
The Life Cycle of Knowledge in Big Language Models: A Survey

Boxi Cao1,3, Hongyu Lin1, Xianpei Han1,2B, Le Sun1,2

1Chinese Information Processing Laboratory 2State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, Beijing, China

3University of Chinese Academy of Sciences, Beijing, China
{boxi2020,hongyu,xianpei,sunle}@iscas.ac.cn

Abstract

Knowledge plays a critical role in artificial
intelligence. Recently, the extensive success
of pre-trained language models (PLMs) has
raised significant attention about how knowl-
edge can be acquired, maintained, updated
and used by language models. Despite the
enormous amount of related studies, there still
lacks a unified view of how knowledge circu-
lates within language models throughout the
learning, tuning, and application processes,
which may prevent us from further understand-
ing the connections between current progress
or realizing existing limitations. In this sur-
vey, we revisit PLMs as knowledge-based sys-
tems by dividing the life circle of knowledge in
PLMs into five critical periods, and investigat-
ing how knowledge circulates when it is built,
maintained and used. To this end, we systemat-
ically review existing studies of each period of
the knowledge life cycle, summarize the main
challenges and current limitations, and discuss
future directions1.

1 Introduction

Fundamentally, AI is the science of
knowledge – how to represent knowledge
and how to obtain and use knowledge.

Nilson (1974)
Knowledge is the key to high-level intelligence.

How a model obtains, stores, understands and
applies knowledge has long been a critical re-
search topic in machine intelligence. Recent
years have witnessed the rapid development of
pre-trained language models (PLMs). Through
self-supervised pre-training on large-scale unla-
beled corpora, PLMs show strong generaliza-
tion and transferring abilities across different
tasks/datasets/settings over previous methods, and

1We openly released a corresponding paper list which
will be regularly updated on https://github.com/c-box/
KnowledgeLifecycle.
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Figure 1: Five critical periods in life circle of knowl-
edge in language models.

therefore have achieved remarkable success in nat-
ural language processing (Devlin et al., 2019; Liu
et al., 2019c; Raffel et al., 2020; Radford et al.,
2019b; Brown et al., 2020; Lewis et al., 2020a).

The success of pre-trained language models has
raised great attention about the nature of their en-
tailed knowledge. There have been numerous stud-
ies focusing on how knowledge can be acquired,
maintained, and used by pre-trained language mod-
els. Along these lines, many novel research direc-
tions have been explored. For example, knowledge
infusing devotes to injecting explicit structured
knowledge into PLMs (Sun et al., 2019; Zhang
et al., 2019; Sachan et al., 2021). Knowledge prob-
ing aims to evaluate the type and amount of knowl-
edge stored in PLMs’ parameters (Petroni et al.,
2019; Lin et al., 2019; Hewitt and Manning, 2019).
And knowledge editing is dedicated to modifying
the incorrect or undesirable knowledge acquired
by PLMs (Zhu et al., 2020; De Cao et al., 2021;
Mitchell et al., 2021).

Despite the large amount of related studies, cur-
rent studies primarily focus on one specific stage
of knowledge process in PLMs, thereby lacking a
unified perspective on how knowledge circulates
throughout the entire model learning, tuning, and
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application phases. The absence of such com-
prehensive studies makes it hard to better under-
stand the connections between different knowledge-
based tasks, discover the correlations between dif-
ferent periods during the knowledge life circle in
PLMs, exploit the missing links and tasks for inves-
tigating knowledge in PLMs, or explore the short-
comings and limitations of existing studies. For
example, while numerous studies attempt to assess
the knowledge in language models that are already
pre-trained, there are few studies dedicated to in-
vestigating why PLMs can learn from pure text
without any supervision about knowledge, as well
as how PLMs represent or store these knowledge.
Meanwhile, many researchers have tried to explic-
itly inject various kinds of structural knowledge
into PLMs , but few studies propose to help PLMs
better acquire specific kinds of knowledge from
pure text by exploiting the knowledge acquisition
mechanisms behind. As a result, related research
may be overly focused on several directions but
fail to comprehensively understand, maintain and
control knowledge in PLMs, and therefore limits
the improvements and further application.

In this survey, we propose to systematically re-
view the knowledge-related studies in pre-trained
language models from a knowledge engineering
perspective. Inspired by research in cognitive
science (Zimbardo and Ruch, 1975; Churchland
and Sejnowski, 1988) and knowledge engineer-
ing (Studer et al., 1998; Schreiber et al., 2000), we
regard pre-trained language models as knowledge-
based systems, and investigate the life cycle of how
knowledge circulates when it is acquired, main-
tained and used in pre-trained models (Studer et al.,
1998; Schreiber et al., 2000). Specifically, we di-
vide the life cycle of knowledge in pre-trained lan-
guage models into the following five critical peri-
ods as shown in Fig. 1:

• Knowledge Acquisition, which focuses on
the procedure of language models learning
various knowledge from text or other knowl-
edge sources.

• Knowledge Representation, which focuses
on the underlying mechanism of how different
kinds of knowledge are transformed, encoded,
and distributed in PLMs’ parameters.

• Knowledge Probing, which aims to evalu-
ate how well current PLMs entailing different
types of knowledge.

• Knowledge Editing, which tries to edit or
delete knowledge containing in language mod-
els.

• Knowledge Application, which tries to dis-
till or leverage knowledge in pre-trained lan-
guage models for practical application.

For each of these periods, we sort out the exist-
ing studies, summarize the main challenges and
limitations, and discuss future directions. Based
on the unified perspective, we are able to under-
stand and utilize the close connections between
different periods instead of consider them as in-
dependent tasks. For instance, understanding the
knowledge representation mechanism of PLMs is
valuable for researchers to design better knowl-
edge acquisition objectives and knowledge editing
strategies. Proposing reliable knowledge probing
methods could help us find the suitable applica-
tions for PLMs, and gain insight into their limita-
tions, thereby facilitating improvement. Through
this survey, we are willing to comprehensively con-
clude the progress, challenges and limitations of
current studies, help researchers better understand
the whole field from a novel perspective, and shed
light on the future directions about how to better
regulate, represent and apply the knowledge in lan-
guage models from a unified perspective.

We summarize our contributions as follows:

• We propose to revisit pre-trained language
models as knowledge-based systems, and di-
vide the life cycle of knowledge in PLMs into
five critical periods.

• For each period, we review existing studies,
summarize the main challenges and shortcom-
ings for each direction.

• Based on this review, we discuss about the
limitations of the current research, and shed
light to potential future directions.

2 Overview

In this section, we present the overall structure of
this survey, describe our taxonomy shown in Fig. 2
in detail, and discuss the topics in each critical
period.

Knowledge Acquisition is the knowledge learn-
ing procedure of language models. Currently, there
are two main sources for knowledge acquisition:



Knowledge Life Circle
in Language Models

Knowledge
Acquisition §3

Learning From
Text Data

Strategy Devlin et al. (2019); Liu et al. (2019c);
Brown et al. (2020); Raffel et al. (2020) etc.

Mechanism
Chiang et al. (2020); Pérez-Mayos
et al. (2021); Liu et al. (2021c) etc.

Learning From
Structured Data

Entity Knowledge Sun et al. (2019); Xiong et al.
(2020); Peters et al. (2019) etc.

Factual Knowledge Zhang et al. (2019); Wang et al.
(2021b,a); Liu et al. (2020) etc.

Commonsense
Knowledge

Bosselut et al. (2019); Ye et al. (2019);
Guan et al. (2020); Ma et al. (2021) etc.

Linguistic
Knowledge

Ke et al. (2020); Lauscher et al. (2020);
Zhou et al. (2019); Bai et al. (2021) etc.

Knowledge
Representation §4

Gradient-based Geva et al. (2021); Dai et al. (2022a) etc.

Causal-inspired Meng et al. (2022) etc.

Attention-based
Clark et al. (2019); Htut et al.
(2019); Lin et al. (2019) etc.

Layer-wise Lin et al. (2019); Liu et al. (2019a);
Juneja and Agarwal (2022) etc.

Knowledge
Probing §5

Probing Benchmarks Petroni et al. (2019); Jiang et al.
(2020a); Sung et al. (2021) etc.

Prompt-based
Probing

Handcraft Prompt Petroni et al. (2019); Zhou et al.
(2020a); Talmor et al. (2020)

Optimized
Discrete Prompt

Jiang et al. (2020b); Davison et al. (2019);
Haviv et al. (2021); Shin et al. (2020) etc.

Continual Prompt Zhong et al. (2021); Li and Liang
(2021a); Liu et al. (2021b) etc.

Limitations
Kassner and Schütze (2020); Elazar

et al. (2021); Cao et al. (2021, 2022) etc.

