the supervision of
the fullnet, which will be explained in Sec.3.

Knowledge Distillation. Knowledge distillation is used to
train the small student model on a transfer feature set with
soft labels or intermediate representations provided by the
large teacher model. Soft targets lead to the superior per-
formance of knowledge distillation[[14]]. However, as the
network is designed to become deeper and deeper, it is not
enough to just transfer knowledge to a student network from
a teacher network by soft targets. To solve such a prob-
lem, some previous work[32] 146} 41} 38 129] transferred the
knowledge for the student network from the internal rep-
resentation of the teacher network. All existing work as-
sumed that the teacher network has been pretrained. Never-
theless, it is always time-consuming to train from scratch to
obtain a pretrained teacher network that is essential for var-
ious knowledge distillation methods. For example, it may
cost more than 10 GPU days to train a ResNet on ImageNet.
Moreover, Liu[20] found that the architecture of the teacher
and the student networks has a huge impact on transferring
results. Hence, we proposed a stage-wise inplace distilla-
tion method to overcome the gap and to reduce the time
consumption.

3. Stage-wise Pruning

The problem of inaccurate evaluation caused by weight
sharing is introduced in Sec. 3.1. We find that the depth and
width of the supernet have an impact on training adequacy.
Thus, the stage-wise inplace-distillation is proposed in Sec.
3.2 to alleviate the aforementioned drawbacks. To effi-

ciently search the optimal subnet from supernet trained by
the stage-wise inplace-distillation, we present a distributed
evolutionary algorithm in Sec. 3.3.

3.1. Challenge of Weight sharing

AutoML pruning methods always need to train a super-

net that shares weights for all subnets firstly and almost im-
mediately evaluates the accuracy for each subnet. For many
AutoML pruning approaches [L1, 27, 42], pruning candi-
dates(subnets) directly compare with each other according
to evaluation accuracy. The subnets with higher evaluation
accuracy are selected and expected to deliver high accuracy
after training from the scratch. However, such an intention
cannot be necessarily achieved since some subnets which
have outstanding performance on shared parameters per-
form poorly after training from scratch.
To visualize the performance drop of weight-sharing, we
train a supernet with different candidate numbers. For
a trained supernet, we randomly sample a batch of sub-
nets from the supernet and evaluate them on the validation
dataset. Statistical accuracy expectation F(asyper) is uti-
lized to evaluate whether the supernet is adequately trained.
E(asuper) is written as

E(asuper) = Z Asub; (1)
1=1

where n denotes the number of the randomly sampled sub-
net and a,p, represents the accuracy of ith subnet. As
shown in Figure [I{a), with the increase of the candidate
number, the top-1 accuracy expectation of supernet dramati-
cally degrades under 100 epochs while it falls slightly under
500 epochs. Moreover, we train three different depth super-
nets and then calculate their E(asyper)s. It is found that the
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Figure 2. Illustration of the stage-wise training. There are three forms of the network, including the fullnet, the subnet and the tinynet. The
fullnet infers inputs once to generate and transfer its knowledge to the subnet and the tinynet by minimizing the L2-distance between the
their stage-wise output feature maps. It is worthy to note that these three networks are weight sharing.

expectation of top-1 accuracy is related to the depth of the
CNN, which is shown in Figure[I[b). Next, the problem of
weight sharing in terms of depth and width is discussed.
The depth of supernet. CNNs(i.e. ResNet152[10]) is de-
signed deep to enhance the representative ability, which ex-
ponentially increases the subnet number in pruning. The
subnet number N that inherit weights from the supernet can
be formulated as

IN|| = g" 2)

where g denotes the candidate number for each convolu-
tional layer and L represents the depth of the CNN. For the
channel pruning of a deep CNN, the search space N is al-
ways large(e.g., > 305°). Hence, many subnets get unfull
training results due to weight sharing, which leads to the in-
effectiveness of evaluation.

