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Abstract: Facial expression recognition (FER) is still challenging due to the small interclass discrepancy in facial expression data. In
view of the significance of facial crucial regions for FER, many existing studies utilize the prior information from some annotated crucial
points to improve the performance of FER. However, it is complicated and time-consuming to manually annotate facial crucial points,
especially for vast wild expression images. Based on this, a local non-local joint network is proposed to adaptively enhance the facial cru-
cial regions in feature learning of FER in this paper. In the proposed method, two parts are constructed based on facial local and non-loc-
al information, where an ensemble of multiple local networks is proposed to extract local features corresponding to multiple facial local
regions and a non-local attention network is addressed to explore the significance of each local region. In particular, the attention
weights obtained by the non-local network are fed into the local part to achieve interactive feedback between the facial global and local
information. Interestingly, the non-local weights corresponding to local regions are gradually updated and higher weights are given to
more crucial regions. Moreover, U-Net is employed to extract the integrated features of deep semantic information and low hierarchical
detail information of expression images. Finally, experimental results illustrate that the proposed method achieves more competitive
performance than several state-of-the-art methods on five benchmark datasets.
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1 Introduction

Emotion is a complex state that integrates people’s
feelings, thoughts and behaviors!!l, and facial expression is
one of the most direct signals to communicate their inner-
most thoughts. Therefore, facial expression recognition
(FER)2 has attracted the attention of many research-
ers due to its important role in many practical applica-
tion fields, such as human-computer interaction, recom-
mendation system, patient monitoring, etc. In general, fa-
cial expressions are encoded into facial action units
through facial action coding system(” 8, and any expres-
sions can be described through a set of facial action units.
Some facial action units are crucial for FERD], such as
those located in regions around the eyes and mouth, since
they have more obvious actions than other facial regions
(such as cheek and forehead). In the following parts, we
regard these crucial facial action units as facial crucial re-
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gions (FCRs). Fig.1 illustrates facial crucial regions of
two facial images (ID1 and ID2) from six expressions, re-
spectively. From Fig.1, it is found that the FCRs are
more discriminative to determine the expression category
of a facial imagell0.

In view of the significance of FCRs, many studies[11714]
have been proposed based on applying the information of
facial local regions, where the facial landmarks are em-
ployed as the prior information to obtain facial crucial re-
gions. However, the information of facial landmarks is ob-
tained by manual annotation. Early, most of FER
studies1>17 focused on lab-collected expression datasets,
such as CK+18, MMI9, JAFFERI Oulu-CASIARI. For
lab-collected datasets, facial expressions images were col-
lected from several or dozens of individuals under similar
conditions (such as illumination, angle, posture, etc.),
generally with a few uncontrollable factors. Thus, it is
easily achieved to manually annotate the landmark of
FCRs for lab-collected datasets.

However, compared with the lab-controlled datasets,
the wild expression datasets[22l are collected under more
complex and uncontrollable conditions, such as RAF-
DB, AffectNet24, EmotionNet[?3], etc. For the wild ex-
pression datasets, especially including a vast of images, it
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Facial crucial regions (FCRs)

Fig.1 An illustration of facial crucial regions from six
expressions, where two facial images (ID1 and ID2) from RAF-
DBI23] are shown for each expression. The regions around eyes
and mouths are cropped as examples of FCRs in the purple box
and the green box, respectively.

is very complicated and time-consuming for manually an-
notating FCRs. Moreover, the postures of different faces
vary greatly on the wild database. One simple change in
facial postures can cause multiple pixel deviations at the
image level. Fig.2 gives an example of the landmarks
moving with the change of postures, where two expres-
sion images and their landmarks are from RAF-DB data-
set(23]. From Fig.?2, it is observed that 68 landmark points
of subimage (a) are different from subimage (b), and the
landmarks are greatly shifted from (a) to (b), shown as
subimage (c). This implies that the position of FCRs var-
ies with the change in facial postures. Inevitably, it in-
creases the complexity of manually annotating land-
marks for FER, especially for wild datasets with vast
numbers of images. In view of this, it is important to con-
sider whether the significance of FCRs or their features
could be spontaneously enhanced in the training of deep
FER, without any prior information, such as landmarks
of FCRs.