Feature-based
Probing

Classifier-based
Lin et al. (2019); Tenney et al. (2019);

Clark et al. (2019); Liu et al. (2019a) etc.

Classifier-free
Wu et al. (2020); Zhou

and Srikumar (2021a) etc.

Limitations
Hewitt and Manning (2019); Rogers

et al. (2020); Belinkov (2022) etc.

Knowledge
Editing §6

Constrained
Fine-tuning Zhu et al. (2020)

Memory-based Mitchell et al. (2022); Madaan
et al. (2022); Dong et al. (2022) etc.

Meta-learning De Cao et al. (2021); Hase et al.
(2021); Mitchell et al. (2021) etc.

Locate and Edit Dai et al. (2022a); Meng et al. (2022) etc.

Knowledge
Application §7

Language Models as
Knowledge Bases

Construction

Coverage

Interaction

Reliability

Language Models for
Downstream Tasks

Fine-tuning Manning et al. (2020); Wei et al. (2021b);
Yang et al. (2021); Yin et al. (2022) etc.

Prompt learning Radford et al. (2019a); Brown
et al. (2020); Liu et al. (2021a) etc.

In-context Learning Brown et al. (2020); Zhao et al.
(2021); Lu et al. (2022) etc.

Figure 2: Typology of knowledge life circle in big language models.



the plain text data and the structured data. For ac-
quiring knowledge from text data, LMs typically
conduct self-supervised learning on large-scale text
corpora (Devlin et al., 2019; Liu et al., 2019c;
Brown et al., 2020; Raffel et al., 2020). This survey
will focus on the methods and mechanisms of how
pre-trained language models obtaining knowledge
from pure texts (Chiang et al., 2020; Pérez-Mayos
et al., 2021; Liu et al., 2021c). For acquiring knowl-
edge from structured data, current research focus
on knowledge injection from different kinds of
structured data into PLMs. The primary categories
of structured data contains entity knowledge (Sun
et al., 2019; Xiong et al., 2020; Peters et al., 2019),
factual knowledge (Zhang et al., 2019; Wang et al.,
2021b,a; Liu et al., 2020), commonsense knowl-
edge (Bosselut et al., 2019; Ye et al., 2019; Guan
et al., 2020; Ma et al., 2021) and linguistic knowl-
edge (Ke et al., 2020; Lauscher et al., 2020; Zhou
et al., 2019; Bai et al., 2021). We will discuss all
of them in Section 3.

Knowledge Representation aims to investigate
how language models encode, store and represent
knowledge in their dense parameters. The investi-
gation about the knowledge representation mecha-
nisms will aid in a better understanding and control
of knowledge in PLMs, and may also inspire re-
searchers for better understanding the knowledge
representation in human brains. Currently, the
strategies for knowledge representation analysis
in PLMs include gradient-based (Geva et al., 2021;
Dai et al., 2022a), causal-inspired (Meng et al.,
2022), attention-based (Clark et al., 2019; Htut
et al., 2019; Lin et al., 2019), and layer-wise (Lin
et al., 2019; Liu et al., 2019a; Juneja and Agarwal,
2022) methods. We will discuss them in Section 4.

Knowledge Probing aims to evaluate how well
current PLMs entailing specific types of knowledge.
Currently, two primary strategies are used to probe
the knowledge in PLMs: 1) Prompt-based prob-
ing, which usually constructs knowledge-instructed
prompt, then query PLMs using these natural lan-
guage expressions (Petroni et al., 2019; Jiang et al.,
2020a; Sung et al., 2021; Forbes et al., 2019; Zhou
et al., 2020a). For example, querying PLMs with
“The capital of France is .” to evaluate whether
PLMs have stored the corresponding knowledge
<France, capital, Paris>. Meanwhile, to improve
PLMs’ performance, a series of studies devote to
optimizing prompts in both discrete (Jiang et al.,
2020b; Davison et al., 2019; Haviv et al., 2021;

Shin et al., 2020) and continual space (Zhong et al.,
2021; Li and Liang, 2021a; Liu et al., 2021b). De-
spite the widely application of prompt-based prob-
ing, lots of studies also point out that there still exist
some pending issues such as inconsistent (Elazar
et al., 2021; Kassner and Schütze, 2020; Jang et al.,
2022; Cao et al., 2022), inaccurate (Poerner et al.,
2020; Zhong et al., 2021; Cao et al., 2021) and
unreliable (Cao et al., 2021; Li et al., 2022a), and
question the quantity results of prompt-based prob-
ing. 2) Feature-based probing, which normally
freezes the parameters of original PLMs, and eval-
uates PLMs on probing tasks based on their inter-
nal representation or attention weights. We cate-
gorize existing feature-based probing studies into
classifier-based probing (Lin et al., 2019; Tenney
et al., 2019; Clark et al., 2019; Liu et al., 2019a)
and classifier-free probing (Wu et al., 2020; Zhou
and Srikumar, 2021a) according to whether an addi-
tional classifier is introduced. Since most methods
introduce additional parameters or training data,
the main shortcoming of feature-based probing is
whether the results should attribute to knowledge in
PLMs or probing task learned by additional probes.
We will discuss them in Section 5.

Knowledge Editing aims to modify the incor-
rect knowledge or delete the undesirable infor-
mation in PLMs. Because of inevitable mis-
takes learned by PLMs and the update of knowl-
edge, reliable and effective knowledge editing ap-
proaches are essential for the sustainable applica-
tion of PLMs. Current approaches include con-
strained fine-tuning (Zhu et al., 2020), memory-
based (Mitchell et al., 2022; Madaan et al., 2022;
Dong et al., 2022), meta-learning inspired (De Cao
et al., 2021; Hase et al., 2021; Mitchell et al., 2021)
and location-based methods (Dai et al., 2022a;
Meng et al., 2022). We will discuss them in Sec-
tion 6.

Knowledge Application aims to distill or lever-
age specific knowledge from PLMs to benefit fur-
ther applications. Currently, there are two main
kinds of application paradigms for knowledge in
PLMs: 1) Language models as knowledge bases
(LMs-as-KBs), which regards language models
as dense knowledge bases that can be directly
queried with natural language to obtain specific
types of knowledge (Petroni et al., 2019; Heinz-
erling and Inui, 2021; Jiang et al., 2020b; Wang
et al., 2020; Cao et al., 2021; Razniewski et al.,
2021; AlKhamissi et al., 2022). And we provide



a comprehensive comparison between structured
knowledge bases and LMs-as-KBs (Razniewski
et al., 2021) from four aspects, including construc-
tion, coverage, interaction and reliability; 2) Lan-
guage models for downstream task, which directly
uses PLMs entailing specific kinds of knowledge
in downstream NLP tasks via fine-tuning (Manning
et al., 2020; Wei et al., 2021b; Yang et al., 2021;
Yin et al., 2022), prompt-learning (Radford et al.,
2019a; Brown et al., 2020; Liu et al., 2021a) and
in-context learning (Brown et al., 2020; Zhao et al.,
2021; Lu et al., 2022). We will discuss them in
Section 7.

3 Knowledge Acquisition

During the knowledge acquisition period, pre-
trained language models learn knowledge from dif-
ferent knowledge sources. In this section, we cate-
gorize and describe knowledge acquisition strate-
gies according to knowledge sources, and then dis-
cuss the future directions.

3.1 Learning from Text Data

Currently, pre-trained language models usually ac-
quire various knowledge from pure text through
self-supervised learning on a large-scale text cor-
pus. In this section, we will first introduce several
widely used learning objectives (Qiu et al., 2020),
and then discuss the learning mechanisms behind
them.

Causal Language modeling aims to autoregres-
sively predict the next token in the input sequence,
which is the most popular pre-training tasks (Rad-
ford et al., 2019b; Brown et al., 2020; Ouyang
et al., 2022; Scao et al., 2022) and has demon-
strated excellent effectiveness in capturing context
dependency and text generation paradigms. One
limitation of causal language modeling is unidirec-
tional, which can only capture contextual informa-
tion from left to right.

Masked Language Modeling aims to mask
some tokens in the input randomly, and then pre-
dict the masked token conditioned on the rest of
sequence (Devlin et al., 2019; Liu et al., 2019c).
Unlike causal language modeling, which can only
obtain information in a unidirectional manner,
masked language modeling can capture contextual
information from both left-to-right and right-to-left
directions.

Seq2seq Masked Language Modeling uses
an encoder-decoder architecture for pre-training,

which first feeds the encoder with masked se-
quence, and the decoder is supposed to predict
the masked tokens autoregressively (Raffel et al.,
2020; Song et al., 2019).