The width of layers. Some Auto-ML pruning work[42]
[44]] train a single neural network executable at dif-
ferent widths as the supernet. There is not only cross-layer
weight sharing but also within the layer. In one layer, the
parameters of different widths(candidates) are shared. For
instance, all parameters of 0.25x(width scaled by 0.25 of
the original width) are shared with the half parameters of
0.5x. Each sampling on any training step is independent of
each other. Thus, for n training steps, the sampling times

expectation of :th channel can be formulated as

1—1
m

B(e) = (1-—)n 3)
where m denotes the channel number in the layer. There-
fore, the channels with small indexes can be trained more
times, which causes unfair training results. Formally, we
consider a common supernet that contains L layers, each
with m channels. In pruning, a group of ratio sequence R
can be obtained under certain constraint(i.e. FLOPs), where
each ratio sequence r = [cy, ..., c1] € R. Because of inde-
pendent sampling in each layer, the sampling times expec-
tation of r can be described as

E(r) = E(c1)E(cq)...E(er) 4

According to the inequality of arithmetic and geometric
means, we have

L
L Ele
B(r) < (2= )y B
L
Equality holds if and only if ¢; = ¢co = ... = ¢ = ¢.
Hence, )
B(r) < (1= =——)n)" ©
m



That is to say, the subnet with uniform sampling obtains
the most training resource under certain constraint, which
means that the pruning strategy of previous work always
prone to get a uniform sampling model.

3.2. Stage-wise Inplace Distillation for Training

As mentioned before, too many candidates in training
can lead to ineffective evaluation on searching because of
unfull training results. To adequately train the supernet, we
divide the supernet S into N stages according to the depth.
Hence, the search space of supernet S can be represented as

S = [Sla'"aShS’i-‘rla'“aSN] (7)

where S; denotes the stage-wise supernet of ith stage. Then
we can train the supernet by training the stages separately.
The learning of the stage 7 can be formulated as

W .*

3

= minWi Lirain (Wu Si; X, Y) ()

where X and Y denote the input data and the groud truth
labels, respectively. Subsequently, the candidates number
for ¢ th stage can be written as

1S:]] = g™ )

where L; denotes the depth of the th stage and it is smaller
than L. The search space can be extremely reduced when
we train stage-wise supernet in each stage independently.
However, internal ground truth in Eq.(8) cannot be obtained
directly from the dataset. One solution is using block-wise
feature maps generated by a pre-trained network to super-
vise the training of subnets. However, it is time-consuming
to obtain a pre-trained network through training from the
scratch in practice(e.g. ResNetS0 > 10 GPU days). Be-
sides, the architecture of teacher and student networks has
a huge impact on transferring results[20].

To tackle the above problem, the stage-wise inplace distilla-
tion is proposed here. The essential idea behind the inplace
distillation[44] is to transfer knowledge inside a single su-
pernet from the fullnet to a subnet in each training itera-
tion. For an individual convolutional layer, the performance
of the wider candidate cannot be worse than the slim one.
Because the wider one can achieve the performance of the
slim one by learning weights from some unuseful channels
to zeros. Therefore, the performance of any candidates is
bounded as follows

ly! =yl <yl =y <y -y (10)

where y" = 22:1 w;x; is the aggregated feature, r, s and f
denote the channel number of random sampled, the smallest
and the largest candidates, respectively. The rule in Eq.(10)
can also be extended to the whole supernet, which means

the performance of the subnet with any width is bounded in
the tinynet and the fullnet.

In stage-wise inplace distillation, we use the stage-wise rep-
resentation of the fullnet to supervise the training of sub-
nets. The pipeline of the supervision with stage-wise in-
place distillation is shown in Figure |2| The output Y;_1 of
the (¢ — 1)th stage from the fullnet is adopted by the input of
the ith stage of subnets. To supervise the subnets learning
from the fullnet, the following MSE loss is considered as
the distillation loss in Figure 3|

1 .
Lirain(Yiz1,Y;) = FHYi_Yng (1)

where Y; and YZ denote the output of the subnets and fullnet
in ¢th stage, respectively, F' is the number of the channels in
Y.