On the other hand, there exists a problem that some
FCRs from different expression categories are similar,
whereas some FCRs from the same category are very dif-
ferent. From Fig.1, it is obviously seen that the FCRs
(including mouths) of ID1 from six expressions are simil-
ar with opening the mouth, which is absolutely different
from ID2 with closing the mouth. Similarly, for the cru-
cial regions including eyes, ID1 and ID2 from the cat-
egory (Fear) are different, whereas ID1 from the cat-
egory (Surprise) and ID2 from the category (Anger) are
similar. This illustrates that the FCRs of expression im-
ages belonging to the same category may be very differ-
ent, but FCRs from different categories are similar. Dis-
tinctly, it is insufficient that only local information of fa-
cial expressions is utilized to construct one effective mod-
el for FER, especially for the wild dataset. Hence, it is
still important to utilize the global information of the fa-
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Fig. 2 Schematic diagram of the pixel deviations at the image
level when posture changing. To demonstrate this change, we
measured the movement of 68 landmark points on faces with
different postures and the same identity. In (a) and (b) from
RAF-DB3], 68 landmark points are marked with a green cross,
and (c) shows the movement of 68 landmark points.

cial expression while FCRs are enhanced in deep facial
expression recognition.

Based on the above analyses, we propose a new meth-
od of facial expression recognition in this paper, which
constructs a local non-local joint network to adaptively
enhance the facial crucial regions in the process of deep
feature learning, shortened for LNLAttenNet. In LNLAt-
tenNet, the local and non-local information of facial ex-
pressions are simultaneously considered to construct two
parts of the network: a local multi-network ensemble and
a non-local attention network, and then the generated
local and non-local feature vectors are integrated and
jointly optimized in feature learning. Specifically, the at-
tention weights obtained by the non-local part are re-
garded as the significance of facial local regions and fed
into the local multi-network ensemble system to combine
multiple local networks. Interestingly, we find that some
FCRs can be automatically enhanced in the process of
deep feature learning by the proposed method. Moreover,
U-Net is employed to generate feature maps where each
pixel has a large receptive field and the local region also
contains global information. Fig.3 shows a simple view of
LNLAttenNet. From Fig.3, it is obvious that some cru-
cial regions are given higher weights by LNLAttenNet,
such as the 5th patch around the left eye (0.112 3) and
the 10th, 11th and 14th patches around the mouth (0.088 7,
0.107 3 and 0.129 8), which illustrates that some crucial
regions are effectively enhanced by LNLAttenNet. Note
that w; is the non-local attention weight corresponding to
the i-th local region and the initial weights are equal.
More detailed descriptions will be introduced in the fol-
lowing sections.

Compared with state-of-the-art methods, our contri-
butions are mainly three points:

1) We propose LNLAttenNet to automatically en-
hance facial crucial regions in deep feature learning by
utilizing the local and non-local information of facial ex-
pressions simultaneously. To the best of our knowledge,
this is the first study on how to explore and enhance the
FCRs in CNNs for FER, where FCRs are automatically
enhanced without any prior information for facial crucial
regions or landmarks. It effectively improves the problem
that it is difficult to annotate the facial landmarks of the
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Fig. 3 A simple view of the proposed model (LNLAttenNet).
The part in the green dotted box shows the global weights
corresponding to 16 local regions (from Patch 1 to Patch 16)
obtained by LNLAttenNet, and the part under the green dotted
box is a simple framework of LNLAttenNet.

wild facial datasets.

2) In LNLAttenNet, an attention mechanism is intro-
duced to construct a non-local attention network that ex-
plores the significance of local regions for FER from a
global perspective of facial expression. The obtained at-
tention weights corresponding to local regions are fed in-
to the local multi-network ensemble system to integrate
multiple local features, and then the integration of fea-
tures obtained by multiple local networks is jointly op-
timized with the facial global feature.