Denoising Autoencoder first corrupts the input
sequence with randomly mask symbols, then feed
the input into a bidirectional encoder, and the likeli-
hood of the whole original input is calculated with
an auto-regressive decoder (Lewis et al., 2020a).

Although PLMs are pre-trained without any su-
pervision from external knowledge sources, they
have been shown to capture a diverse range of
knowledge within their parameters, such as linguis-
tic knowledge (Lin et al., 2019; Tenney et al., 2019;
Liu et al., 2019b; Htut et al., 2019; Hewitt and Man-
ning, 2019; Goldberg, 2019; Warstadt et al., 2019),
semantic knowledge (Tenney et al., 2019; Wal-
lace et al., 2019; Ettinger, 2020) and world knowl-
edge (Davison et al., 2019; Bouraoui et al., 2020;
Forbes et al., 2019; Zhou et al., 2020b; Roberts
et al., 2020; Lin et al., 2020a; Tamborrino et al.,
2020).

Intuitively, PLMs learn such knowledge because
they can abstract, generalize and store the implicit
knowledge in the text through self-supervised learn-
ing. Unfortunately, the underlying mechanism of
how and why PLMs acquire or forget knowledge
still remains to be explored. And it will be valuable
to understand the behaviors of PLMs and inspire
better knowledge acquisition strategies.

To understand the underlying mechanisms, some
studies dive into the dynamics of LMs’ pre-training
procedure. Many researchers study the training dy-
namics of neural networks. For example, Achille
et al. (2019) try to figure out whether there exist
critical periods in the learning process of neural net-
works. Liu et al. (2021c) devote to finding a math-
ematical solution for the semantic development in
deep linear networks. Other studies (Saphra and
Lopez, 2019, 2020) analyze the training dynamics
of LSTM (Hochreiter and Schmidhuber, 1997) with
techniques such as SVCCA (Raghu et al., 2017).

While most existing studies focus on neural net-
works with relatively simple architectures. Only a
few studies consider knowledge in large-scale pre-
trained language models. Chiang et al. (2020) first
systematically investigate the knowledge acquisi-
tion process during the training of ALBERT (Lan
et al., 2020). Specifically, they study the syntactic
knowledge, semantic knowledge, and world knowl-
edge development during pre-training, and find that



the learning process varies across knowledge, and
having more pre-trained steps could not necessarily
increase the knowledge in PLMs. Pérez-Mayos
et al. (2021) investigate the effect of the size of the
pre-trained corpus on the syntactic ability of the
RoBERTa (Liu et al., 2019c) model, and find that
models pre-trained on more data typically contain
more syntactic knowledge and perform better in
related downstream tasks. Liu et al. (2021c) also
investigate the knowledge acquisition process of
RoBERTa (Liu et al., 2019c) on various knowledge.
And find that compared with linguistic knowledge
which can be learned quickly and robustly, world
knowledge is learned slowly and domain-sensitive.

3.2 Learning from Structured Data
Apart from acquiring knowledge from pure text,
PLMs can also acquire knowledge by injecting
explicit structured knowledge into them. In this
section, we review these studies according to the
category of structured knowledge sources.

Entity Knowledge To learn entity knowledge ex-
plicitly, lots of studies propose entity-guided tasks
for language model pretraining. For example, Sun
et al. (2019) and Shen et al. (2020) use entity-
level masking to enhance language models, which
first recognize named entities in a sentence, then
all the tokens corresponding to these entities as
masked and predicted at once. Xiong et al. (2020)
present replaced entity detection, which randomly
replaces the named entities in a sentence with an-
other mention of the same entity or other entities
of the same type, and LMs are supposed to deter-
mine which entities are replaced. Yamada et al.
(2020) treat words and entities as independent to-
kens, and conduct mask language modeling sep-
arately to learn both contextualized word repre-
sentation and entity representation. Févry et al.
(2020) combine the mention detection and entity
linking pre-training objectives with mask language
modeling to match the entities in text with specific
entity memories. In addition to the entity men-
tions themselves, researchers have also introduced
other meta-information such as entity description
to further assist the entity knowledge learning (Lo-
geswaran et al., 2019; Gillick et al., 2019). Another
efficient way to enrich PLMs’ text representation
with entity knowledge is utilizing word-to-entity
attention (Peters et al., 2019; Yamada et al., 2020).

Factual Knowledge In structured knowledge
bases, factual knowledge is generally represented

as triples (subject entity, relation, object entity).
For a long time, researchers have been dedicated
to aiding PLMs to acquire more factual knowledge
to perform better on downstream tasks. On the
one hand, introducing knowledge graph embedding
into the pre-training procedure could be effective.
Zhang et al. (2019) propose an aggregator to com-
bine the corresponding knowledge embedding of
the entities in text and token embedding. Wang
et al. (2021b) co-train mask language modeling
and knowledge graph embedding objectives, which
could produce both informative text and knowl-
edge embedding. On the other hand, some studies
propose designing factual knowledge-guided aux-
iliary tasks. Wang et al. (2021a) add an adapter
to infuse knowledge into PLMs without updating
the original parameters. The adapter is trained
with predication prediction to determine the rela-
tion type between tokens. Qin et al. (2021) propose
the entity discrimination tasks to predict the object
entity given subject entity and relation, as well as
relation discrimination tasks to predict the seman-
tic connection between relation pairs. Banerjee
and Baral (2020) directly pre-train language model
on the knowledge graph, the model is given two
elements of a knowledge triple to predict the rest
one. Liu et al. (2020) argue that incorporating a
whole knowledge base into PLMs might induce the
knowledge noise issue, and propose to learn from
a specific sub-graph related to each input sentence.
Moreover, Baldini Soares et al. (2019) propose
to learn relational knowledge solely from entity-
link text through "matching in the blank" objec-
tive, which first replaces the entities in text with
blank symbols and then brings the relation repre-
sentations closer when they have the same pair of
entities.

Commonsense Knowledge One of the most
common strategy for PLMs learning commonsense
knowledge is converting the knowledge to natural
language expressions before learning. Bosselut
et al. (2019); Guan et al. (2020); Shwartz et al.
(2020) first transfer the commonsense knowledge
triples to natural language with prompt, then pre-
train LMs on these knowledge-augmented data. Ye
et al. (2019) post-training LMs on commonsense
QA datasets created by AWS (align, mask, select).
Ma et al. (2021) transform structured common-
sense knowledge into natural language questions
for model learning.



Linguistic Knowledge By designing the corre-
sponding pre-training tasks, PLMs could also learn
linguistic knowledge explicitly, such as sentiment
knowledge (Ke et al., 2020; Tian et al., 2020), lexi-
cal knowledge (Lauscher et al., 2020; Levine et al.,
2020; Zhou et al., 2019), syntax knowledge (Zhou
et al., 2019; Sachan et al., 2021; Bai et al., 2021),
etc. For example, to equip LMs with sentiment
knowledge, Ke et al. (2020) first label each word
with a POS tag and sentiment polarity, and then
incorporate both the word-level and sentence-level
sentiment label with the mask language modeling
objective. Similarly, Tian et al. (2020) first mine
sentiment knowledge from unlabeled data based on
pointwise mutual information (PMI), and then con-
duct pre-training tasks such as sentiment masking,
sentiment word prediction and word polarity predic-
tion with these sentiment information. As for lexi-
cal knowledge, Lauscher et al. (2020) first acquire
word similarity information from WordNet (Miller,
1992) and BabelNet (Navigli and Ponzetto, 2010),
and then add word relation classification tasks
in addition to BERT’s original pre-training tasks.
Levine et al. (2020) also introduces the lexical in-
formation from WordNet and adds a masked-word
prediction task. To incorporate dependency knowl-
edge with PLMs, Song et al. (2022) construct a
dependency matrix for attention alignment calibra-
tion and a fusion module to integrate dependency
information. Explicitly learning syntax knowledge
also raises the researchers’ attention, Sachan et al.
(2021) investigate infusing syntax knowledge by
either adding a syntax-GNN on the output of trans-
formers or incorporating with text embedding using
attention. To further capture the syntax knowledge,
Bai et al. (2021) using multiple attention networks,
with each one encoding one relation from the syn-
tax tree.

3.3 Discussions and Future Work

As we mentioned above, there have been exten-
sive studies for better knowledge acquisition of
language models, and most of them focus on in-
fusing existing structured knowledge sources into
PLMs. The learning from text data methods can be
easily scaled, and the knowledge sources is easily
obtained. But the underlying mechanism is still
mostly unclear, the knowledge acquisition process
is implicitly and thus is hard to control, and may
lead to inconsistent prediction, undesirable bias
and unforeseen risks. The learning from structured

data methods can explicitly inject knowledge into
PLMs, but are limited by the cost, domain, scale
and quality of knowledge sources. Furthermore,
since the knowledge injection methods are often
specialized to specific kinds of knowledge, it is of-
ten difficult to extend or produce new knowledge.