As mentioned in [3.1] the channels with larger indexes suf-
fer from unfull training. To ensure the sufficient train-
ing of each channel, an intuitive approach is overtraining.
Given a batch of input images and ground truth labels, we
first calculate the task loss(e.g. cross-entropy) and the gra-
dients of fullnet through forward and backward propaga-
tion, simultaneously. The stage-wise feature maps of fullnet
Y = [V1,...Y] are saved. Subsequently, under the super-
vision of Y, the distillation loss in Eq.(11) and the gradients
of the stage-wise subnet are calculated. Furthermore, in a
subnet training process, we train the smallest width(tinynet)
to improve the performance of the supernet. Based on this,
each channel can be trained at least once in one iteration.
The ground truth label has been generated in the fullnet
training process. Thus, the training of each stage-wise sub-
net can be sped up in a parallel way. The detailed algorithm
is described in Algorithm[I} We use multiprocessing mod-
ule! to parallelize our algorithm.

3.3. Distributed Evolutionary for Searching

After the stage-wise supernet is trained, the learning abil-
ity of a subnet can be evaluated by its loss in each stage.
However, each stage-wise supernet still contains about 301°
stage-wise subnets. It is infeasible to evaluate all of them.
For previous one-shot pruning methods, randomly sam-
pling, EA-based and RL-based methods have been used
to sample sub-models from the trained supernet for fur-
ther evaluation. The most recent work found that EA can
search better model than RL but need to spend more time
on searching. For the proposed stage-wise inplace distilla-
tion, a novel method is suggested to search the best subnet
according to the stage-wise performance under certain con-
straint.

Because of inplace distillation training mentioned above,

'The multiprocessing module is applied to start the child
process and execute our customized tasks in the child process.
https://github.com/python/cpython/tree/3.9/Lib/multiprocessing/
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Given FLOPs constraint for the whole network, EA Manager is responsible for searching for the best combination of stage-wise FLOPs.
The feedback of each FLOPs gene in EA Manager is provided by each EA with searching for the smallest distillation loss under the

stage-wise FLOPs constraint.

the EA in Figure [3is applied to search the best stage-wise
subnet that has the smallest distillation loss under given
FLOPs constraint. In [27) 48], the genes of each stage-
wise subnet were encoded with a vector of channel num-
bers in each layer. Different from the above work, we aim
to imitate the behavior of the teacher in each state. Thus,
Eq.(11) is used to evaluate the learning ability of each gene.
Because the supernet is split into several stages, the search
space of an individual EA is shrunk about 10°° times. Then
the top k genes with the lowest loss are selected for gener-
ating the new genes with mutation and crossover. The mu-
tation is carried out by changing a proportion of elements
in the gene randomly. The crossover means that we ran-
domly recombine the genes in two-parent genes to generate
offspring. We can easily enforce the constraint by elimi-
nating the unqualified genes. Through further repeating the
top k selection process and new genes generation process
for several iterations, the gene that meets constraints while
achieving the lowest loss can be obtained. How can the op-
timal stage-wise constraints be assigned for each stage?

To automatically find the best assignment plan of stage-
wise constraint, a distributed evolutionary algorithm(DEA)
is proposed in this section. The workflow of DEA is re-
vealed in Figure[3] The EA Manager is also a kind of evolu-
tionary algorithm that provides the strategy of FLOPs con-
straint for other EAs. Different from EA above, the genes in
EA Manager are encoded with a vector of FLOPs constraint
in each stage. The evaluation of each gene is the sum of dis-
tillation losses given by all stage-wise EAs. Subsequently,

the top k genes which are kept generate off-springs in way
of mutation and crossover. After several repeating, the op-
timal stage-wise constraints can be obtained from the top 1
genes. The detail is shown in Algorithm[2] And each stage-
wise EA is paralleled to accelerate the searching process.
Specifically, we first use the teacher network to generate a
batch of representation features for each stage. Therefore,
each EA can search for the best stage-wise subnet indepen-
dently. After searching all of the stages, we can assemble
the best model by selecting the best stage-wise subnet from
each stage.