3) Experimental results demonstrate that FCRs can
be enhanced in deep feature learning by LNLAttenNet,
which validates that FCRs are more discriminative local
regions for FER. Moreover, it also implies that the deep
FER model can spontaneously focus on some crucial re-
gions in the training process, which probably brings a
new inspiration for designing deep FER methods.

The rest of this manuscript is organized as follows.
Section 2 first introduces related works about deep facial
expression recognition. Second, Section 3 introduces the
details of the proposed method. Then, experimental res-
ults and analyses are demonstrated to validate the per-
formance of the proposed method in Section 4. Finally,
Section 5 provides the conclusion as well as prospects for
future work.

2 Related work

Due to the excellent performance of deep learning[26-28],
various deep networks have been applied in FER[?, such

as VGGNet?9, InceptionNetB? and ResNetBl. Based on
this, many deep FER methods have been proposed to ad-
dress different problems. Hu et al.32 first extended the
idea of deep supervision to address FER in the wild. The
training of deep CNNs was softer and easier through su-
pervision not only to deep layers but also to intermedi-
ate layers and shallow layers, and a fusion structure was
constructed where the feature ahead was used for second-
level supervision. Acharya et al.33] thought that second-
order statistics (such as covariance) were more suitable to
capture the features of twisted facial expressions. In their
framework, a mainfold structure was constructed for cov-
ariance pooling to obtain a competitive performance for
FER. Li and DengB4 proposed a new deep manifold
strategy for multi-label expressions, and their proposed
network focused on ambiguous expressions and could
learn the discriminative feature that was suitable for
cross-database FER.

Considering that facial expression is determined by
key regions, Fan et al.lll utilized the information of fa-
cial landmark points to select three subimages around the
eyes, mouth and nose. Then, three subimages were en-
coded by three subnetworks, and the last pooling layer in
each sub-network was concatenated with each other,
which obtained better recognition performance compared
with others. In [35, 36], facial landmark information is
used to extract features and generate masks from specific
locations to remove the pose variation.

In [37], it was taken into account that there are inev-
itably labelling errors and deviations between different
databases due to the subjectivity of labelling facial ex-
pressions. Therefore, when existing methods make use of
multiple databases to expand the training set, their per-
formance cannot be continuously improved. To solve this
inconsistency between different databases, an IPA2LT
framework is proposed to train a model from multiple in-
consistent databases and large scale unlabelled images.
The IPA2LT essentially constructs the ensemble at the
label level. Each image in the model has the same num-
ber of labels as the number of data sources, in which only
one label is original and others are pseudo. Existing
methods for FER have been almost satisfying in analyz-
ing frontal faces but fail to attain good performance on
partially occluded faces collected in the wild. Some facial
expressions are ambiguous and have multiple labels. Gan
et al.8 proposed a new framework based on CNN with
the supervision of soft labels, where hard labels are used
to construct soft labels with a novel label-level perturba-
tion. In this framework, soft labels were obtained to elim-
inate the similarity between faces of different emotions,
and multiple basic classifiers were trained and then com-
bined. Moreover, some GAN-based methods have been
proposed to generate expressional images for FERB941 or
usually focus only on generating new facial expression im-
agesl245], In [39], a novel approach is proposed to learn
facial expressions by extracting the expressive compon-
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ent through a de-expression procedure where the corres-
ponding neutral expression is generated by the trained
generative model given a facial image with arbitrary ex-
pressions. In [42], a user-controllable approach is pro-
posed to generate video clips of various lengths from a
single face image and the lengths and types of the expres-
sions are controlled by users.

