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Abstract

With the vigorous development of artificial intelligence (AI), the intelli-
gent applications based on deep neural network (DNN) change people’s
lifestyles and the production efficiency. However, the huge amount of
computation and data generated from the network edge becomes the
major bottleneck, and traditional cloud-based computing mode has
been unable to meet the requirements of real-time processing tasks. To
solve the above problems, by embedding AI model training and infer-
ence capabilities into the network edge, edge intelligence (EI) becomes
a cutting-edge direction in the field of AI. Furthermore, collabora-
tive DNN inference among the cloud, edge, and end device provides a
promising way to boost the EI. Nevertheless, at present, EI oriented
collaborative DNN inference is still in its early stage, lacking a sys-
tematic classification and discussion of existing research efforts. Thus
motivated, we have made a comprehensive investigation on the recent
studies about EI oriented collaborative DNN inference. In this paper,
we firstly review the background and motivation of EI. Then, we clas-
sify four typical collaborative DNN inference paradigms for EI, and
analyze the characteristics and key technologies of them. Finally, we sum-
marize the current challenges of collaborative DNN inference, discuss
the future development trend and provide the future research direction.

Keywords: Artificial intelligence, edge intelligence, distributed computing,
deep neural network, collaborative inference
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1 Introduction

In recent years, as the core technology of modern artificial intelligence (AI) and
machine learning (ML) [1], deep neural network (DNN) represents the most
commonly used ML technology and has a board range of intelligent applica-
tions such as intelligent assistant [2], smart city [3], auto pilot [4], intelligent
agriculture [5] and smart home [6]. While DNN has a great advantage in pro-
cessing computation-intensive tasks, it relies heavily on sensors and other end
devices to collect application data. With the rapid development of Internet
of Things (IoTs) technology, the number of connected devices over the world
becomes more and more huge, and each device hosts a large number of appli-
cations, which leads to the explosive growth of data at the edge [7]. Under
this trend, the traditional cloud-based intelligence by first transferring data
or tasks to the cloud center and then running DNN-based inference puts a
heavy burden on the transmission links, which also results in unacceptable
large responsive latency and growing data privacy disclosure concerns [8].

Bearing in mind those shortcomings of cloud-based intelligence, it is envi-
sioned that the intelligence should be pushed from the cloud to the network
edge, which gives birth to edge intelligence (EI) [9]. In the service mode of EI,
AI combines with edge computing, thus the network core sinks from the cloud
to the edge closer to the data sources. It can make full use of edge resources to
realize the wide DNN applications of AI. Meanwhile, edge nodes can connect to
nearby terminal devices, servers, and gateways, and even micro base stations
that can be used by nearby devices through device to device communica-
tion. Compared with the traditional cloud-based intelligence mode, employing
EI to conduct DNN applications brings numerous advantages, including low
response latency, high energy efficiency, privacy protection, bandwidth con-
sumption reduction, throughput improvement, on-demand deployment, and
well adaptation to some extreme scenario applications [10].

EI could be generally categorized into two forms: edge training by embed-
ding the training abilities over the edge nodes, and edge inference by deploying
ML model inference on the edge nodes, where the latter is the main focus of
this paper. By directly executing ML models such as DNN at the edge, edge
inference could support relatively high-reliability and low-latency AI services
through requiring less communication, computation, and storage resources. In
general, edge inference could be divided into single node inference and multi-
node collaborative inference. As ML models are developing towards deeper
neural networks with higher computational requirements [11], it is challenging
to implement complex models on a single resource-constrained edge device.
Therefore, for large-scale inference tasks, EI oriented collaborative DNN infer-
ence [12] can divide the original complex large-scale DNN inference task into
different subtasks, and then dynamically allocate those subtasks to different
nodes according to the computing power and energy of edge devices. In a nut-
shell, compared to single-node inference, multi-node collaborative inference
can bring many potential benefits to the landing of EI, e.g., lower latency and
bandwidth pressure, broader application scenarios, lower energy consumption
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and equipment rental cost, and agile task scheduling strategies and resource
allocation among the involved nodes [13, 14].

While multi-node collaborative inference is a promising way to realize EI, it
is inevitably faced with several challenges as follows. Firstly, how to rationally
partition the DNN model into several submodels to suit the heterogeneity of
involved nodes ranging from the powerful cloud to resource-constrained IoT
devices. Secondly, different AI services have diverse application requirements
(e.g., minimizing inference latency and/or energy consumption, and maximiz-
ing inference accuracy), then how to schedule the collaboration together with
the network resources is extremely challenging. Although there exist some
studies about collaborative DNN inference for EI recently, there is still a
lack of a special summary and discussion on the collaborative DNN inference
paradigms with different composition and future research trends. Therefore,
in order to further promote the development of EI, this paper makes a com-
prehensive investigation on the research results of collaborative DNN inference
in recent years. Specifically, we firstly review the background of EI. Then we
discuss the motivation, definition, and classification of collaborative inference.
Next, we further review and classify the collaborative inference paradigms
with different structures, as well as their optimization objectives and effi-
cient technologies. Finally, we elaborate several challenges and opportunities
in collaborative DNN inference for EI.

The rest of this paper is organized as follows.
1) Section 2 summarizes the basic concepts of EI and collaborative DNN

inference, and divides the collaborative DNN inference into four categories
according to different organizational structures.

2) From Section 3 to Section 6, we respectively summarize the architecture,
key technologies, and optimization objectives of the four collaborative DNN
inference paradigms in detail.

3) Section 7 discusses the existing challenges and puts forward several future
research directions of collaborative DNN inference.

4) Section 8 concludes this paper.

2 Preliminaries and classification of
collaborative DNN inference

In this section, we firstly introduce the definition of EI and its application
advantages, and compare the EI boosted by collaborative DNN inference with
the intelligence by traditional cloud-based method. Then we analyze the rea-
sons why scholars put forward collaborative DNN inference for EI as a problem
solution. Finally, we summarize and classify the concepts and working methods
of four collaborative DNN inference paradigms.
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2.1 Introduction to EI

EI is a new concept born from the combination of AI and edge computing
[9]. Its broad definition is a method of building intelligent machines to per-
form tasks like humans. AI is a theory, technology and application system
for simulating and extending human intelligence. At present, a more general
definition of edge computing is that edge computing refers to a new computa-
tional model that provides calculation services at the edge of the network [10].
The edge refers to any resource from the data source to the cloud computing
center, including network resources. The edge computing is a continuum, and
anything other than a cloud can be called an edge. The basic principle of edge
computing is to migrate computing tasks to the edge devices that generate raw
data. From the perspective of scope, edge computing is similar to fog comput-
ing. However, fog computing [15] has a hierarchical and network architecture,
while edge computing focuses on individual nodes that do not form a network.

The combination of edge computing and AI produces EI, which is natural
and inevitable, because there is a cross interactive relationship between them.
On one hand, AI provides technologies and methods for edge computing, on
the other hand, edge computing provides scenes and platforms for AI [16].
Edge computing aims to coordinate multiple collaborative edge devices and
servers to process the generated data near edge devices. While AI aims to
simulate intelligent human behavior by learning from data. Pushing AI to
the edge could not only get the advantages of edge computing, such as lower
inference latency and less communication consumption, but also improve the
overall performance of AI and IoT systems.