4. Experiments

In this section, the effectiveness of our proposed stage-
wise pruning method is demonstrated. First, We explain the
experiment settings on CIFAR-10[35] and ImageNet 2012
dataset[33]. Then, we prune ResNet[10] on CIFAR-10 and
visualize the consistency of performance between searching
and retraining. Moreover, we apply the stage-wise prun-
ing method to ImageNet 2012 and compare the results with
those of other state-of-the-art work. Finally, ablation stud-
ies are carried out to find out the influence of using inplace
distillation.

4.1. Setups

The stage-wise pruning method consists of three steps:
Stage-wise training. According to resolution size of fea-
ture maps, we split ResNet[[10] and MobileNet series[16,
34] into 4 and 5 stages, respectively. The distillation loss



Algorithm 1 Framework of supervision with stage-wise in-
place distillation.

Require: The fullnet S, the stage-wise supernets
[S1, ..., Sn] and the dataset (X,Y);
Ensure: The well-trained stage-wise

[Sl, ceey SN]’
1: fort=1,...,T do
2: Get next mini-batch of data z and label y from
(X,Y)
3. Execute fullnet y’ = S(z), and save stage-wise fea-
ture maps X = [x, ...,YN,l], Y = [Yl, ...,SA/N]
Caculate cross entropy loss, loss = CE(y,y)
Clear gradients, optimizer.zero_grad()
Accumulate gradients, loss.backward()
Randomly sample width for convolutional layers

and obtain stage-wise subnets, S, = [Sy1, ..., Sy N]

8: Uniformly sample smallest width for convolu-
tional layers and obtain stage-wise tinynets, S; =
[St17"'7StN] o

9:  multiprocessing s = [S,, 5], zs = [X, X], ys =
[V,Y] do

supernets

AN A

10: Execute subnet, y' = s(z5)

11 Caculate distillation loss, loss = L(y', ys)
12: Accumulate gradients, loss.backward()
13: end multiprocessing

14:  Update weights, optimizer.step()

15: end for

16: return trained stage-wise suernets [S1, ..., Sn];

of each stage can be calculated by Eq.(11) . To match the
channel number of the fullnet, the output of each stage is
connected with a 1 x 1 convolutional layer without Batch-
Norm and non-linear activation. As MetaPruning[27], the
width of each convolutional layer is subdivided into 31 ra-
tios from 0.1 to 1.0.

On CIFAR-10[35]] dataset, we randomly sample 200 images
for each class from training images as validation dataset.
The remaining images are used to train the supernet. We
use momentum SGD to optimize the weights, with initial
learning rate = 0.025, momentum 0.9, and weight decay
3 x 10~*. The supernet is trained for 50 epochs with batch
size 512 and the learning rate decays 0.1 x per 10 epochs.
On ImageNet 2012[33] dataset, we randomly sample 50
images for each class from training images as validation
dataset. The remaining images are used to train the super-
net. We use momentum SGD to optimize the weights, with
initial learning rate n = 0.1, momentum 0.9, and weight de-
cay 3 x 10~%. The supernet is trained for 100 epochs with
batch size 512 and the learning rate decays 0.1 x when the
epoch is 30, 60 or 90.

Stage-wise searching. After training the stage-wise su-
pernet as above, the best subnet is searched in each stage.

Algorithm 2 Framework of distributed evolutionary algo-
rithm.
Require: The constraint C, the fullnet S, The stage-wise
supernets [S1, ..., Sy| and the dataset (X,Y);
Ensure: The best subnet:Sp;
1: Execute fullnet and save stage-wise feature maps Y,
y =8(X),Y =[Y1,...,YN]
2: Randomly generate a batch of genes GG under constraint

C, G = [Gl, ,GN],StHGZH = HC’il, ,ClNH =C

3: fort=1,...,T do

4: forg=G,1,...,Gy do

5: Obtain stage-wise constraint from g, ¢ =
[CY,...,CN]

6: multiprocessing ¢ = C4,...,.Cy, =53 =
X, ceny YAval, Ys = Yl, ceey }A/N, s = 51, ceey SN do