Li et al.'?l proposed a CNN with an attention mech-
anism (ACNN) to detect the occlusion of facial regions
and paid attention to the most discriminative regions,
where the ACNN used the information of 24 facial land-
mark points to select the key regions at the feature level.
Barros et al.[40 investigated emotion-driven attention
mechanisms from the view of videos. Wang et al.l4” pro-
posed a two-level attention mechanism to extract emo-
tion-related features, which was based on global infor-
mation, and did not involve the local regions. Similar to
[12, 46, 47], the attention mechanism is also involved in
this work, whereas the essence of algorithms is very dif-
ferent. Here, our purpose is to adaptively enhance the
significance of facial crucial regions based on the atten-
tion weights in feature learning obtained by the non-loc-
al attention network from the view of multiple local re-
gions, where the attention weights corresponding to each
local region are obtained by the non-local attention net-
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3 Local non-nocal joint network for
FER

In this paper, we propose a local non-local attention
joint network for FER to adaptively enhance more cru-
cial local regions of facial expression, named by LNLAt-
tenNet. The overall framework of LNLAttenNet is visu-
ally shown in Fig.4. In Fig.4, one facial expression image
is used as the initial input instance of the proposed net-
work, and its size is 144 x 144, as in our implemented ex-
periments.

In LNLAttenNet, U-Net is first employed to extract
the feature maps integrating the deep semantic informa-
tion and the low hierarchical detail information of facial
expression images. For the facial expression dataset, when
regional integration is carried outl!ll, the interclass dis-
crepancy is smaller and the intraclass discrepancy is lar-
ger, as shown in Fig.1. The structure of U-Net[483-50 the
top-down architecture with lateral connections for intro-
ducing details into high-level semantic feature maps, has
been proven that local regions in the last few layers have
a large receptive field and the global information, which
is important and wuseful for ambiguous object recog-
nition! 521, Therefore, U-Net is beneficial for alleviating
the negative impact of the regional integration, but it

work. does not mean that the proposed method is restricted to
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Fig.4 The framework of the proposed model (LNLAttenNet). LNLAttenNet uses U-Net to generate a feature map with the same
resolution as the input image. Then, its feature map (Conv9-2) is cropped into M local patches to construct the local multinetworks
ensemble model, where each patch is used to generate an individual network based on the structure of simple net. Feature map (Conv5-
2) is used to construct the global attention network. Finally, the global and local features are integrated based on the global weights, and

then three fully connected layers follow.

@ Springer



G. Shi et al. / Adaptively Enhancing Facial Expression Crucial Regions via a Local Non-local Joint Network 335

U-Net. One model with a similar structure to U-Net can
be employed in our proposed method, such as feature
pyramid network (FPN)[511.

As shown in Fig. 4, facial expression images are input-
ted to the proposed model. By U-Net, two different fea-
ture maps are generated for the initial input image, loc-
ated in the last layer (Conv9-2) and the intermediate lay-
er (Conv5-2) of U-Net. In the following parts, we use Fs
and Fy to express the feature maps from Conv5-2 and
Conv9-2 of U-Net, respectively. Then, the generated fea-
ture maps F5 and Fo are utilized to construct two parts
of LNLAttenNet, where the map F5 is utilized as the in-
put to construct the non-local part (the non-local atten-
tion network) and the map Fy is employed as the input
to construct the local part (the local multi-networks en-
semble system). In the local part, an ensemble of mul-
tiple networks is applied to generate and integrate mul-
tiple individual networks corresponding to different facial
local regions. By the non-local attention network, an at-
tention weight w; (i =1,---, M) is obtained correspond-
ing to the i-th local region of the facial expression, and
then the vector w ((wi,--- ,wa]T) is used as the weights
of multiple local networks to combine M local vectors
and boost the significance of local regions in the process
of deep feature learning. Finally, the non-local attention
network and the local ensemble network are jointly op-
timized by integrating local and non-local features in
three fully connected layers of LNLAttenNet. More de-
tailed descriptions of the proposed method will be intro-
duced as follows.

3.1 Non-local attention network

For facial expression recognition, there are the small
interclass discrepancy and the large intraclass discrep-
ancy on expression images, as shown in Fig.1. Therefore,
facial crucial regions are regarded as more discriminative
regions that determine the categories of facial expression,
such as regions around the mouth (eyes) rather than the
cheek. However, it is difficult to estimate which regions
are more crucial without assistance from manually annot-
ated crucial points. Based on this, we construct the non-
local attention network to automatically mine more dis-
criminative regions from the whole facial expression, visu-
ally shown in the box with orange dotted lines of Fig.4.