EI can assist in processing the data generated at the edge of the network
and release its operation potential. Due to the surge in the number and types
of mobile devices and IoT devices, continuous perception of the real physical
environment on the device side will produce a large amount of data, such
as audio and video data. AI is necessary in this case, because it can quickly
analyze huge amounts of data and extract feature information from them, so as
to make high-quality decision-making behavior in the future. Deep learning is
one of the most popular AI technologies which brings the ability of automatical
patterns recognition and detecting abnormal data from edge devices. Then the
effective information extracted from the sensing data is fed back to the server
for real-time prediction and decision-making, such as public transport planning
[17], intelligent city monitoring [18] and forest fire early warning [19], so as
to respond to the rapidly changing environment and improve the efficiency of
scene application.

Edge computing enhances AI through data and application scenarios, so
as to promote the development of EI. It is generally believed that the rapid
development of deep learning is supported by four aspects [9]: hardware, algo-
rithm, data, and application scenarios. The improvement of hardware affects
the operation ability of the whole system from the underlying architecture.
The algorithm affects the efficiency of deep learning from the top. However, the
role of data and application scenarios is not intuitive enough, causing them to



A Survey on Collaborative DNN Inference for Edge Intelligence 5

be ignored. Generally speaking, we can improve the performance of deep learn-
ing algorithm by adding more layers of neurons to DNN, which will increase
the amount of parameters and data of DNN. It can be seen that data also has
a very important impact on the development of AI. The traditional data pro-
cessing method is to process and store data in a large-scale cloud data center.
However, with the rapid development of IoT, the disadvantages of traditional
methods are becoming visible. If a large amount of data generated at the edge
is handed over to the AI algorithms of the cloud data processing center, it
will consume large bandwidth resources. In order to solve these problems, EI
improves the overall performance of the system and reduces the latency of
data processing by dispersing the computing power from the cloud center to
the edge.

Fig. 1 An illustration of the existing cloud-edge-device network structure [9].

EI system has abundant edge resources. As shown in Fig. 1, the cloud cen-
ter connects edge servers through the WAN, such as base stations, gateways,
routers, and micro centers. Then, these edge servers connect a large number of
mobile terminal devices thereby build the cloud-edge-device network. And a
large number of devices can be used to deploy DNN models to achieve collabo-
rative inference. Meanwhile, the combination of devices at different levels will
constitute different collaborative inference paradigms with different emphasis
directions, which can be used in different application scenarios.
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2.2 Collaborative DNN inference for EI

A DNN model consists of many different layers, such as convolution layer and
full connection layer. Each layer converts its input according to the model
parameters of DNN, and then passes through a nonlinear activation function,
such as ReLU. As these layers process input and extract feature information
in turn, they gradually establish high-level semantic information until the final
prediction is generated.

With the continuous increase of mobile network bandwidth, multimedia
interactive applications on mobile devices are growing rapidly, which involves
intensive target recognition [20] [21] [22] and image classification tasks [23] [24].
Convolutional neural network (CNN), as the representative of image informa-
tion processing in deep neural network, is widely used in these tasks because of
its high precision and high efficiency. As shown in Table. 1, this paper sorts out
some popular DNN models, including model type, parameter quantity, mem-
ory occupation and Giga floating point operations per second (GFLOPs). As
the representative of the most classic CNN structure, VGG [25] network won
the second place in the 2014 ILSVRC competition. However, executing the
DNN model requires a lot of computing and memory resources. VGG-16 has
140 million parameters, occupies more than 500 MB of memory, and requires
15.5 GFLOPs. When VGG is deployed on mobile devices, it takes about 16
seconds to recognize a picture. Such a high inference latency is unacceptable
in practical applications.

As the core of AI, DNN relies on computing power and other resources of
equipment. Table. 1 shows some specifications of popular hardware, including
type, AI performance, memory and bandwidth, which determine the perfor-
mance of the equipment in DNN inference. We can see that the single DNN
inference mode of traditional AI has encountered a bottleneck. [26].

There are many problems in the machine learning system on a single termi-
nal device [27]. Non-mobile terminals are usually free of computing resources,
however, due to their non-mobile characteristics, they can not firstly obtain
raw data, and the application scenario is greatly limited. Mobile devices gen-
erally have the limitations of battery capacity and computing power, it is
impossible to deploy large-scale neural network models. However, just using a
simple machine learning model will lead to the decline of system accuracy and
affect the efficiency of task execution.

As for the traditional computing framework of IoT that completely relies
on the cloud data for data processing, due to its strong computing power, the
neural network model is usually deployed on the cloud server, and the training
and inference tasks of the model are carried out on the cloud. In a cloud centric
centralized IoT system, the IoT edge sensor is only responsible for collecting or
generating data, sending the raw data to the cloud for processing, and sending
the results back to the IoT edge device after inference. However, this cloud
centric approach uploads a large amount of data to the remote cloud through
long-time WAN data transmission, resulting in large end-to-end transmission
latency of mobile devices, high communication energy consumption, and high
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Table 1 Popular DNN models

Model Type Parameters Model Size GFLOPs

LeNet CNN 431,080 1.64 MB 0.005
AlexNet CNN 60,965,224 233 MB 0.7
GoogleNet CNN 6,998,552 27 MB 1.6
VGG-16 CNN 138,357,544 528 MB 15.5
VGG-19 CNN 143,667,240 548 MB 19.6
ResNet50 CNN 25,610,269 98 MB 3.9
ResNet101 CNN 44,654,608 170 MB 7.6
ResNet152 CNN 60,344,387 230 MB 11.3
MobileNetV1 CNN 4,209,088 16 MB 0.569
MobileNetV2 CNN 3,504,872 13 MB 0.3
TextCNN CNN 151,690 0.6 MB 0.009
YOLOV5s CNN 7,266,973 27.6 MB 6.38
Eng Acoustic Model RNN 34,678,784 132 MB 0.035
RNNCell RNN 0.35 M 1.33 MB 0.01
BiRNN RNN 0.69 M 2.62 MB 2.21
GRUCell RNN 1.04 M 3.95 MB 0.03
BiGRU RNN 2.07 M 7.87 MB 6.65
LSTMCell RNN 1.38 M 5.24 MB 0.04
BiLSTM RNN 2.76 M 10.49 MB 8.86

bandwidth occupancy. Furthermore, this kind of transmission may lead to data
security and privacy problems [28].

In order to solve the limitations of single terminal device method and
the latency bottleneck of cloud centric method, we consider using the emerg-
ing distributed and cooperative computing method. Specifically, by assigning
the inference and computing tasks from the core of network to the edge
devices close to the terminal for collaborative execution, edge computing can
realize DNN inference with low latency and energy saving. The hierarchical
distributed collaborative computing structure composed of cloud, edge and
terminal devices has inherent advantages [29], such as supporting coordinated
central and local decision-making, and enhancing system scalability, which can
be used for large-scale AI tasks of IoT devices based on geographic distribution.