Furthermore, because all knowledge in PLMs
are implicitly encoded as parameters, it is often
very difficult to control and validate the knowledge
acquisition process. There are also several studies
such as retrieval-based PLMs, focus on retrieving
related knowledge or context to enhance original
PLMs (Guu et al., 2020; Lewis et al., 2020b; Ya-
sunaga et al., 2022), rather than injecting knowl-
edge into PLMs’ parameters.

Several future directions of knowledge acquisi-
tion in PLMs may lie in: 1) For the knowledge
acquisition from existing structured knowledge
sources, it is critical to develop universal knowl-
edge injection methods which can uniformly in-
jecting different types of knowledge from differ-
ent knowledge sources, and ensures continuous
learning and avoid catastrophic forgetting in the
meantime. 2) For the knowledge acquisition from
pure text data, it is helpful to fully understand the
underlying mechanism of knowledge learning in
PLMs, and develop effective knowledge learning al-
gorithms which can learn specific knowledge from
text data in a controllable and predicable way. 3)
Furthermore, it is also important to build compre-
hensive benchmarks for investigating and assessing
the knowledge acquisition process of PLMs.

4 Knowledge Representation

Knowledge representation studies investigate how
pre-trained language models encode, transform and
store the acquired knowledge. In PLMs, knowledge
is encoded to dense vector representations and held
in their distributed parameters, but how each kind
of knowledge is encoded, transformed, and stored
into the parameters is still unclear and needs fur-
ther investigation. Currently, a few studies have
investigated the knowledge representation in lan-
guage models, and we will first review these studies
according to their analysis techniques.

4.1 Analyzing Knowledge Representations in
PLMs

Currently, the analyzing approaches for knowl-
edge representation in PLMs can be classified into
four categories: gradient-based, causal-inspired,



attention-based and layer-wise methods. The first
three methods aim to locate specific knowledge in
PLMs’ corresponding neurons or attention heads,
and the layer-wise methods hypothesize that knowl-
edge is represented in different layers of PLMs.

Gradient-based Dai et al. (2022a) first intro-
duce the concept of knowledge neurons, which
are neurons in transformer (Vaswani et al., 2017)
related to certain factual knowledge. Specifi-
cally, they hypothesize the knowledge neurons
are located in feed-forward networks, which are
considered as key-value memories (Geva et al.,
2021). Then by feeding the LM with knowledge-
expressing prompts such as “Michael Jordan was
born in [MASK]”, the corresponding knowledge
neuron is identified as the neurons in the feed-
forward networks with higher attribution scores,
which are calculated based on integrated gradients.

Causal-inspired Meng et al. (2022) identify
knowledge neurons as the neuron activations in
transformers that have the strongest causal effect
on predicting certain factual knowledge. Such neu-
rons are located through a causal mediation analy-
sis. Specifically, they calculate the causal effect on
factual prediction by comparing probability vari-
ation of object prediction between the clean and
corrupted token embedding. Their experiments
also demonstrate that the mid-layer feed-forward
modules play a decisive role in factual knowledge
representation.

Attention-based In addition to the feed-forward
layers, the attention heads are also be considered as
representations which may encode the knowledge-
related information. Clark et al. (2019); Htut
et al. (2019) investigate the linguistic knowledge
encoded in attention heads, and find that while
some individual attention heads are associated with
specific aspects of syntax, the linguistic knowledge
is distributed and represented by multiple attention
heads. Lin et al. (2019) find that PLMs’ attention
weights could encode syntactic properties such as
subject-verb agreement and reflexive dependencies,
and higher layers represent these syntactic proper-
ties more accurately.

Layer-wise Lin et al. (2019) conduct a layer-
wise probing for linguistic knowledge, which trains
a specific classifier for each layer, and find that the
lower layers encode the positional information of
tokens, and higher layers encode more composi-

tional information. Liu et al. (2019a) analyze the
layerwise transferability of PLMs on a wide range
of tasks and find that the middle layers usually
have better performance and transferability. Wallat
et al. (2020) proposes to probe the captured factual
knowledge with LAMA (Petroni et al., 2019) of
each layer in PLMs, and finds that a significant
amount of knowledge is stored in the intermediate
layers. Juneja and Agarwal (2022) also conduct a
layer-wised factual knowledge analysis based on
knowledge neuron (Dai et al., 2022a), and demon-
strate that most relational knowledge (e.g., Paris
is the capital of “some nation”.) can be attributed
to the middle layers, which would be refined into
facts (e.g., Paris is the capital of France.) in the last
few layers.

4.2 Discussions and Future Works

The above studies reach some consensus about
knowledge representation in PLMs, including: 1)
Factual knowledge can be associated with feed-
forward modules in middle or higher layers. 2) Lin-
guistic knowledge is distributed and represented
in multiple attention heads, while a single atten-
tion head can only associate with a specific aspect
of linguistics. 3) The lower layers of PLMs of-
ten encode the coarse-grained and general infor-
mation of knowledge, while the fine-grained and
task-specific knowledge are mostly stored in higher
layers. These findings are valuable for us to under-
stand knowledge representation in language models
but are also limited to specific knowledge types or
model architectures. Therefore the knowledge rep-
resentation in PLMs is still an open problem which
needs further exploration.

In the future, several directions of knowledge
representation in PLMs may lie in the follow-
ing: 1) Because knowledge representation is a
long-standing concern in cognitive science, neuro-
science, psychology, and artificial intelligence, it is
helpful to borrow ideas from other related areas and
design cognitively-inspired analysis methods. 2)
Current knowledge representation studies in PLMs
mostly focus on a specific type of knowledge and
often result in local and specific conclusions. It
is important to comprehensively investigate dif-
ferent types of knowledge together,e.g., compare
the differences and commonalities of knowledge
representations of different knowledge types, pre-
training tasks, or model architectures, and come up
with more universal and insightful conclusions.



5 Knowledge Probing

Knowledge probing aims to assess how well pre-
trained language models entail different kinds of
knowledge. A comprehensive and accurate assess-
ment of PLMs’ knowledge can help us identify and
understand language models’ capabilities and de-
ficiencies, allow a fair comparison between LMs
with different architectures and pre-training tasks,
guide the improvement of a specific model, and se-
lect suitable models for different real-world scenar-
ios. In this section, we will first introduce existing
benchmarks for knowledge probing, then introduce
the representative prompt-based and feature-based
probing methods and analyze their corresponding
limitations, and discuss future directions.

5.1 Benchmarks for Knowledge Probing

To assess the knowledge in PLMs, lots of bench-
marks have been proposed to probe various knowl-
edge contained in PLMs, for example, linguistic
knowledge (Ettinger, 2020; Warstadt et al., 2020;
Lin et al., 2019; Warstadt et al., 2019; Tenney
et al., 2019), syntactic knowledge (Clark et al.,
2019; Hewitt and Manning, 2019), factual knowl-
edge (Petroni et al., 2019; Jiang et al., 2020a; Kass-
ner et al., 2021; Sung et al., 2021), commonsense
knowledge (Forbes et al., 2019; Zhou et al., 2020a),
etc. Table 1 summarizes several representative
knowledge probing benchmarks.

5.2 Prompt-based Knowledge Probing

Prompt-based probing is one of the most popular
approaches for knowledge probing. To evaluate
whether LMs know a specific knowledge such as
the birthplace of Michael Jordan, we could query
LMs with knowledge queries such as “Michael Jor-
dan was born in .”, where “was born in” is a
prompt for a specific type of knowledge. As shown
in Table 1, prompt-based probing has been widely
used in benchmarks such as LAMA (Petroni et al.,
2019), oLMpics (Talmor et al., 2020), LM diagnos-
tics (Ettinger, 2020), BIG-bench (Srivastava et al.,
2022), etc.

For prompt-based probing, the main challenge
is how to design effective prompts which are suit-
able for different kinds of knowledge and differ-
ent PLMs. In the following we will introduce the
typical prompt types for knowledge probing and
discuss their limitations.

5.2.1 Prompt Development

Handcraft Prompt Early methods often manu-
ally write prompts for different kinds of knowl-
edge. There are two primary advantages of manu-
ally created prompts: the readability and without
the need of any other resources or training. For
example, LAMA (Petroni et al., 2019) manually
creates one cloze-style prompt for each relation,
which is used to probe the factual knowledge in lan-
guage models. CAT (Zhou et al., 2020a) reframe
the instances in existing commonsense datasets into
paired sentences with task-specific prompts, and
determine whether PLMs contain specific common-
sense knowledge by comparing the sentence scores,
e.g., “money can be used to buy cars” v.s. “money
can be used to buy stars”. oLMpics (Talmor et al.,
2020) convert the probing tasks for reasoning abil-
ity into multi-choice questions with manually cre-
ated prompts, and compare the LMs’ probability of
candidate choices.