In Fig.4, the feature map F5 (Convb-2) is generated
by U-Net as the global information of the facial image to
construct the non-local attention network. Conv5-2 has a
minimum resolution and the maximum receptive field,
which means that F5 is not affected by each local patch
but implicitly contains the relationship between local
patches. It is useful to mine more crucial regions based on
the global information from the whole face.

Inspired by [53, 54], we construct a non-local atten-
tion model based on three branches, as shown in Fig.5.
First, the input is map Fs, which contains the global in-
formation of facial expression in Fig.5. Based on Fs5, three

feature maps Q, K and V are generated by one convolu-
tion layer and one pooling layer. Note that the three maps
have a special resolution! of n x n in this model, where
M =n? and M is the number of cropped local regions.
Then, the maps Q and K are reshaped as Q* and K* re-
spectively, as shown in Fig.5, and a multiplication opera-
tion is followed to obtain a matrix R that reflects the
correlation among local regions. Compared with [53, 54],
the relevance of each region (patch) in LNLAttenNet is
not as strong as each frame in the video or each word in the
sentence, and thus, L normalization is adopted to limit
the sum of each row of R to 1 instead of the softmax
function. Finally, a vector is calculated by averaging each
column of the correlation matrix R, regarded as the non-
local attention weights w9 assigned to M local regions.
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Fig. 5 Overview of the non-local attention model

Furthermore, the map V is reshaped as V™, and the
feature vector s is obtained by multiplying V* by the
correlation matrix R, which is the self-attention form in
[563, 54]. To make the matrix R reflect the correlation
among local regions, s is flattened and added to the non-
local vector g (shown in Fig.4). Meanwhile, a function is
given to trade off two vectors g and s, shown as

g =(1—-a)xg+ax flat(s) (1)

where g™ expresses the new non-local vector and « is the
hyperparameter to adjust the ratio of s. In experiments,
we will give an analysis for the parameter a.

3.2 Local multi-networks ensemble

The feature map (Fo) is employed as the input to con-
struct the local multi-networks ensemble, as shown in
Fig.4. The reason for using the map Fy is that each pixel
is of the large receptive field and the rich semantic in-
formation in Conv9-2, where Fg has the same resolution
as the initial input image. In the part of local multi-net-
works ensemble, the feature map Fy is first divided into
M patches (including different local regions) with the
1 This special resolution is set to expediently calculate the corre-
lation between each patch. For example, when the number of
cropped local regions is set as 16 (M = 16) in our experiments,

the special resolution is 4 X 4 (n = 4), as shown in Fig. 5.
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same dimension (set as 48 x 48 x 64 in our experiments).
Then, M patches are trained by the sample network to
generate M individual networks {ZNi,- - ,ZN ), re-
spectively. The basic structure of the simple network is
shown in Fig.6, composed of six convolution layers and
three pooling layers. Specifically, for each individual net-
work, the local attention mechanism is added to enhance
the feature vector of each local region. Finally, M local
feature vectors are combined with the non-local atten-
tion weights obtained by the non-local attention network.

Conv> Conv> 9216

Conv> Conv> |

Pool Pool Flat
—

Local vector

Fig. 6 Structure of the simple network

Local attention. In practice, the useful information
is decreased when partial regions in one patch are missed
or obscured. This means that less attention should be giv-
en to them. In view of this, a local attention mechanism
is adopted in each individual network to weaken the sig-
nificance of useless regions. The local attention model is
encoded by four convolution layers and two fully connec-
ted layers, and its structure is shown in Fig.7. Note that
two convolution layers are not padded to reduce the com-
putational complexity. In the local attention model, its
input is the output of the last pooling layer in Simple-
Net, and its output is one value between 0 and 1 ob-
tained via the sigmoid function, regarded as the local at-
tention weight w! of each individual network, which rep-
resents the amount of information in each local patch
that can flow to the next level. If the facial local region is
obscured or missed, the information that it contains for
expression recognition will be reduced, and then the
weight value of the local attention is also reduced to alle-
viate the effect of patches including the obscured region.
Furthermore, the weights are multiplied by the corres-
ponding local vector as the output feature of each local
network. More visual illustrations can be found in the ex-
periments section.