2.3 Various collaborative DNN inference paradigms

Deep learning represents the most advanced AI technology, and it is naturally
suitable for edge computing. At the same time, the collaborative DNN infer-
ence paradigm can make full use of the available data and resources in the
hierarchical structure of terminal equipment, edge nodes and cloud data center
to optimize the overall performance of training and inference of DNN model.
This shows that EI oriented collaborative DNN inference does not necessar-
ily mean that DNN model infers on a single device or cloud, but it can work
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Table 2 Popular DL hardware specifications

Equipment Type AI Performance Memory Bandwidth

V100 GPU 112 TFLOPS 32 GB 900 GB/s
A100 GPU 78 TFLOPS 40 GB 1555 GB/s
RTX 3090 GPU 35.58 TFLOPS 24 GB 936 GB/s
Titan RTX GPU 32.62 TFLOPS 24 GB 672 GB/s
RTX 3080 GPU 29.77 TFLOPS 10 GB 760 GB/s
RTX 2080 Ti GPU 26.9 TFLOPS 11 GB 616 GB/s
Jetson AGX Xavier Edge GPU 32 TOPS 32 GB 136.5 GB/s
Jetson Xavier NX Edge GPU 21 TOPS 8 GB 51.2 GB/s
Jetson TX2 4GB Edge GPU 1.33 TFLOPS 4 GB 51.2 GB/s
Jetson TX2 Edge GPU 1.33 TFLOPS 8 GB 59.7 GB/s
Jetson TX2i Edge GPU 1.26 TFLOPS 8 GB 51.2 GB/s
Jetson TX1 Edge GPU 1 TFLOPS 4 GB 25.6 GB/s
Jetson Nano Edge GPU 0.47 TFLOPS 4 GB 25.6 GB/s
Edge TPU ASIC 4 TFLOPS - -
Raspberry Pi-4B ASIC 13.5 GFLOPS 4 GB 8.5 GB/s
HONOR Magic3 Mobile phone 26 TOPS 8 GB 44 GB/s
iPhone 13 Mobile phone 15.8 TOPS 4 GB 34 GB/s
HUAWEI Mate40 Mobile phone - 8 GB 44 GB/s
Google Pixel6 Mobile phone - 8 GB 44 GB/s
Google Glass EE2 Sensor - 3 GB -

Fig. 2 Classification of EI.

in the way of cloud edge device coordination through data offloading. Specif-
ically, according to the way of task offloading and path length, we divide the
collaborative DNN inference into four collaborative DNN inference paradigms.
As shown in Fig. 2, the definitions of various collaborative DNN inference
paradigms are as follows:
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1) Cloud-device collaborative DNN inference. The DNN model is
deployed on cloud server and terminal devices, and DNN inference is carried
out through the cooperation between cloud and terminal devices. The ter-
minal devices will partially process the raw data and transfer the extracted
feature information data to the cloud. The cloud will receive the remaining
data for inference and send the final decision result back to the termi-
nal device. The cloud-device collaborative DNN inference paradigm will pay
more attention to latency and it is usually used in scenarios with weak
mobility.

2) Edge-device collaborative DNN inference. The DNN model is
deployed on the edge server and terminal devices, and the DNN model is
inferred through the cooperation between the edge and terminal devices.
Model inference is performed within the network edge, which can be
achieved by offloading all or part of the data to the edge nodes or nearby
devices. This paradigm focuses on inference accuracy and it can be employed
in highly interactive application scenarios.

3) Cloud-edge-device collaborative DNN inference. The DNN model is
deployed on cloud servers, edge servers and terminal devices at the same
time, and the DNN model is deduced through the cooperation of the three.
This paradigm focuses on total cost and stability. It can be used in scenarios
with large amount of calculation and data.

4) Device-device collaborative DNN inference. Deploy the DNN model
on the local terminal devices, and conduct DNN inference completely in
the way of local cooperation. It means that the data will be processed near
the source to obtain the decision results without the participation of edge
servers and cloud servers. This paradigm focuses on inference latency and
energy consumption, but it can be applied in high mobility scenarios or some
remote and harsh environments.
As the center of collaborative DNN inference shifts to the edge, the amount

of offloaded data and path length decrease gradually. Therefore, it gets lower
transmission latency of data offloading, lower cost of communication band-
width, and higher data security. However, this is at the cost of increasing
computing latency and energy consumption. This conflict shows that the
optimal collaborative DNN inference paradigm depends on the application
programs and application scenarios, and should be determined by jointly con-
sidering multiple standards, such as latency, energy efficiency, privacy, and
bandwidth cost. In later sections, we will review different collaborative DNN
inference paradigms and existing solutions.

3 Cloud-device collaborative DNN inference

In this section, we firstly introduce the motivation and architecture of
cloud-device collaborative DNN inference paradigm. Then We summarize the
performance optimization of cloud device collaborative DNN inference in
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recent years. Finally, we compare the differences between cloud-device collabo-
rative DNN inference and traditional centralized cloud computing, and analyze
the shortcomings that the proposed cloud-device collaborative DNN inference
still exist.

3.1 Motivation and architecture

The traditional cloud-only DNN inference computing method needs to upload
a large amount of data, such as image, video and audio, to the server through
wireless network, resulting in high latency and energy cost. Therefore, data
transmission becomes a bottleneck in traditional cloud-only DNN inference.
As shown in Fig. 3, different from the traditional centralized cloud computing
framework, cloud-device collaborative DNN inference makes more precise task
scheduling and allocation of terminal devices and cloud servers, and strength-
ens the collaborative operation mode. More specifically, we can calculate a part
of DNN on the edge side, transfer a small amount of intermediate results to
the cloud, and then calculate the rest in the cloud. The division of DNN con-
stitutes a trade-off between calculation and transmission. However, due to the
limitations of cloud including the equipment that cannot be moved, cloud-device
collaborative inference only can be used in scenarios with weak mobility, such
as mall monitoring or provide web service to users. Considering the application
scenarios of cloud-device collaborative inference, the performance optimization
will pay more attention to the latency, because the transmission time is the
main problem in weak mobility scenarios.

Fig. 3 Illustration of cloud-device collaborative DNN inference.
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3.2 Performance optimization

According to different objectives of performance optimization, cloud-device
collaborative DNN inference can be divided into two categories. And as shown
in Table. 3, we also collect application, main technology and effectiveness of
each cloud-device collaborative inference framework.

Table 3 Classification of cloud-device collaborative DNN inference

Optimization Objective Framework Application Main Technology Effectiveness

Total inference latency
minimization

Split-brain [30] Video analysis Model partition Communication compression: 2-3×

In-situ AI [31] IoT Model partition
Data movement reduction: 28-71%
Model update acceleration: 1.4-3.2×
Energy consumption reduction: 30-70%

DADS [32] Video analysis Model partition
Latency reduction: 6.45-8.08×
Throughput improvement: 8.31-14.01×

DeepInference-L [33] IoT Model partition Inference speedup: 8×

IONN [34] IoT Model partition Lower latency

Energy consumption
minimization

Neurosurgeon [35] Computer vision Model partition
Latency reduction: 3.1×
Energy consumption reduction: 59.5%
Throughput improvement: 1.5×

Vision Pipeline [36] Computer vision
Calculation offloading

Image compression
Data transmission reduction: 2.5×
Energy consumption reduction: 3.7×

[37] Computer vision
Model partition

Early-exit

Throughput improvement: 2×
Energy consumption reduction: 6.8×
Accuracy improvement: 20.7%

JointDNN [38] Mobile intelligence Model partition
Latency reduction: 18×
Energy consumption reduction: 32×

[39] IoT
Model partition

Calculation offloading
Energy consumption reduction: 25%

3.2.1 Total inference latency minimization

In the applications of computer vision and video analysis, real-time is gen-
erally the focus of attention. For example, in the automatic driving vehicle
application [40], the camera continuously monitors the surrounding scene and
transfers it to the server, then the server performs video analysis, and sends the
control signal to the pedals and steering wheels in real-time to cope with the
environmental changes. In the augmented reality applications, the intelligent
device will continuously record the current view and transmit the information
to the cloud server, which will perform object recognition and send back the
enhancement label for real-time rendering on the actual scene. A major obsta-
cle to intelligent applications is the large amount of data in video streams.
Therefore, how to reduce the total inference latency is an important research
point of cloud-device collaborative DNN inference.