7: Search the best stage-wise subnet s’ and cacu-

late distillation loss by E'A in Algorithm[3] (s', L,,,) =
EA(s,xs,ys, C)
end multiprocessing
: Caculate total loss L for g, L = Lg, + ... + Ls,
10: end for
11: Keep top k genes G,pi; according to L

12: Generate M mutation genes, Gputation =
[Gmla ceey GmAIL St”vaH =C

13: Generate H crossover genes, Gerossover =
[Gcl» ceey GcH]s St”GmH = C

14:  Generate new population G, G = Gputation +
GC’I‘OSSO’UET

15: end for

16: Select Syop =[], ...
17: return Sop;

, 81| with smallest L

Firstly, we use the fullnet to generate and save the stage-
wise feature maps with 2048 batch size. Subsequently, the
hyperparameter of each EA and EA Manager is set to 128
population number, 0.1 mutation probability, 10 iterations.
We use 4 and 5 multiprocess to speed up the searching for
ResNet and MobileNet series, respectively. Each process
can use 2 GPUs to infer with 2048 batch size.

Retraining After searching the best subnet, we adopt the
same training scheme as [27] on ImageNet 2012 for both
ResNet and MobileNet series. The same lines of [25]] is fol-
lowed for the training scheme of ResNet on CIFAR-10. It
is noted that all baseline models are trained under the same
scheme mentioned above.

4.2. Pruning ResNet on CIFAR-10 and Analysis

To demonstrate the effectiveness of stage-wise pruning,
we prune ResNet-56[10] under 50% FLOPs constraint on
the small dataset of CIFAR-10. As shown in Table [T} our
stage-wise pruning method surpasses the baseline model by
about 1.4%. Moreover, our method outperforms all other



Algorithm 3 Framework of evolutionary algorithm.

Require: The constraint, C, the stage-wise supernet S, the
stage-wise feature maps (X,Y")
Ensure: The best stage-wise subnet:S;,, and the stage-
wise distillation Loss: L;
1: Randomly generate a batch of genes GG under constraint
C,G=[Gy,...,G4]
2: fort=1,....,T do
3 forg=Ghy,...,Ggdo
: Construct a stage-wise subnet according to S and
g, Sy
5: Calculate the distillation loss of Sg, L, =
L(5¢(X),Y), L from Eq.(11)
6: end for
7: Keep top k genes Gyopi; according to L,
8: Generate )M mutation genes under constraint C,
Grutation = [Gmh ey Gm]\/[]
9: Generate H crossover genes under constraint C,
Gcrossover = [Gcla ceey G('H]
10: Generate new population G, G = Guutation +
Gcrossover
11: end for
12: Select G'y,p, with smallest L
13: return Gy,p, La,,,;

Table 1. Pruning results of ResNet-56.

Method FLOPs(M) | Top-1 Acc(%)
ResNet-56 125.49 93.27
FP[23]] 90.90 93.06
RFP[1] 90.70 93.12
HRank[24]] 88.72 93.52
EagleEye[21]] 62.23 94.66
SP(Ours) 61.36 95.03

pruning methods in terms of top-1 accuracy.

To evaluate the consistency of model ranking abilities
for our method and other AutoML methods, we visual-
ize the relationship between the proxy performance and
actual performance. A PruningNet[27] and a Universally
Slimming Network(USNet)[44] are trained as supernets un-
der the same training scheme due to fairly compare with
MetaPruning [27]] and AutoSlim [42]]. The total distillation
loss is viewed as the proxy performance of our method. The
other two methods take the top-1 accuracy of each subnet
that inherits weights from supernet as proxy performance.
Each subnet will be trained from scratch in order to obtain
its actual performance. As shown in Figure |4} the proposed
method has a strong correlation between the proxy perfor-
mance and the actual performance while others barely rank
the subnets.

X PruningNet ® A Ours
® US-Net ° r88
[

Total Distillation Loss
o]
I§]
Proxy Topl-Acc

9‘0 9‘1 9‘2 9‘3 9‘4 9‘5 9‘6

Actuall Top1l-Acc
Figure 4. Comparison of ranking effectiveness for Stage-wise
Pruning(ours), MetaPruning[27] and AutoSlim[42].