Optimized Discrete Prompt Despite the men-
tioned advantages, Jiang et al. (2020b) argues that
handcraft prompts could be sub-optimal. Therefore,
a series of studies have been proposed to optimize
the prompts in a discrete space so that PLMs could
achieve better performance. Jiang et al. (2020b)
propose a mining-based method in order to find
prompts with higher performance from text cor-
pus. They first retrieve potential prompts which
contain both the subject and object entity, then
select prompts using a validation dataset. Davi-
son et al. (2019) select prompt from a handcrafted
candidate set according to the log-likelihood cal-
culated by LMs. Haviv et al. (2021) propose a
paraphrasing-based method, where each query is
first reframed by a trained rewriter and then fed
into PLMs. Shin et al. (2020) propose an auto-
matic prompt generation method based on gradient-
guided search, where a prompt is iteratively up-
dated from “[MASK]” token by maximizing the
label likelihood of training instances.

Continual Prompt Although the prompts gen-
erated by Shin et al. (2020) are discrete text,
they are very difficult to be understood by hu-
mans. Therefore several studies directly search
better-performed prompts on continual space rather
than confining to discrete space, i.e., representing
prompts as dense vectors. Continual prompts have
shown good performance for knowledge probing,
and further extensions including handcraft prompts



Method Benchmarks Knowledge Type Formulation

Prompt-based

LM diagnostics (Ettinger, 2020) linguistic text filling
BLiMP (Warstadt et al., 2020) linguistic sentence scores comparison
LAMA (Petroni et al., 2019) factual, commonsense

text filling
X-FACTR (Jiang et al., 2020a) factual, multilingual
Multilingual LAMA (Kassner et al., 2021) factual, multilingual
Bio LAMA (Sung et al., 2021) factual, biological
CAT (Zhou et al., 2020a) commonsense sentence scores comparison
NumerSense (Lin et al., 2020b) commonsense, numerical text filling
oLMPICS (Talmor et al., 2020) reasoning multiple choices

Feature-based

Open Sesame (Lin et al., 2019) linguistic diagnostic classifier and attention
LKT (Liu et al., 2019b) linguistic token or token pair labeling
NPI probe (Warstadt et al., 2019) linguistic probing classifier
Edge probe (Tenney et al., 2019) linguistic, semantic edge probing
MDL probe (Voita and Titov, 2020) linguistic minimum description length
Structural probe (Hewitt and Manning, 2019) syntactic structural probing
Physical Commonsense (Forbes et al., 2019) commonsense, physical probing classifier

Table 1: Summary about some representative knowledge probing benchmarks.

initialization (Zhong et al., 2021), adding continual
prompts on both input and transformer blocks (Li
and Liang, 2021a) or adding LSTM layers above
the input embeddings (Liu et al., 2021b).

5.2.2 Limitations of Prompt-based Probing
Although prompts have been widely used to probe
the knowledge in PLMs, there are still lots of pend-
ing issues unresolved, which make the probing re-
sults unstable and the the assessment of knowledge
in PLMs unreliable.

Inconsistent Prompt-based probing have been
shown often result in inconsistent results due to
prompt selection, instance verbalization, negation,
etc. Firstly, Elazar et al. (2021) find semantically
equivalent prompts may result in different predic-
tions, Cao et al. (2022) further find that PLMs
would prefer specific prompts with the same lin-
guistic regularity with the pre-training corpus, such
a prompt preference will significantly affect the
probing results, and result in inconsistent compar-
isons between PLMs. Besides prompts, the in-
stance verbalization process also leads to inconsis-
tent predictions. For example, when we ask BERT
“The capital of the U.S. is [MASK]”, the answer
is Washington, but when we replace the U.S. with
its alias America, the prediction will change to
Chicago. In addition, PLMs also exhibit inconsis-
tency when facing negation (Kassner and Schütze,
2020; Jang et al., 2022). For instance, PLMs would
generate highly similar predictions between a fact
(“Birds can fly”) and its incorrect negation (“Birds
cannot fly”) (Kassner and Schütze, 2020). Jang
et al. (2022) conduct the negation experiments on

PLMs of varying sizes and various downstream
tasks, and find that not only PLMs cannot well
understand negation prompts, but also show an in-
verse scaling law.

Inaccurate The performance of PLMs under
prompt-based probing may also be overestimated.
Poerner et al. (2020) find that many samples in the
probing datasets could be easily “guessed” by only
relying on the surface form association. For exam-
ple, the object entity is a substring of the subject
entity (e.g., “Apple Watch is produced by Apple”).
Furthermore, the training dataset for prompt opti-
mization may correlate with probing dataset, which
results in spurious correlations (Zhong et al., 2021)
and the performance improvements may come from
these spurious correlations. Cao et al. (2021) also
find that many prompts with better performance
are prompts which over-fit to answer distributions,
rather than a better semantic description of the tar-
get relation.

Unreliable To reach a faithful probing results, it
is essential to understand why PLMs make a spe-
cific prediction. However, studies find that PLMs
do not always make predictions based on specific
knowledge. In that case, the knowledge probing
results could be unreliable. Cao et al. (2021) find
that the prompts but not the answers dominate
the prediction distribution of PLMs, resulting in
severely prompt-biased probing conclusions. Li
et al. (2022a) conduct a causal-inspired analysis
and find that PLMs’ predictions rely more on words
that are close in position and frequently co-occur,
rather than those related to knowledge.



Bias Analysis While lots of studies conduct em-
pirical experiments on the biases in prompt-based
probing, few have investigated the source and inter-
pretation of these biases. Several studies employ
causal analysis for bias analysis, which has been
widely used to identify undesirable biases and fair-
ness concerns (Hardt et al., 2016; Kilbertus et al.,
2017; Kusner et al., 2017; Vig et al., 2020; Feder
et al., 2021). Cao et al. (2022) propose a causal
analysis framework to identify, interpret and elimi-
nate biases that exist in prompt-based probing with
a theoretical guarantee. Similarly, Elazar et al.
(2022) also propose a causal framework to estimate
the causal effects of the data statistics in training
corpus on the factual predictions of PLMs. Fin-
layson et al. (2021) apply causal mediation analysis
to investigate the syntactic agreement mechanisms
in PLMs.

5.3 Feature-based Knowledge Probing

Feature-based knowledge probing is also widely
used to probe the knowledge in PLMs, where the
parameters of original PLMs are frozen, and the
probing tasks are accomplished based on the inter-
nal representation or attention weights produced by
PLMs. In this section, we introduce and discuss
the feature-based probing approaches.

5.3.1 Classifier-based Probing
Classifier-based probing trains a classifier to pre-
dict specific knowledge properties on the top of
the fixed PLMs, and assesses the effectiveness of
PLMs using the classifier’s performance (Belinkov,
2022). Such approaches are first propose to eval-
uate the linguistic properties (e.g., morphological,
syntactic) associated with static embeddings (Köhn,
2015; Gupta et al., 2015), and have been widely
used to probe the linguistic knowledge (Lin et al.,
2019; Tenney et al., 2019; Clark et al., 2019; Liu
et al., 2019a; Hewitt and Manning, 2019) and se-
mantic knowledge (Tenney et al., 2019; Wallace
et al., 2019; Yaghoobzadeh et al., 2019; Liu et al.,
2019a) in PLMs. Popular classifiers include linear
classifier, logistics regression, multi-layer percep-
tron, etc.

5.3.2 Classifier-free Probing
Since the results and conclusions of classifier-based
methods are dependent on the training quality and
selection of the classifier, some studies have devel-
oped feature-based probing approaches without an
additional classifier. For example, Wu et al. (2020)

propose perturbed masking, which calculates an
impact matrix through a two-stage perturbation,
where the matrix captures the impacts a token has
on the prediction of another token, and is further
used for the syntactic probe. Zhou and Sriku-
mar (2021b) introduce DirectProbe, which directly
probes the geometric properties of PLMs’ represen-
tation without an additional classifier. Clark et al.
(2019) probe syntactic knowledge in language mod-
els by investigating the attention weights without a
classifier, e.g., analyze the most attended word of
the given token.