At present, DNN has made rapid progress in system design, but the existing
systems still regard DNN as a “black box”. Whether the model is fully deployed
on the terminal device or the video is compressed into the cloud for analysis,
these two methods will affect the accuracy and total cost of inference. John
Emmons et al. [30] propose to open the black box of neural network and
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describe new application scenarios to enable collaborative inference between
terminal IoT devices and cloud.

The best partition point of a DNN architecture depends on the topology
of DNN, which is reflected in the change of calculation and data size of each
layer. The division of different layers will lead to different computing latency
and transmission latency. Therefore, an optimal partition is needed. In addi-
tion, even under the same DNN architecture, dynamic factors such as wireless
network status and data center load will affect the optimal partition point.

Considering that the terminal devices in the traditional centralized cloud
computing framework will collect or generate a large amount of raw data for
transmission, song et al. [31] propose to improve the accuracy of the IoT sys-
tem with minimal data movement, and designed an autonomous incremental
computing framework and architecture named in-situ AI for IoT applications
based on deep learning. It is used to solve the problem of labeling IoT data
and release the raw data potential of the IoT system to reduce the latency of
training and inference.

The latest progress of DNN shows that DNN is no longer limited to chain
topology, and directed acyclic graph (DAG) topology is becoming more and
more popular. For example, GoogleNet [23] was the champion of the Ima-
geNet in 2014 and ResNet [24] was the champions in 2015, both of which
are DAG topology. However, compared with the chain structure DNN, the
dividing of DAG topology needs more complex analysis of the model, which
may lead to Non-deterministic Polynomial (NP) hard problems in performance
optimization.

Based on the fact that the data size of some intermediate DNN layers is
smaller than the raw input data, the optimal DNN division can be found in the
integrated cloud computing environment with dynamic network conditions. Hu
et al. [32] design a dynamic adaptive DNN division scheme, which allows parti-
tion DNN to be processed on the terminal device and cloud, while limiting data
transmission. The scheme optimizes the division of DNN network by continu-
ously monitoring the network status. During continuous network monitoring,
the scheme determines whether the system under light load or heavy load. If
under light load conditions, the system will minimize the total latency of pro-
cessing a frame. While if under heavy load, it will maximize the throughput
which means the number of frames that can be processed per unit time.

In order to reduce the communication latency introduced in computing
offloading, Wang et al. [33] propose collaborative deep inference, which divided
the DNN model into two parts. In this method, DNN calculation and commu-
nication are carried out at the same time, and it is proposed that the optimal
partition can be found in the DNN of DAG computing architecture. Jeong et
al. [34] propose IONN, a DNN offloading technology based model partition to
reduce inference latency and improve query performance.
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3.2.2 Energy consumption minimization

In cloud-device collaborative DNN inference, since the battery capacity of
mobile devices in some application scenarios will also be limited, minimizing
energy consumption is also an aspect we need to consider. Of course, cloud
servers account for a large part of inference computing in cloud-device collab-
orative DNN inference paradigm. Compared with single terminal device, the
energy consumption limit in inference scenarios is not very obvious, so such
inference paradigm has relatively little research on energy consumption.

Kang et al. [35] research the computing partition strategies based on the
traditional cloud-only processing methods. These strategies can effectively use
the cloud and mobile devices to realize intelligent applications with low latency,
low energy consumption and high data center throughput. The authors also
design a lightweight dynamic scheduler neurosurgeon, which can automatically
divide DNN computing between mobile devices and cloud servers. Neuro-
surgeon is a runtime system that spans the cloud and mobile platforms. It
can automatically identify the best partition points in DNN and coordinate
the allocation of computing tasks by using the processing capacity of mobile
devices and cloud servers, rather than completely limiting the inference com-
puting to the cloud or terminal, which reduces the communication energy
consumption of data transmission and realizes far more latency performance
and energy efficiency.

Hauswald et al. [36] study the trade-offs between mobile devices and cloud
server when performing part of the workload. They analyze the ability of
mobile devices to perform feature extraction and prediction under optimal
configuration. Through the preliminary processing of data by mobile devices,
lower data transmission and energy consumption can be realized. Laskaridis et
al. [37] propose a distributed inference system called SPINN, which employs
collaborative cloud-device computing and progressive inference methods to
provide fast and stable CNN inference in different environments. Compared
with cloud-only mode, it significantly improves throughput and reduces energy
consumption.

In paper [38], Eshratifar et al. propose an efficient, adaptive and practi-
cal engine, JointDNN, for collaborative inference between mobile devices and
cloud. JointDnn not only provides a performance efficient method for collabo-
rative DNN, but also reduces the workload and communications compared with
cloud-only method. Deng et al. [39] propose a fine-grained offloading strategy
to minimize energy consumption while meeting strict latency constraints.

3.3 Summary and analysis

Cloud-device collaborative DNN inference alleviates some disadvantages of the
traditional cloud-only inference computing method to a certain extent:
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1) Inference latency reduction. Cloud-device collaborative DNN inference
divides the DNN model and assigns the inference computing task to termi-
nal devices and cloud server for collaborative execution which reduces the
inference latency.

2) Energy consumption reduction. Since cloud-device collaborative DNN
inference reduces the communication cost by model partition and task
allocation, it reduces the energy consumption of computing and communi-
cation.
However, the cloud-device collaborative DNN inference paradigm still has

some shortcomings:
1) Insufficient performance under mobile and harsh scenarios. Cloud-

device collaborative DNN inference cannot meet the real-time and high-
precision requirements of image processing in high-speed mobile scenes and
harsh communication environments.

2) Limited application scenarios. Since the cloud server is far away from
the terminal device, and it can not remove, the application scenarios of
cloud-device collaborative DNN inference are limited.

4 Edge-device collaborative DNN inference

In this section, we firstly introduce the motivation and architecture of
edge-device collaborative DNN inference paradigm. Then we discuss the per-
formance optimization of the researches in recent years. Finally, we summarize
the advantages of edge-device collaborative DNN inference, and analyze the
shortcomings that still exist.

4.1 Motivation and architecture

In order to alleviate the latency and energy bottleneck, the emerging edge
computing paradigm has been introduced into the intelligent industry. As the
computing center continues to shift to the edge of the network, how to achieve
low latency and energy saving inference task processing is what we need to
consider. Although cloud-device collaborative DNN inference solves the prob-
lems of high latency and high bandwidth consumption caused by mass of data
transfer of the traditional centralized cloud processing to a certain extent,
it also has some limitations like the centralized cloud processing framework.
Considering that the network edge is becoming another potential collaborator,
it cannot only reduce the computing load of the central site in a distributed
way, but also improve the service performance due to the close distance to the
users. In order to further reduce the communication consumption and inference
latency, many scholars have proposed edge-device collaborative DNN inference
paradigm. In Fig. 4, it exhibits the illustration of edge-device collaborative
inference. The edge server instead of the cloud server reduces the distance
between terminal devices and severs. The collaborative paradigm can deal with
real-time tasks in highly interactive scenarios because the transmission distance
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Fig. 4 Illustration of edge-device collaborative DNN inference.

is shorter. In addition, it gets a technology called early-exit to improve the per-
formance. However, early-exit technology will reduce the inference accuracy to
a certain extent, thus the performance optimization of edge-device collaborative
inference should pay more attention to the inference accuracy.

4.2 Performance optimization

According to different performance optimization objectives, we can divide
edge-device collaborative DNN inference into three categories, as shown in
Table. 4.