4.3. Pruning MobileNet and ResNet on ImageNet
2012

In addition, our method is extended to lighting models
on a large-scale dataset, ImageNet 2012. Table [2[ summa-
rizes our results on MobileNet V1[16|], MobileNet V2[34]]
and ResNet-50[10]. It is noted that we experiment with
both residual and nonresidual networks. We compare our
results with uniformly pruned baselines and other recent
channel pruning methods. It is shown that our method
achieves the best results across different computational bud-
gets. In the case of extreme pruning(i.e. 40M FLOPs), Mo-
bileNetV1/MobileNetV2 pruned by SWP outperform base-
line model to a considerable degree(9.7% and 6.4%). Figure
[5 compares the curve of top-1 accuracy and FLOPs for the
most recent Auto-ML pruning methods and uniformly prun-
ing method. Our SWP models can achieve better accuracy
with lower computation complexity than other methods.

4.4. Pruning under Latency

More and more attention is paid to directly optimize the
inference time on the target device. Without knowing the
implementation details inside the device, SWP learns to
prune channels according to the latency estimated from the
device. To evaluate the realistic acceleration, we measure
the forward time of the search for the best subnet on one
2080Ti GPU under the latency constraint. The results of
MobileNet V1/V2 are shown in[3fdl Under the same com-
pression ratio and similar inference time, our method can
obtain better top-1 accuracy.

4.5. Combination with NAS

We extend our effective method to NAS. Many NAS
work[25, 39, l4] only search operations without considering
the channel number. Here, we simultaneously take kernel
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Figure 5. The pruning results of ResNet-50. ResNet-50 is stacked by many blocks which consist of three convolutional layers in the main
branch. According to the location, we simply divide the three convolutional layers in each block into top layers, middle layers and bottom
layers. (a) The number of channels in top layers. (b) The number of channels in the middle layers. (c) The number of channels in the

bottom layers.
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Figure 6. The accuracy-FLOPs tradeoff of Auto-ML pruning methods on (a) ResNet-50, (b) MobileNetV2, (c) MobileNetV1. All models

are pruned on ImageNet 2012.

size, layers and channels into account. Our network archi-
tectures are designed on MobileNet-V3[13] that consists of
a stack with inverted bottleneck residual blocks(MB-Conv).
The search space contains the channel number, kernel size
and layer number of each stage. The detailed search space
is shown in[8l

Several stage-wise supernets are trained on ImageNet
dataset[33] using the same settings as MobileNet-V2. Af-
ter the training, the optimal subnet is found based on dis-
tributed evolutionary algorithm. The retraining setting fol-
lows MobileNet-V3: RMSProp optimizer with decay 0.9
and momentum 0.9; batch size with 4096; initial learning
rate 0.1 that decays by 0.01 every 3 epochs; dropout of 0.8
that only be applied in the fullnet. It is worth noting that
a 3 x 3 kernel is central cropped from a 5 x 5 kernel and
lower-index layers in each stage are always kept. Therefore,
the weights also share on the kernel size and layer size di-
mension.
The performance of ours and previous SOTA methods with
various search spaces are revealed in[6] Our models have
2.0% and 1.7% better top-1 accuracy than MobileNetV3-

small and MobileNetV3-large with similar FLOPs, respec-
tively. Compared with other mobile-setting NAS methods,
our method outperforms them under wide-range FLOPs
constraints because of more flexible search space. Specifi-
cally, our large-size model obtains a competitive result un-
der fewer FLOPs compared with DNA[22] that also split
a supernet into several stages but use a pretrained teacher
network to supervise. It shows that the architecture of the
teacher network has a huge impact on the effectiveness of
distillation. We will discuss more details in Sec 4.7.

4.6. Visualization of Searched Models

Channel pruning models are visualized and some
insights from the results are discussed. We compare our
results with default channels and MetaPruning[27] on
ResNet-50. In Figure|§| (a-c), we show the channel number
in the top, middle and bottom layers of bottleneck blocks
on ResNet-50, respectively. Firstly, it is found that our
method is prone to prune more channels from top layers
compared with MetaPruning. It is noted that although
top layers have a small number of channels, the output



Table 2. Results of ImageNet classification. We show the top-1
accuracy of each method under the same or closed FLOPs.