5.3.3 Limitations of Feature-based Probing
There are two main limitations of current feature-
based probing approaches (Rogers et al., 2020; Be-
linkov, 2022). The first limitation concerns the at-
tribution of results, which is originally pointed out
by Hewitt and Manning (2019). While most probes
introduce additional training data and parameters,
it’s difficult to attribute evaluation results to the
knowledge in PLMs, or the probe itself, which may
learn to perform the probing task. The second limi-
tation pertains to the inconsistency between differ-
ent probe designs for the same type of knowledge.
There are various probe selections for each kind
of knowledge, but the probe results between sim-
ple probes like linear classifier or complex probes
could be inconsistent.

5.4 Discussions and Future Works

With the growing scale and abilities of big lan-
guage models, the comprehensive, accurate and
reliable measurements of the actual knowledge and
capabilities of LMs become increasingly important.
However, the accurate, robust and reliable probing
approach is still an open problem. Firstly, as we
discussed above, both prompt-based probing and
feature-based probing have their own limitations,
which might result in unreliable or even contradict-
ing conclusions. Secondly, most existing bench-
marks are specialized to specific knowledge types
and specific model architectures.

In the future, the main directions of knowledge
probing may lie in: 1) Comprehensive benchmark
construction. As we demonstrate in table 1, current
knowledge probing benchmarks are mostly too spe-
cialized, which may lead to inconsistent, biased or
unreliable results. Therefore it is critical to build a
comprehensive and unbiased benchmark. 2) Debi-
ased probing approaches. Currently prompt-based
probing is the dominant knowledge probing meth-



ods due to its simplicity. However, there still exist
lots of issues in prompt-based probing. Therefore,
the design of unbiased datasets and better prob-
ing frameworks is another useful direction worth
investigating.

6 Knowledge Editing

Knowledge editing is the process which modifies
the stored knowledge in pre-trained language mod-
els, either by replacing it with new knowledge (e.g.,
changing the current prime minister of the UK
to Rishi Sunak) or by removing it entirely (e.g.,
some personal privacy information). There are two
primary motivations for editing knowledge in lan-
guage models: 1) even the state-of-the-art language
models (e.g. ChatGPT2) could learn lots of incor-
rect knowledge; 2) many facts are time-sensitive,
requiring regular updates to their corresponding
knowledge.

Unfortunately, editing knowledge in PLMs poses
significant challenges. Firstly, naive solutions such
as retraining are often impractical due to the mas-
sive size of large-scale language models. Secondly,
due to the black box and non-linear nature of PLMs,
any minor modification might result in a significant
undesirable change in model predictions. As a
result, it can be challenging to precisely edit the
target knowledge.

To promote the development of relevant stud-
ies, De Cao et al. (2021) formulate three desider-
ata for knowledge editing methods: 1) Generality:
the method is able to edit the language models al-
ready pre-trained without the need for specialized
re-training. 2) Reliability: the method is supposed
to successfully edit knowledge required modifica-
tion while not influencing the rest of knowledge in
LMs. 3) Consistency: the modification should be
consistent across paraphrases with equivalent se-
mantics (e.g., Michael Jordan was born in [MASK].
v.s. The birthplace of Michael Jordan is [MASK].)
and relevant knowledge required modification ac-
cordingly (e.g., Rishi Sunak becomes the prime
minister of the UK. v.s. Liz Truss is not the primer
minister of the UK.).

In this section, we divide current strategies for
knowledge editing into four categories and the sum-
mary of comparisons between these approaches is
shown in Table 2. In the following we will describe
and discuss these methods.

2https://openai.com/blog/chatgpt/

6.1 Constrained Fine-tuning

The naive solution to edit knowledge in a PLM
is to re-train it using the updated training dataset,
but such a naive solution is computationally ex-
pensive and may be impractical because PLMs are
involved. Therefore, a better solution is to fine-tune
PLMs only on a small subset which only contains
the target samples. However, such a method may
suffer from catastrophic forgetting, and affects the
rest knowledge which is not intended to be edited.
Therefore, Zhu et al. (2020) propose to modify the
knowledge in PLMs with constrained fine-tuning,
specifically, they use an L2 or L∞ normalization
to constrain the parameters change of models. Fur-
thermore, they find that only fine-tuning the ini-
tial and final layers while keeping the rest of the
model frozen yields better performance than fine-
tuning the whole model. However, in deep neural
networks like PLMs, even a minor change of the
parameters could change the model’s predictions
on a lot of samples. Therefore, such methods could
potentially affect other knowledge stored in PLMs
which is not required modification.

6.2 Memory-Based Editing

Instead of directly modifying parameters of PLMs,
another natural solution is to maintain a knowledge
cache which stores all new knowledge, and replace
the original predictions when a input hits the cache.
However, a symbolic knowledge cache may suf-
fer from robustness issues, i.e., the inputs with the
same meaning can differ in natural language ex-
pressions, therefore they may result in different
predictions. To address this problem, Mitchell
et al. (2022) propose a memory-based approach
for knowledge editing. Specifically, the model con-
tains five modules: an edit memory that stores the
modified knowledge, a classifier, a counterfactual
model, and the frozen original language model.
Given an input, the classifier determines whether
it hits a sample in the edit memory, and the coun-
terfactual model’s prediction will overrule the orig-
inal language model’s prediction if it hits a mem-
ory cache. This method is effective but does not
actually edit the knowledge encoded in the parame-
ters of language models, thus cannot benefit down-
stream tasks. Meanwhile, Dong et al. (2022) add
additional trainable parameters in the feed-forward
module of PLMs, which are trained on a modified
knowledge dataset while the original parameters
are frozen. They also demonstrate that the modified

https://openai.com/blog/chatgpt/


Approach Knowledge
Support

Training
Required

Online
Edit

Batch
Edit

Downstream
Benifit

Unforeseen
Side Effects

Constrained Tuning
FTM (Zhu et al., 2020) Factual YES NO YES Potential YES

Memory-based
SERAC (Mitchell et al., 2022) Factual, QA YES YES YES NO NO
MEM-PROMPT (Madaan et al., 2022) Linguistic, Ethics NO YES YES Potential Unlikely
CALINET (Dong et al., 2022) Factual YES NO YES Potential YES

Meta-learning
KNOWEDITOR (De Cao et al., 2021) Factual YES Possible YES Potential YES
MEMD (Mitchell et al., 2021) Factual YES NO YES Potential YES

Locate and Edit
Knowledge Neuron (Dai et al., 2022a) Factual NO YES NO NO YES
ROME (Meng et al., 2022) Factual NO YES NO NO Possible

Table 2: Comparisons between existing knowledge editing approaches. “Online Edit” refers to quickly editing an
individual target knowledge. “Batch Edit” refers to editing a set of target knowledge simultaneously. “Downstream
Benefit” refers to the potential for for the modified knowledge to be utilized by the edited language model for
downstream tasks. “Unforeseen Side Effects” refers to the impact of knowledge editing on the language model
beyond the modification of target knowledge.

knowledge could benefit related QA tasks. More-
over, Madaan et al. (2022) introduce the users’
feedback for PLMs’ error correction. Specifically,
they maintain a memory of models’ mistake and
users’ feedback, which enhance the model to pro-
duce updated prompt and avoid similar mistakes.

6.3 Meta-learning-based Editing

Sinitsin et al. (2020) first propose editable training
to conduct model editing based on meta-learning,
which aims to train the model parameters to suit
model editing. By constraining the training objec-
tive, the editing procedure could be accomplished
under k gradient step while ensuring reliability, lo-
cality, and efficiency. However, such a method is
not practical for pre-trained language models since
it requires expensive specialized retraining. A dif-
ferent strategy is to utilize a hyper network, which
uses one network to generate the weights of another
network (Ha et al., 2017). De Cao et al. (2021);
Hase et al. (2021) train a hyper-network to predict
the parameter changes for each data point, with
the constraint of editing target knowledge with-
out affecting others. Although computationally
efficient, Mitchell et al. (2021) argues that this
method fails to edit very large models, and pro-
poses model editor networks with gradient decom-
position (MEND). Specifically, by decomposing
the gradient of standard fine-tuning into a low-rank
form, they could train multiple MLPs to generate
local model parameter changes, without damaging
models’ predictions on unrelated knowledge. Ex-
periments show that MEND can be applied to large

pre-trained models for fast model editing. One
limitation of existing meta-learning-based methods
is that their robustness and generalization are still
questionable, as they ensure locality by constrain-
ing the parameter space change or the predictions
on specific datasets. In that case, the knowledge
that requires no modifications or the knowledge
that is related to edited knowledge but not para-
phrasing could also be incorrect.