4.2.1 Total inference latency minimization

In order to overcome the related resource constraints, inference tasks are
offloaded to the edge or cloud through DNN partition. However, most existing
solutions only divide DNN into two parts, one running locally and the other
running in the cloud. In contrast, Mohammed et al. [41] propose a technology
called DINA to divide DNN into multiple partitions, which can be processed
locally by terminal device or offloaded to one or more powerful nodes. The
authors creatively combine the matching theory [57] with DNN inference task
offloading, and reduce the amount of computation through adaptive DNN
partition and distributed algorithm based on matching theory, so as to sig-
nificantly reduce the total latency of DNN inference. Yang and Kuo et al.
[43] design a collaborative edge computing system called CoopAI to minimize
the inference latency. It distributes DNN inference on multiple edge devices
through a new model partition technology, allowing edge devices to preload
the required data in advance, so as to calculate inference in parallel without
exchanging data.
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Table 4 Classification of edge-device collaborative DNN inference

Optimization Objective Framework Application Main Technology Effectiveness

Total inference latency
minimization

DINA [41] IoT
Model partition
Data partition

Latency reduction: 2.6-4.2×

Cogent [42] Intelligence service
Model compression

Model partition
Inference acceleration: 8.89×

CoopAI [43] IoT Model partition Inference acceleration: 20-30%

SCADS [44] Mobile intelligence Partial offloading Latency reduction: 58%

Inference accuracy
maximization

O3 [45] Video analysis Edge assistance Accuracy improvement: 36%

[46] Image processing Model partition
Maximizing the accuracy
while satisfying the
latency constraint

Edgent [47, 48] Mobile intelligence
Model partition

Model right-sizing
Early-exit

Maximizing the accuracy
while satisfying the
latency constraint

[49] IoT
Model partition

Early-exit

Maximizing the accuracy
while satisfying the
latency constraint

Boomerang [50] IIoT
Model partition

Model right-sizing
Early-exit

Lower latency
Higher accuracy

PADCS [51] Video analysis
Model partition

Early-exit
Data compression

Performance improvement: 1.5-2.8×
Higher stability

Total cost minimization

NestDNN [52] Mobile vision
Dynamic resource
Model compression

Model recovery

Accuracy improvement: 4.2%
Efficiency improvement: 2×
Eenergy consumption reduction: 1.7×

CORA [53] Mobile computing
Resource allocation

Computation offloading
Lower cost

[54] IoT
Model partition

Resource allocation
Resource reduction: 63%
Efficiency improvement: 41-67.6%

HMTD [55] Mobile vision Model partition
Latency minimization
Energy consumption minimization

[56] IoT
Model partition

Resource allocation
Rental cost reduction: 30%

Shan et al. [42] propose cogent, which accelerates deep neural network
inference through edge-device cooperation. Cogent includes automatic pruning
phase and container deployment phase. The pruning and partitioning model
can better adapt to the system environment and hardware configuration. The
flexibility and reliability of the system can be improved by deploying dynamic
packaging modules in containers and assigning tasks to terminal devices and
edge servers. Cogent makes full use of edge devices for collaborative infer-
ence, which significantly reduces service latency while maintaining accuracy.
Liu and Haoran et al. [44] study the latency optimization problem of mobile
edge-device collaborative inference, and propose a simultaneous calculation
and allocation strategy for task offloading.

4.2.2 Inference accuracy maximization

Since the computing power of edge server is inferior to remote cloud server,
compared with cloud-device collaborative DNN inference, edge-device collab-
orative DNN inference not only needs to pay attention to the efficiency of
inference, but also needs to improve the accuracy of inference.



A Survey on Collaborative DNN Inference for Edge Intelligence 17

Fig. 5 Illustration of early-exit mechanism in branchy AlexNet model. [58]

Considering that it is inefficient to transfer the target detection task to the
edge, Hanyao et al. [45] propose a system with the functions of target tracking
on the terminal device and auxiliary analysis on the edge at the same time.
Through the cooperative inference of edge end devices, the overall accuracy of
target detection can be improved to the greatest extent under the conditions
of dynamic edge network and limited detection latency.

Yun et al. [46] consider the actual noisy wireless channel between the device
and edge server. Therefore, an automatic repeat request method and a prac-
tical error correction code are adopted in the cooperative DNN inference to
ensure the latency and improve the accuracy at the same time.

Teerapittayanon et al. [58] propose BranchyNet, which first employs early-
exit mechanism. As shown in Fig. 5, the network exists several exit points
and it can select exit point according to performance requirements. From the
perspective of framework design, many researches of edge-device collabora-
tive DNN inference add early-exit mechanism on the basis of DNN division.
EI realized by early-exit mechanism effectively reduces the waste of storage
resources by adjusting the size of the model, and is more suitable for deploy-
ment on resource-limited devices. However, because the method of adjusting
the size of DNN model will reduce the accuracy of inference to a certain extent,
many studies using early-exit mechanism focus on improving the accuracy of
inference within the allowable range of latency.

Li et al. [47, 48] propose a deep learning model collaborative inference
framework based on edge-device collaboration, which named edgent. For EI
with low latency, edge combines DNN partitioning and early-exit mechanism
to reduce the latency of inference tasks. To improve the performance, edgent
jointly optimizes DNN partitions and resizes on demand. For tasks with dead-
lines, edgent can maximize accuracy without exceeding the deadline. Song et
al. [49] also propose a collaborative inference system based on edgent, which
applies early-exit mechanism and model division technology to solve the prob-
lem of EI in task flow scenarios. At the same time, the authors design an offline
dynamic programming algorithm and an online deep reinforcement learning
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algorithm to dynamically select the exit point and partition point of the model
in the task flow, so as to balance the efficiency and accuracy of inference tasks.

In order to realize the real-time industrial application based on DNN in
the edge computing paradigm, Zeng et al. [50] propose boomerang, which is an
on-demand collaborative DNN inference framework for EI in IoT environment.
Boomerang uses DNN partition and early-exit mechanism to perform DNN
inference tasks with low latency and high precision. Hu et al. [51] describe
the acceleration problem of multiple collaborative inference tasks as a pipeline
execution model, and design a fine-grained optimizer, which integrates model
partition, early model exit and intermediate data compression to achieve a
trade-off between accuracy and latency.

4.2.3 Total cost minimization

Due to the limited resources of edge devices, how to minimize the computing
overhead and equipment rental cost must be considered in the edge-device
collaborative inference. Fang et al. [52] adopt the idea of DNN filter pruning
to adjust the size of the dynamic model to reduce the total computational
offloading cost. However, filter pruning will reduce the inference accuracy, it is
difficult to achieve a good balance between cost reduction and accuracy loss.
Du et al. [53] discuss the joint resource management of multiple equipments,
but only support a fixed number of offload decisions. Tang et al. [54] study
the optimization problem of DNN partition under realistic multi-user resource
constraints, revealed some properties of the optimization problem of multi-
user DNN joint partition and computing resource allocation, and balanced the
task inference accuracy and computing overhead.

Unmanned aerial vehicle (UAV) is widely used in target tracking and other
applications, but it is difficult to complete the tasks requiring intensive com-
puting independently due to the serious limitation of UAV power supply and
low computing power. Therefore, based on the limited computing resources
and the energy budget of UAV, Yang et al. [55] propose a new layered task
allocation framework, in which UAV is embedded in the lower layer of pre train-
ing CNN model, and the mobile edge computing server with rich computing
resources will process the higher layer of CNN model. The authors also propose
an optimization problem to minimize the weighted sum cost, including the
tracking latency and energy consumption introduced by UAV communication
and calculation, while considering the data quality and inference error.