Network Method Acc@1l FLOPs
Baseline0.75x  68.4%  325M
AMCIL1] 70.5%  285M
SN[45] 69.5%  325M
MP[27] 70.4%  281M
AutoSlim[42] 69.1%  325M
MobileNet V1 SWP(ours) 709%  285M
Baseline0.25 x 50.6% 41M
MP[27] 57.2% 41M
SN[45] 53.1% 41M
SWP(ours) 60.3% 41M
Baseline0.75x 69.8% 220M
AMC [11]] 70.8%  220M
MP[27] 71.2%  220M
SN[45] 689%  209M
AutoSlim[42] 724%  207TM
MobileNet V2 SWP(ours) 73.4% 220M
Baseline0.35x 54.3% 43M
MP[27] 58.3% 43M
SWP(ours) 60.7 % 43M
Baseline 1.0x 76.6% 4.1G
Baseline 0.75x  74.8% 2.3G
SN[45] 74.9% 2.3G
MP[27] 75.4% 2.3G
AutoSlim[42] 75.6 2.3G
AOFP-CI1[7] 75.63% 2.58G
C-SGD-50[6]  74.54% 1.7G
ResNet-50 ThiNet-50[28]  74.7% 2.1G
SWP(ours) 76.1% 2.0G
Baseline 0.5 72.0% 1.0
SN[45] 72.5% 1.0G
ThiNet-30[28] 72.1% 1.2G
MP[27] 73.4% 1.0G
AutoSlim[42] 74.0% 1.0G
SWP(ours) 75.6 % 1.0G

Table 3. Comparison of the realistic inference time with Mo-
bileNet V1.

Table 4. Comparison of the realistic inference time with Mo-
bileNet V2.

Ratio | Baseline/Pruned time(ms) | Baseline/Pruned Acc@1
1x 0.72/- 71.7%I-

0.75x% 0.53/0.52 69.8%/71.2%

0.5x 0.41/0.41 65.4%/69.3%

0.35x% 0.33/0.32 60.3%/64.8%

Table 5. MobileNetV3-based search space. v'denotes the search
space of the stage containing SE module[17].

Stage | Operator | Ratio | Layers | Kernel Sizes | SE module

Conv 1.0 1 3

1 MBConv | 0.1-1.0 1-2 3 v

2 MBConv | 0.1-1.0 2-3 3 v

3 MBConv | 0.1-1.0 2-3 35 v

4 MBConv | 0.1-1.0 2-4 35 v

5 MBConv | 0.1-1.0 2-6 35 v

6 MBConv | 0.1-1.0 2-6 35 v

6 MBConv | 0.1-1.0 1-2 35 v
MBConv 1.0 1 1

Table 6. Results of NAS methods on Imagenet.

Method Acc@1 FLOPs
MobileNetV3-large[[15] | 75.2%  219M
OFA[2] 76.0%  230M
MNasNet[36] 752%  315M
DNA-a[22] 77.1%  348M
SWPNas-large(ours) 76.9 % 214M
MobileNetV3-small[[15] | 67.4% 56M
Mnas-small[36]] 64.9% 65M
SWPNas-small 69.4% 56M

layers can reduce computational complexity. Secondly,
both our method and Metapruning keep more channels
for downsampling layers because the feature map size is
shrunk. Moreover, our method prunes fewer channels for
bottom layers since the feature maps between the subnet

Baseline/Pruned Acc @ 1 and the fullnet should be as close as possible.