6.4 Locate and Edit

Based on the assumption that "knowledge is locally
stored in PLMs", the “locate and edit” strategy first
locates the parameters corresponding to specific
knowledge, and edit them by directly replacing
with updated ones. This approach is also intro-
duced in Section 4.1. Dai et al. (2022a) present a
case study of factual knowledge editing in PLMs
with corresponding knowledge neurons. By di-
rectly modifying the value of knowledge neurons,
they achieve knowledge editing with a relatively
low but nontrivial success rate. Although the edit-
ing procedure is straightforward once the corre-
sponding knowledge neuron is located, this method
has not proved its effectiveness on large-scale edit-
ing or the effects of unrelated knowledge. Similarly,
Meng et al. (2022) first connect the knowledge re-
quired modification with a key-value pair in one of
the middle MLP layers, and modify the correspond-
ing knowledge by directly updating the key-value
pair. Since these methods are based on the locality
hypothesis of factual knowledge, which has not
been widely confirmed yet, the changes in certain



parameters may affect irrelevant knowledge and
lead to unexpected results.

6.5 Discussions and Future Works

To utilize pre-trained language models as a sus-
tainable knowledge resource, the precise, effective,
reliable and consistent knowledge editing is essen-
tial. However, as discussed above, all current edit-
ing methods have their own limitations. Therefore
it is worthwhile to enhance current methods and
develop new knowledge editing strategies.

In the future, several useful directions of knowl-
edge editing may lie in: 1) Broader range of tar-
get knowledge. As shown in Table 2, current stud-
ies mostly focus on the editing of factual knowl-
edge, which is relatively easy to formalize and eval-
uate. In the future, researchers could explore the
editing methods towards other kinds of knowledge,
and develop universal approaches which can edit
all kinds of knowledge in the same way. 2) Com-
prehensive evaluation. Current most knowledge
editing studies are evaluated using metrics such as
editing success rate on target knowledge, predic-
tions invariance rate on unrelated knowledge for as-
sessing generality, and accuracy on paraphrases of
target knowledge for assessing consistency. How-
ever, we find that these metrics are limited to com-
prehensively evaluate the knowledge editing capa-
bility of different approaches. For instance, most
evaluations only sample unrelated knowledge from
the same distribution of target knowledge. How-
ever, the influence of a knowledge edit could be
much broader, e.g., affecting the performance on
downstream tasks or the knowledge from other
distributions and categories. In addition, as men-
tioned in Mitchell et al. (2021), most studies mea-
sure the consistency of samples generated through
back translation, which ignores the knowledge af-
fected by knowledge editing except the paraphrases,
e.g., the country with the largest population would
be affected by the population modification of the
countries. Therefore, it is important to design com-
prehensive benchmark which can better assess the
capabilities of editing strategies. 3) More effective
editing approaches. Ideally, a knowledge editing
approach should satisfy the desiderata of generality,
reliability and consistency, and can handle large-
scale and individual knowledge editing tasks with
high efficiency. To this end, we may borrow ideas
from other fields, such as meta-learning, continual
learning, and life-long learning. Furthermore, it is

useful to connect knowledge editing studies with
knowledge representation studies (§ 4).

7 Knowledge Application

Knowledge application studies how to effectively
distill and leverage the knowledge in PLMs for
other applications. Specifically, we divide knowl-
edge applications into two categories: language
models as knowledge bases and language models
for downstream tasks, and in following we describe
them in detail.

7.1 Language Models as Knowledge Bases

The impressive performance of large-scale pre-
trained language models, as well as the poten-
tially enormous amount of implicitly stored knowl-
edge, raises extensive attention about using lan-
guage models as an alternative to conventional
structured knowledge bases (LMs-as-KBs) (Petroni
et al., 2019; Heinzerling and Inui, 2021; Jiang
et al., 2020b; Wang et al., 2020; Cao et al., 2021;
Razniewski et al., 2021; AlKhamissi et al., 2022).

Unfortunately, along with the promising ad-
vantages and potentials compared with structured
knowledge bases, there also exist intrinsic flaws for
language models as knowledge base (Razniewski
et al., 2021), which are summarized in Table 3. In
following we describe them in detail.

Construction procedure is one of the biggest
advantages of LMs-as-KBs compared with struc-
tured KBs. Constructing large-scale structured KBs
such as Freebase (Bollacker et al., 2008) and Wiki-
data (Vrandečić and Krötzsch, 2014) often requires
extremely complex pipelines (Petroni et al., 2019),
e.g., ontology construction, knowledge acquisition,
knowledge verification, knowledge fusion, knowl-
edge storage, and knowledge population. Such a
complex pipeline involves lots of NLP techniques,
including ontology engineering, entity linking, en-
tity recognition, relation extraction, entity match-
ing and so on. And each technique requires corre-
sponding expert knowledge, supervised data and
human efforts. Moreover, due to the pipeline na-
ture, error propagation is always a critical issue.

In contrast, the knowledge of language models
can be easily learned from pure text using self-
supervised learning, without any explicit supervi-
sion signal (§3.1). Furthermore, the construction
procedure is end-to-end, therefore no ontology en-
gineering, expert knowledge, or human annotations
are needed.



Perspectives Structured KB LMs-as-KBs
Construction

Ontology/Schema Pre-defined Open-ended
Process Pipline End-to-End
Human Effort Data annotation Self-supervised
Expert Knowledge Common Not required

Coverage
Domain Constrained Open
Amount Limited Potential
Knowledge Fusing Complex Easy

Interaction
Query Structured Natural Language
Prediction Deterministic Probabilistic
Rejection Yes Hard
Editing Easy Limited

Reliability
Ambiguity Low High
Correctness Relatively High Questionable
Current Practicality Extensive Limited yet

Table 3: The comparisons between conventional structured knowledge bases and using language models as knowl-
edge bases (LMs-as-KBs). Part of this table is inspired by Razniewski et al. (2021). The advantages are marked
in bold. From the table, we can easily find that although LMs-as-KBs are more advantageous on construction and
coverage, the critical current limitations of interaction and reliability significantly hinder its real-word applications,
and far from substitution of structured knowledge bases.

Coverage is another big advantage of LMs-as-
KBs. Traditional structured KBs are often limited
by its pre-defined schemas, and the difficulty of
acquiring knowledge further limits their coverage.
In comparison, by directly representing knowledge
in parameters, there is no schema limitations for
LMs-as-KBs. And all knowledge is learned from
un-annotated text corpus, therefore the knowledge
coverage is mostly only determined by the coverage
of pre-training corpus.

The above advantages make LMs-as-KBs an ex-
tremely attractive and promising idea. However,
there are also some intrinsic flaws which hinder
LMs from fully substituting structured KBs.

Interaction with structured KB and LMs-as-
KBs are quite different. Structured KBs of-
ten use structural querying methods such as
SPARQL (Pérez et al., 2009), e.g., querying the
birthplace of Michael Jordan using <Michael Jor-
dan, Birthplace, ?>. In the case of language model-
based KBs, the queries are mostly natural language
expressions such as “The birthplace of Michael
Jordan is [MASK]”.

Compared with structural queries, natural
language-based queries are more natural and

friendly for users. However, structured KBs can
return deterministic answers (e.g., Brooklyn), but
LM-based KBs can only generate candidates with
different probabilities (e.g., <Brooklyn, 0.8>). The
probabilistic predictions may be incorrect, incon-
sistent and confusing. Furthermore, structured KBs
can identify the queries they cannot answer, but cur-
rent LM-based KBs can hardly reject the queries it
cannot answer, thus resulting in the knowledge hal-
lucination problem. Concretely, if we query some
knowledge that is not stored in a structured KB, the
answer could be blank when no tuples are matched.
However, no matter what we ask, language models
will always “guess” the answers, even such knowl-
edge is never learned by LMs. Although there are
some naive solutions to this problem such as reject-
ing answers with a low probability, this is still a
open problem currently.

Finally, it is difficult to edit knowledge in LM-
based KBs, as discussed in Section 6. In compari-
son, it is easy to add, modify and delete knowledge
in structured KBs.

Reliability is another concern for LMs-as-KBs.
The first problem is ambiguity. In structured KBs,
all entities and facts have their own IDs (e.g., Q89



for Apple the fruit and Q312 for Apple Inc. in
Wikidata), therefore there is no ambiguity prob-
lem. However, in LM-based KBs, all pieces of
knowledge are represented as natural language ex-
pressions and will therefore suffer from the ambi-
guity problem of natural language. For example,
do "U.S.A" and "America" represent the same en-
tity in a language model? Previous studies have
observed that such verbalization requirements will
result in prompt preference bias and instance ver-
balization bias in LMs-as-KBs (Cao et al., 2022).
The consistency of predictions is another drawback
of LMs-as-KBs, i.e., a LM-based KB may return
different answers to the semantically equivalent
queries.

7.2 Language Models for Downstream Tasks

Besides using language models as knowledge
bases, the knowledge in PLMs can also benefit
many downstream tasks in different ways. Fig. 3
shows three main paradigms and we describe them
in detail.