Due to the shortage of edge computing resources and high rental cost, it is
more difficult to optimize the task execution based on DNN. Dong et al. [56]
propose a joint method of adaptive DNN partition and cost-effective resource
allocation, which balances the inference latency and overall rental cost of DNN
tasks, so as to promote the collaborative computing between IoT devices and
edge servers.



A Survey on Collaborative DNN Inference for Edge Intelligence 19

4.3 Summary and analysis

Compared with cloud-only mode and cloud-device mode, edge-device collabo-
rative DNN inference gets several advantages as follows:
1) Lower latency. Edge-device collaborative inference gets lower latency

because it reduces the communication distance to achieve lower communi-
cation latency, and employs early-exit mechanism to resize inference model
which can reduce the computing latency.

2) Lower cost. Since the communication distance becomes shorter, the com-
munication cost is lower. The usage of early-exit mechanism reduces the
waste of storage resources and computing cost. In addition, edge-device col-
laborative inference employs edge equipment as the server, which saves the
rental cost.
Although edge-device collaborative DNN inference achieves many advan-

tages, it still faces some challenges, such as the limitation of real-time
performance, because the efficiency of edge based DNN inference is highly
dependent on the available bandwidth between edge servers and IoT devices.
With the sinking of the computing center, edge-device collaborative inference
paradigm may be considered as an extension of cloud-device collaborative
inference paradigm.

5 Cloud-edge-device collaborative DNN
inference

In this section, we firstly introduce the motivation and architecture of cloud-
edge-device collaborative DNN inference paradigm. Then we discuss the
performance optimization of the researches in recent years. Finally, we com-
pare the differences between cloud-edge-device collaborative DNN inference
paradigm and the previous two collaborative DNN inference paradigms, which
include advantages and shortcomings.

5.1 Motivation and architecture

The offloading of DNN model can reduce the pressure of mobile devices by
transferring intensive computing from resource constrained devices to cloud
or edge servers, so as to accelerate DNN inference. Cloud-device collaborative
DNN inference usually offloads some DNN models to cloud servers with high
computing power, so as to reduce the inference latency of tasks. However, since
the cloud center is too far away from the client, the performance of inference
will be affected by factors such as network bandwidth, computing power, the
amount of data transmitted and the number of computing tasks. Edge servers
are widely distributed among mobile devices and cloud computing centers, and
integrate the core functions of network, computing, storage and applications.
Therefore, edge-device collaborative DNN inference combined with edge com-
puting can effectively reduce the burden of network bandwidth and achieve
lower transmission latency. However, the computing power of edge server is
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Fig. 6 Illustration of cloud-edge-device collaborative DNN inference.

usually limited, so it is difficult to support the inference of large-scale DNN
model.

Due to different scenario applications and different physical distances of
collaborators, cloud-device collaborative DNN inference and edge-device col-
laborative DNN inference do not make full use of heterogeneous devices at
all levels. As shown in Fig. 6, cloud-edge-device collaborative DNN inference
combines the characteristics of cloud computing with high computing power
and edge computing with low transmission latency, enhances the interaction
between devices and improves the flexibility and scalability of the system.
At the same time, paper [59] analyzes the challenges involved in developing
cloud-edge-device distributed collaborative deep learning algorithms. These
algorithms have resource and data awareness, and can consider the under-
lying heterogeneous data model, resource model and data availability when
performing tasks. However, since the increase of participating equipment, per-
formance optimization objectives of cloud-edge-device collaborative inference
will consider total cost and stability of the system. This paradigm can be used
in scenarios with large amount of calculation and data, meanwhile, a good
communication environment is necessary.
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5.2 Performance optimization

According to different performance optimization objectives, we divide cloud-
edge-device collaborative DNN inference into three categories, as shown in
Table. 5.

Table 5 Classification of cloud-edge-device collaborative DNN inference

Optimization Objective Framework Application Main Technology Effectiveness

Total inference latency
minimization

[60] Mobile intelligence Model partition
Latency reduction: 47.02-72.17%
Throughput improvement: 0.875×
Energy consumption reduction: 66.91%

EosDNN [61] Computer vision
Model migration
Model partition

Lower latency

STEED [62] - Model partition Performance improvement: 2×

[63] -
Model partition

Intelligence offloading
Latency reduction: 2×

Total cost minimization

[64] - Model partition Lower system cost

[65] -
Model partition

Early-exit
Communication cost reduction: 20×

EdgeEye [66] Computer vision Model partition
Lower latency
Lower cost
Higher accuracy

eSGD [67] IoT Model partition
Lower communication cost
Higher accuracy

Failure-resilient
distributed DNN model

deepFogGuard [68] IoT
Model partition

Skip hyperconnections
Fault recovery ability

ResiliNet [69] IoT
Model partition

Skip hyperconnections
Fault recovery ability

5.2.1 Total inference latency minimization

Due to the large span of collaborative DNN inference system model and the
need for mutual communication between different equipment, the total latency
has always been a problem to be considered in collaborative inference. In
cloud-edge-device collaborative DNN inference, in order to minimize the total
inference latency, Ren et al. [60] propose a computing partition mechanism of
distributed DNN. Under the premise of satisfying the quality of service, the effi-
ciency of inference is improved by coordinating the calculation of heterogeneous
equipment. Xue et al. [61] propose a DNN inference accelerated offloading
scheme in cloud-edge-device collaborative environment. It comprehensively
considers large-scale model partition plan and migration plan, reduces infer-
ence latency and optimizes DNN real-time query performance. Chang-You
Lin et al. [62] study the deployment of distributed DNN with limited com-
pletion time to solve the deployment problem considering both response time
and inference throughput.Dey et al. [63] realize a deep learning inference sys-
tem which involved a robot vehicle based on Raspberry Pi 3 and hardware
accelerator of Intel, reducing inference latency and improving tasks efficiency.
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5.2.2 Total cost minimization

In the collaborative inference environment based on cloud, edge and terminal
equipment, the system cost also needs to be considered. To reduce the system
overhead caused by data transmission and hierarchical execution, Bing Lin
et al. [64] propose an adaptive particle swarm optimization algorithm. This
method considers the characteristics of DNN partition and layers offloading to
cloud, edge and terminal devices, which significantly reduces the system cost of
DNN application offloading. Teerapittayanon et al. [65] propose a distributed
deep neural network (DDNN) at the level of distributed computing. DDNN
maps the parts of a single DNN to the distributed computing hierarchy. While
being able to adapt to the DNN inference on cloud, DDNN also allows fast
and local inference using the shallow part of the neural network on edge and
terminal devices. DDNN can not only achieve high accuracy, but also reduce
the communication cost.

Liu and Peng et al. [66] propose EdgeEye, an edge computing framework
for real-time intelligent video analysis applications. EdgeEye enables develop-
ers to transform the model trained by the popular deep learning framework
into deployable components with minimal workload to optimize inference per-
formance and efficiency. Tao et al. [67] consider a distributed deep learning
framework based on cloud-edge-device, in which many edge devices cooperate
in training models and use edge servers as parameter servers. However, the
high network communication cost between edge devices and cloud is a bottle-
neck. The authors propose a new method called edge random gradient descent
to reduce the communication cost of model parameters.