Ratio | Baseline/Pruned time(ms)

1x 0.65/- 70.9%!-
0.75x 0.51/0.51 68.4%/70.2%
0.5x% 0.35/0.35 63.3%/67.5%
0.25x% 0.21/0.20 49.8%/59.9%

4.7. Ablation Study

The choice of the teacher network. The influence of

feature maps of the top layer can be extracted by the next
middle layer where kernel size = 3. Hence, prune top

10

the distillation strategy in ResNet-50 is analyzed. In our
method, the teacher network and the student network are
jointly trained by stage-wise inplace distillation. In Strat-
egy 1, we use a pre-trained network that has the same ar-
chitecture as fullnet to supervise the training of subnets. In



Table 7. Comparison of Stage-wise pruning with different distilla-
tion strategies.

Teacher Student FLOPs Acc@1
Ours 2.0G 76.1%
1.0G 75.6%

Strategy 1 2.0G 76.1%
1.0G 75.6%

Strategy 2 2.0G 75.6%
1.0G 73.1%

Strategy 2, EfficientNet-BO[37] of which performance sur-
passes ResNet-50 with lower parameters are employed as
the teacher network. The results are shown in Table [l It
is found that the performance of the model searched with
inplace distillation method is almost the same as the one
searched with a pre-trained method. Hence, the fullnet can
supervise the training of the subnets well while training it-
self. It is unnecessary to spend a lot of time to obtain a
pre-trained teacher model. Moreover, despite EfficientNet-
BO0 has outstanding performance compared with ResNet-50,
the models searched with EfficientNet-BO have worse per-
formance. It may be caused by the large gap between the
architectures of the teacher and the student networks.

To further figure out the reason why using ResNet-50
to search can achieve better performance of models than
EfficientNet-B0O, we visualize the channel number in bot-
tom layers in each block. As shown in Figure[7] the model
searched with EfficientNet-BO keeps fewer channels. And
EfficientNet-BO has much fewer channels than ResNet-50.
For example, EfficientNet-BO has only 40 channels while
ResNet-50 has 64 channels in the bottom layer of the first
stage. Thus, the student does not need many channels to im-
itate the stage-wise feature maps generated by EfficientNet-
B0O. However, over-pruning the channels from the bottom
layers will result in insufficient information transmission
between the stages.

The stage number. In previous experiments, the supernet
is simply split into 4(ResNet) or 5(MobileNet series) stages
according to downsampling. How many split stages are op-
timal to transfer knowledge from the teacher to the student?
We set the stage number as 8, 4, 2, 1 for ResNet-50. It is
seen from Table [8] the performance of the model searched
with 8 stages is almost the same as the one searched with
4 stages and surpasses the one searched with lower than 4
stages. Besides, since we need to save the intermediate fea-
ture maps of the teacher network to supervise the training of
the student network, the more memory is required if larger
stage number is set.
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Table 8. Comparison of Stage-wise pruning with different stage
numbers. We evaluate the models with pruned ResNet-50 under
2.0G FLOPs constraint. The memory is tested under a 224 x224
image.

Number of stages \ Acc@1 Memory
8 76.18% 3M
4 76.12% 1.5M
2 75.88% 0.5M
1 74.53% 0.1M

mmm ResNet50, 4.1GFLOPs
ResNet50, 2.0GFLOPs(ResNet50)
B ResNet50, 2.0GFLOPs(EfficientNet-B0)
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Figure 7. The number of channels in bottom layers with different
teachers.

4.8. Conclusion

In this work, we have presented stage-wise channel prun-
ing. A stage-wise training process based on inplace distilla-
tion and a distributed evolutionary algorithm is proposed in
this paper. It is found that the large search space causes low
accuracy of the supernet. Hence, we split a supernet into
several stage-wise supernets to degrade the complexity of
the search space both in training and searching. The exper-
iments show the effectiveness of our proposed method by
delivering higher accuracy than the previous work on both
CIFAR-10 and ImageNet dataset. The consistency of the
proxy and actual subnet performance is greatly improved.
Moreover, we extend our method to NAS and also achieve
SOTA on the mobile setting. Experiments with various dis-
tillation strategies prove that inplace distillation can replace
pre-trained distillation, thereby reducing the time to train a
teacher network from scratch. We further discuss the impact
of stage numbers on search results and found that splitting
supernet according to downsampling is the best tradeoff be-
tween memory and accuracy.
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