7.2.1 Fine-tuning
Fine-tuning is a common way to leverage knowl-
edge in language models, which learns to distill and
leverage knowledge by further tuning PLMs using
task-specific datasets. Firstly, implicitly learned
knowledge from text has been recognized as one
of the main reasons for PLMs’ remarkable per-
formance and strong generalization ability across
so many NLP tasks (Manning et al., 2020; Wei
et al., 2021b; Yang et al., 2021; Yin et al., 2022).
Secondly, many studies have shown that inject-
ing knowledge into language models can lead to
better performance on downstream tasks. For in-
stance, integrating entity knowledge into PLMs
could improve the performance of a wide range
of language understanding tasks Sun et al. (2019);
Shen et al. (2020), infusing factual knowledge into
PLMs could benifit their performance on tasks such
as relation extraction, entity typing, etc. (Zhang
et al., 2019; Wang et al., 2021b,a; Liu et al., 2020),
and incorporating linguistic knowledge with PLMs
could increase their performance on benchmarks
such as GLUE (Levine et al., 2020; Sachan et al.,
2021; Bai et al., 2021).

7.2.2 Prompt Learning
Prompt-based learning is another way to leverage
the knowledge in PLMs for downstream tasks. For
example, to classify the sentiment polarity of the

sentence “Best movie ever.”, we can add a prompt
and transform the input into “Best movie ever. It is

.”. And the polarity can be determined by com-
paring the PLMs’ prediction probability between
candidate answers “good” and “bad”. By select-
ing appropriate prompts, PLMs have been shown
competitive zero-shot performance on some down-
stream tasks without any supervised training (Rad-
ford et al., 2019a; Brown et al., 2020; Liu et al.,
2021a).

Because handcraft prompts often suffer from
unstable performance across different prompts
and cannot utilize the information from super-
vised data, many prompt optimization approaches
have been proposed to acquire better-performing
prompts (Liu et al., 2021a), such as paraphras-
ing (Jiang et al., 2020b; Haviv et al., 2021),
gradient-based search (Shin et al., 2020), model
generation (Gao et al., 2021), knowledge en-
hanced (Hu et al., 2022), etc. Furthermore, prompt-
tuning, which adds some trainable vectors to the
inputs as continuous prompts, while keeping the
parameters of LMs freezing, has achieved compet-
itive performance with fine-tuning (Li and Liang,
2021b; Liu et al., 2021b; Hambardzumyan et al.,
2021; Lester et al., 2021). In addition to optimizing
single prompts, ensembling (Jiang et al., 2020b;
Qin and Eisner, 2021), compositing (Han et al.,
2021), or decoupling (Ozturkler et al., 2022) mul-
tiple prompts could also improve model perfor-
mance. Moreover, prompt has also been applied
to data augmentation (Schick and Schütze, 2021),
domain adaptation (Ben-David et al., 2021), debi-
asing (Schick et al., 2021) and so on.

More recently, instruction-tuning, which pre-
trains LMs on a wide range of datasets given
the natural language description of tasks as in-
structions, has achieved significant performance
and generalization ability improvements of lan-
guage models (Wei et al., 2021a; Sanh et al., 2021;
Ouyang et al., 2022; Chung et al., 2022).

7.2.3 In-context Learning
Applications Currently the parameters of PLMs
have been scaled to 175B (e.g., GPT-3 (Brown
et al., 2020), OPT (Zhang et al., 2022b), BLOOM3)
or even larger (e.g., PaLM (Chowdhery et al.,
2022)), making the computational expense of fine-
tuning and prompt-tuning infeasible for most re-
searchers. Therefore, tuning-free in-context learn-

3https://huggingface.co/bigscience/bloom

https://huggingface.co/bigscience/bloom


Knowledgeable PLMs

I really feel sorry for him. Label: 0

What a grand party. It is __.

I feel sorry for him. It is sad.
What a grand party. It is __.

Fine-tuning

Prompt learning

In-context learning

Happy

Parties are used for happy.
Sorry often cause sadness.
Happy is antonym of sad.

…

Negative

Positive

Happy Positive

Figure 3: The primary paradigms that apply the knowledge in PLMs to downstream tasks.

ing has become one of the most popular approaches
to apply the knowledge in large-scale PLMs in
downstream tasks (Dong et al., 2023). For instance,
for the sentiment classification task, in-context
learning will first sample several demonstrations,
such as (what a horrible meal, negative), and com-
bine them with the original query. In this way,
the input becomes “What a horrible meal. It is
bad. [SEP] Best movie ever. It is .” The pro-
vided demonstrations offer extra information about
the task and enable PLMs to utilize the analogy
ability to predict the correct answer. In-context
learning has achieved good performance on lots
of downstream tasks such as language understand-
ing (Brown et al., 2020; Zhao et al., 2021; Lee
et al., 2022; Eisenstein et al., 2022; Zhang et al.,
2022a), data generation (Li et al., 2022b; Dai et al.,
2022b; Yu et al., 2022), or reasoning (Wei et al.,
2022; Lampinen et al., 2022; Zhou et al., 2022).

Bias Problem One drawback of in-context learn-
ing is the bias problem, i.e., the performance is
sensitive to demonstration selections, demonstra-
tion orders, label distribution of demonstrations
and prompt selection, etc. (Zhao et al., 2021; Lu
et al., 2022; Liu et al., 2022). Therefore, to achieve
better performance of in-context learning, Zhao
et al. (2021) first propose to estimate the biases by
feeding the model with an uninformative input (e.g.,
[MASK] or N/A), and then calibrate the prediction
probabilities uniformly distributed for eliminating
the models’ bias towards specific answers. For
demonstration selection, Gao et al. (2021); Liu
et al. (2022) propose to select demonstrations that
are semantically close to the input query. Rubin
et al. (2022) train a dense retriever on LM-scored
datasets to select demonstrations. Su et al. (2022)

introduce a graph-based selection method to ensure
the demonstration’s diversity and representative-
ness. For demonstration sort, Lu et al. (2022) first
construct a development dataset by sampling from
language models, and then use entropy-based met-
rics to determine the optimal demonstration permu-
tation. For prompt selection, Gao et al. (2021) use
a language model to generate candidate prompts
and select ones with better performance on the de-
velopment set.

Mechanism Although in-context learning has
been widely applied on various downstream tasks,
its underlying mechanism is still unclear. Reynolds
and McDonell (2021) find that zero-shot prompting
sometimes can significantly outperform in-context
learning, and argue that the additional demonstra-
tions do not help PLMs to learn a new task, but
rather locate the task they have already learned.
Cao et al. (2021) investigate the in-context learning
for knowledge probing, and find that the demon-
strations can only provide type-level guidance but
factual information. Min et al. (2022) find that ran-
domly replacing the demonstrations’ labels hardly
affects the performance, and show that the effective-
ness of in-context learning relies more on the label
space and input distribution restriction provided by
demonstrations rather than the precise input-label
mapping. Chan et al. (2022) find that only when
the data includes both burstiness and large-scale
of rarely occurring classes, in-context learning ca-
pability can emerge in transformer model. von
Oswald et al. (2022) investigate the connections
between in-context learning and gradient descent,
and demonstrate the similarity between in-context
learning and the gradient-based few-shot learning.



7.3 Discussions and Future Works

Leveraging knowledge in PLMs is both promising
and challenging. On the one hand, it is obvious that
the large amount of implicit knowledge stored in
PLMs will benefit different downstream tasks. On
the other hand, all current application paradigms
have their own limitations. For instance, the consis-
tency and reliability of LMs-as-KBs hinder PLMs
to replace structured KBs, Moreover, fine-tuning,
prompt learning and in-context learning methods
often suffer from catastrophic forgetting, computa-
tional cost, inconsistent and unstable predictions,
social bias, etc.

To address these challenges, several main future
directions of knowledge application may lie in the
following: 1) For LMs-as-KBs, we need to pro-
pose specific pre-training approaches to address
current shortcomings in consistency and reliabil-
ity. 2) For LMs for downstream tasks, we suggest
explore more application strategies, such as new
tuning-free methods to address the computational
cost issue and black-box tuning (Sun et al., 2022)
methods to tune pre-trained language models with-
out access to their parameters.

8 Conclusions

In this survey, we conduct a comprehensive review
about the life circle of knowledge in pre-trained
language models, including knowledge acquisi-
tion, knowledge representation, knowledge prob-
ing, knowledge editing and knowledge application.
We systematically review related studies for each
period, discuss the advantages and limitations of
different methods, summarize the main challenge,
and present some future directions. We believe this
survey will benefit researchers in many areas such
as language models, knowledge graph, knowledge
base, etc.
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