5.2.3 Failure-resilient distributed DNN model

In the distributed inference of neural network, the network is divided and
distributed to multiple physical nodes. However, the failure of physical nodes
will cause significant decline in inference performance of the system when
the neural network is partitioned and distributed among them. Therefore,
we need to consider the fault recovery ability of the system in cloud-edge-
device collaborative inference framework, so as to obtain the failure-resilient
distributed DNN model. If a device of the system is destroyed, the previous
device can get an alternative path to transfer inference task and ensure the
integrity of the system.

Yousefpour et al. [68, 69] introduce the concept of skipping hyperconnec-
tions in distributed DNN, which provides a certain fault recovery capability
for inference in distributed DNN. The concept of skipping hyperconnections is
similar to skipping connections in the residual network. It skips one or more
physical nodes in the distributed neural network, forwards information to fur-
ther physical nodes in the distributed structure, and provides an alternative
path in case of physical node failure. Thus, the scheme can achieve flexibility
for distributed collaborative DNN in cloud-edge-device network.



A Survey on Collaborative DNN Inference for Edge Intelligence 23

5.3 Summary and analysis

Compared with the previous two collaborative DNN inference paradigms, the
research on cloud-edge-device collaborative DNN inference can also be consid-
ered as a supplement to cloud-device collaborative inference and edge-device
collaborative inference, and it has serval advantages as follows:
1) Higher resource utilization. Through fine-grained division of the model,

cloud-edge-device collaborative DNN inference can make full use of the
resources of cloud center, edge nodes and terminal devices, which means
higher resource utilization.

2) Fault recovery capability. Considering the fault recovery ability of large-
scale IoT system, cloud-edge-device collaborative DNN inference establishes
a failure-resilient distributed system model to enhance sensor fusion, system
fault tolerance and data confidentiality.

6 Device-device collaborative DNN inference

In this section, we firstly introduce the motivation and architecture of
device-device collaborative DNN inference paradigm. Then we summarize the
performance optimization of the researches in recent years.Finally, we analyse
the advantages and challenges of device-device collaborative DNN inference
paradigm.

6.1 Motivation and architecture

We note that in all previous work, an important scenario has not been fully
explored, that is running DNN on a local distributed mobile computing sys-
tem. Fig. 7 shows a framework of device-device collaborative DNN inference,
with the development of mobile edge computing, more and more intelligent
services and applications based on DNN are deployed on mobile terminal
devices to meet the diversified and personalized needs of users. Compared
with the client-server mode of a single mobile device supported by external
infrastructure such as cloud, local device-device collaborative DNN inference
computing system provides several important advantages, including more local
computing resources, higher privacy, less network bandwidth dependence and
so on. The paradigm can be used in high mobility scenarios or some remote
and harsh environments, because terminal devices are low cost and they can
be deployed everywhere. However, the resources of mobile devices are usually
limited, including computing power and electric quantity, so the performance
optimization objectives will focus on inference latency and energy consumption
in device-device collaborative inference.

6.2 Performance optimization

According to different performance optimization objectives, we divide device-
device collaborative DNN inference into two categories, as shown in Table. 6.



24 A Survey on Collaborative DNN Inference for Edge Intelligence

Fig. 7 Illustration of device-device collaborative DNN inference.

6.2.1 Total inference latency minimization

The equipment of device-device collaborative DNN inference is local and close
to the data source. Although compared with the collaborative inference mode
requiring remote server, its physical transmission distance is shorter and the
communication latency will be smaller in theory. Due to the limited resources of
local mobile devices, the latency of inference calculation will increase, and the
increase of devices that need to participate in collaboration will also increase
the communication latency. Therefore, it is necessary to study how to reduce
the latency of device-device collaborative DNN inference.

UAV has attracted much attention because of its low cost, high mobility
and excellent application ability in difficult and dangerous fields. However,
the application of DNN on UAV has many challenges in dealing with deep
networks and complex models. Dhuheir et al. [70] propose a strategy to allocate
inference requests to resource constrained UAV groups to classify the captured
airborne images, so as to obtain the minimum decision latency. Jouhari et al.
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Table 6 Classification of device-device collaborative DNN inference

Optimization Objective Framework Application Main Technology Effectiveness

Total inference latency
minimization

DistInference [70] Computer vision Model partition Lower latency

OULD [18] Computer vision Model partition
Lower latency
Lower shared data

[71] IoT Model partition Lower latency

[72] IoT Model partition
Communication size reduction: 14.4%
Inference latency reduction: 16%

[73] IoT -
System acceleration: 3.85×
Memory footprint reduction: 70%

DistPrivacy [74] IoT Model partition
Lower latency
Privacy protection

EdgenAI [75] -
Model partiton

Class-aware pruning
Inference speedup: 17×

DeepSlicing [76] Computer vision
Model partition
Data partition

Inference latency reduction: 5.79×
Memory footprint reduction: 14.72×

MoDNN [77] Computer vision Data partition
Computation acceleration: 2.17-4.28×
Data delivery time reduction: 30.02%

DeepThings [78] IoT
Fused tile partitioning

Model partition
Data partition

Memory footprint reduction: 68%
Throughput improvement: 1.7-2.2×
Inference acceleration: 1.7-3.5×

Total cost minimization

CoEdge [79] IoT
Model partition
Data partition

Energy consumption reduction: 25.5-66.9%

[80] IoT Model partition
Lower memory footprint
Lower energy consumption

[81] Computer vision Model partition
Throughput improvement: 3.21×
Energy consumption reduction: 68%
Memory usage reduction: 58%

[18] propose a DNN distribution method in UAV to realize data classification
in resource constrained equipment and avoid additional latency introduced by
server based solution due to data communication from air to ground link.

Disabato et al. [71] introduce a method designed to allocate CNN execution
on Distributed IoT applications. The method is formalized as an optimization
problem to minimize the end-to-end latency of collaborative inference under
given memory and load constraints. Naveen et al. [72] propose a device-device
edge computing framework, which uses the weight pruning method to pro-
mote optimization, deploys the model to low performance intelligent devices
designed for real-time applications, and has made significant improvements in
communication scale and inference latency.

For the application of IoT, Du and Jiangsu et al. [73] propose a distributed
CNN inference system based on loosely coupled CNN structure, synchronous
partition and asynchronous communication. The system reduces the memory
occupation of each device and improves the efficiency of collaborative inference.
Baccour et al. [74] explore the allocation of DNN on the IoT devices in the
monitoring system to minimize the latency of classification decision, who also
introduce a model called distprivacy to improve the system privacy. Hemmat
et al. [75] propose a framework to decompose the complex DNN into multiple
available local edge devices, which minimizes the communication overhead and
overall inference latency.

Zhang et al. [76] introduce Deepslicing, a cooperative adaptive inference
system, which is suitable for all kinds of CNNs and supports customized flexible
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fine-grained scheduling. Through the scheduler to the model and data, the
balance between calculation and synchronization is realized, and the inference
latency and memory occupation are reduced. Mao et al. [77] propose a local
distributed mobile computing system named MoDNN for DNN applications.
MoDNN can distribute the trained DNN model to multiple mobile devices, and
accelerate DNN computing by reducing device level computing and memory
usage. Zhao et al. [78] propose a lightweight framework named Deepthings for
adaptively distributed execution of CNN based inference applications on the
edge cluster of the IoT with strictly limited resources. Deepthings not only
realizes the parallelism of independently distributed processing tasks, but also
minimizes the memory occupation and reduces the overall inference latency.

6.2.2 Total cost minimization

Local mobile devices not only have limited computing and memory resources,
but also have limited battery capacity due to volume constraints. The energy
consumption of collaborative inference and communication will affect their
activity range and task duration to a certain extent. Therefore, we need to
consider how to minimize the total cost of device-device collaborative infer-
ence in application scenarios to improve task performance. Goel et al. [81]
verify that the hierarchical DNN architecture is very suitable for parallel pro-
cessing on multiple edge devices, and created a parallel inference system for
computer vision problems of hierarchical DNN. The method balances the load
between cooperative devices and reduces the communication cost, so as to
process multiple video frames at the same time with higher throughput.

Zeng et al. [79] propose CoEdge, a distributed DNN computing system
that coordinates heterogeneous edge devices for collaborative DNN infer-
ence. CoEdge employs the computing and communication resources available
at the edge to dynamically divide the DNN inference workload according
to the computing power of the equipment and network conditions, which
greatly reduces the energy consumption of model inference. Hadidi et al. [80]
develop an analysis technology that can effectively distribute DNN model
based inference applications on distributed robot systems, taking memory
usage, communication overhead and real-time data processing performance
into account.

6.3 Summary and analysis

Compared with the previous three collaborative inference methods, the device-
device collaborative DNN inference has three prominent advantages:
1) System independence. It reduces the dependency between mobile

devices and servers and reduces the operation cost of devices.
2) Lower inference latency. Device-device collaborative mode reduces the

latency of inference decision which contains the local mobile devices com-
munication with each other, receiving requests and making final decisions,
so as to avoid the overhead of remote transmission.
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3) System adaptability. When the remote server cannot be connected in a
harsh environment or some devices are destroyed, the mobile device clus-
ter can still perform inference tasks under the device-device collaborative
mode.
However, according to the existing research, device-device collaborative

DNN inference still faces many challenges:
1) Privacy security. Due to the limited computing resources of local dis-

tributed devices, a single machine cannot execute a large DNN model.
Multi-device collaborative inference will increase the communication over-
head and the probability of data loss, and there is a risk of privacy disclosure
in the frequent transmission of data.

2) Synchronization of heterogeneous devices. Due to the heterogeneity
of local mobile devices and different computing power of different devices,
it may lead to the idle waiting of high computing power devices during
data synchronization, which reduces the inference efficiency and increases
the end-to-end latency.

3) Dynamic task allocation based on device status. Due to the limita-
tion of battery capacity, for collaborative inference tasks, fine-grained device
scheduling strategy and task allocation strategy are needed to minimize
the overall energy consumption. Only the matching between the remain-
ing power of each device and the amount of tasks can ensure the complete
operation of the whole inference system.

7 Future development trend of collaborative
DNN inference for EI

Based on the above comprehensive discussion of existing works, we will
describe several open challenges and future research directions of collaborative
DNN inference for EI in this section. In Fig. 8, we count the number of papers
related to “collaborative DNN inference” in recent years, which shows the
rapid development and broad exploration space of this research field. With the
emergence of AI driven computing intensive mobile and IoT applications, edge-
oriented collaborative DNN inference can become a common model, but the
current collaborative DNN inference paradigm still needs to be further explored
to obtain higher performance improvement and wider scene applications.

7.1 Trade-off design of performance index of
collaborative DNN model

For EI oriented collaborative DNN inference applications with specific tasks,
there are generally many DNN models that can complete tasks as candidates.
However, how to select an appropriate DNN model for collaborative DNN
inference application is a research difficulty, because standard performance
indicators such as top-k accuracy or average accuracy can not fully reflect the
performance of collaborative DNN model when it runs cooperatively on edge
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Fig. 8 Number of papers related to by “collaborative DNN inference” on Google Scholar.

devices. In the model deployment stage, in addition to accuracy, inference
efficiency and resource consumption are also key indicators [82]. Therefore,
we need to explore the trade-offs between these performance indicators and
determine the factors affecting them, so as to obtain the optimal collaborative
model selection and deployment mode of the current task.

7.2 Dynamic computing network technology

For EI oriented collaborative DNN inference, computing intensive applica-
tions usually run in distributed edge computing environment. Therefore, an
advanced network solution with computing awareness is very necessary, so that
the calculation results and data can be efficiently shared among different edge
nodes. In 5G networks, the flexible control of network resources can support
the on-demand interconnection between different edge nodes in computing
intensive AI applications. For the future 6G networks, due to the addition of
satellite communication, IoT can realize the global coverage of mobile com-
munication, so the connection between collaborative DNN inference devices
will be closer. On the other hand, the autonomous network mechanism that
allows the dynamic configuration of new edge nodes and devices is important
for efficient collaborative inference in dynamic heterogeneous networks. Col-
laborative inference system with dynamic autonomous network mechanism can
also deal with the sudden failure of nodes, which is the research direction of
failure-resilient collaborative model in the future.

7.3 Intelligent task allocation and resource management

Due to the distributed character of collaborative DNN inference, the edge
devices and nodes participating in the intelligent task are scattered in different
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regions, and different edge nodes may run different DNN models. Therefore, it
is important to schedule the equipment reasonably, make full use of the scat-
tered resources between the edge nodes and the equipment, divide the complex
model into multiple subtasks, and offload these tasks efficiently between the
edge nodes and the equipment, so as to perform inference cooperatively.

The environment of collaborative DNN inference application scenarios is
highly dynamic, and it is difficult to accurately predict future events. There-
fore, it needs excellent online edge resource coordination and provisioning
capabilities to adapt to large-scale tasks. The real-time joint optimization
of heterogeneous computing, communication and cache resource allocation,
as well as the customized system parameter configuration for different task
requirements are also important. In order to solve the complexity of algo-
rithm design, an emerging research direction is the efficient resource allocation
strategy of data-driven adaptive learning.

7.4 Security and privacy issues

Because distributed collaborative inference needs to ensure that the services
of inference tasks provided by different nodes are credible, the design of dis-
tributed security mechanism is significant to ensure the authentication of
subscriber, the access control of collaborative inference tasks, the model and
data security of devices, and the mutual authentication between different
devices [83]. In addition, considering the coexistence of trusted edge nodes and
untrusted edge nodes, it is also important to study new secure routing schemes
and trusted network topology for collaborative DNN inference.

Terminal devices will generate a large amount of data at the edge of the
network, which may involve privacy issues [84], because they may contain
user location information or activity records. According to the requirements
of privacy protection, directly sharing the raw data set among multiple nodes
may have a high risk of privacy disclosure. Therefore, device-device collabo-
rative DNN inference is a feasible paradigm. The raw data set is stored on
the generation equipment, and only the extracted intermediate feature infor-
mation and model parameters are transmitted between the local inference
equipment groups. Meanwhile, there are also studies using differential privacy,
homomorphic encryption and secure multi-party computing tools to design a
privacy protected model parameter sharing scheme, which can further enhance
the data privacy in collaborative inference for EI. Nowadays, there are also
researches on collaborative inference to enhance the security and privacy of
devices and data by combining blockchain technology, which is also one of the
research directions that can be considered in the future collaborative DNN
inference on privacy issues.

8 Conclusion

This paper combs and classifies the research progress of edge collaborative
DNN inference in recent years. Specifically, we firstly review the background
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and motivation of collaborative DNN inference at the edge of the network.
Then, we outline the overall architecture, performance optimization and key
technologies of four different types of collaborative DNN inference models.
Finally, we discuss the open challenges and future research directions of collab-
orative DNN inference for EI. It is hoped that this survey can attract more and
more attention, stimulate extensive discussion, and provide ideas for further
research on collaborative DNN inference.
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