Combination of multiple local networks. Accord-
ing to the non-local attention weights w? and the local
attention weights w', the local feature vectors given by
M individual networks {ZN1,--- ,ZN n} are aggregated
by the formula

M
fenzzwfxwfifi (2)

=1

where fe., expresses the ensemble feature vector, f;
expresses the feature vector given by ZA/; corresponding
to the i-th local region, w? is the non-local attention

i
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Fig. 7 Overview of the local attention

weight of the i-th local region, and w! expresses the local
attention weight of the i4-th local region. In the
experiments, we analyse the number M of local patches.

3.3 Joint optimization of LNLAttenNet

In Fig.4, the non-local feature vector g* is produced
by the non-local attention network, and the local vector
fen is obtained by the local multinetwork ensemble. In-
spired by [55], we think that the global information of an
input image is essential, and each local patch can obtain
a large receptive field and global information by embed-
ding U-Net, which makes it easier to classify similar
patches of facial expressions of different categories.
Moreover, Conv5-2 is encoded to a global vector with 8 192
dimension by two convolution layers and one pooling lay-
er. Then, the non-local vector g* is concatenated with the
local vector fe, to obtain the total vector as the feature
of the first fully connected layer and is jointly optimized,
and the dimension of the integrated feature vector is 17 408,
as shown in Fig.4. In LNLAttenNet, three fully connec-
ted layers are implemented, and the loss function is for-
mulated as

L = 108Sentropy + Y00Ssi2 (3)

where [0SSentropy €xpresses the cross entropy loss, loss;s is
the [2 regularization loss, and = is the hyperparameter
controlling the balance between two losses. The cross
entropy is calculated as follows:

1
lossentropy = N

N-1C-1 .
SO Il =c) xlog(pn)  (4)
n=0 c=

where C is the number of categories, N is the number of
input images, and [ is the function that determines
whether the input is correct. p’ is the i-th component of
the output of the last softmax layer of the n-th image,
and [, is the label of the n-th input image. The [2
regularization loss is computed by lossiz = A x ||[W]|?,
where W is the parameters of our model and A is set as
0.000 1 in the following experiments.

4 Experiments and analyses

In this section, we will validate the performance of the
proposed method from several items: 1) the performance
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comparison with state-of-the-art methods on benchmark
datasets, 2) the analysis of non-local attention, 3) the
visualization of local attention, 4) the change of the para-
meter «, 5) the performance of LNLAttenNet with differ-
ent M, and 6) the analyses for overlapped pixels between
local regions.

4.1 Databases and setups

In the experiments, we employ five FER datasets to
evaluate the performance of LNLAttenNet: RAF-DBI23],
SFEWDS, AffectNet24, CK+18 and MMIMI,

e RAF-DB contains 29 672 facial images down-
loaded from the Internet. For the RAF-DB dataset, the
facial landmarks are manually annotated via the crowd-
sourcing method with basic or compound expressions. In
the experiments, we use the basic database including 12 271
training and 3 068 testing images.

e SFEW contains the statistical images selected from
the movie clips with spontaneous expressions, where the
labels of the training set and validation set are given.
Therefore, 958 training images are used as the training
set and a total of 436 validation images are used as the
testing set in experiments.

o AffectNet contains 450 000 images with 10 cat-
egories, where each image is annotated by one volunteer.
In the experiments, we use 287 401 images with neutral
and six basic emotions, where 283 901 images are selec-
ted as the training set and 3 500 images are selected from
the validation set as the testing set.

e CK+ contains 593 sequences from 123 volunteers,
where 309 sequences have been annotated with six basic
emotions. The emotion in each sequence goes from neut-
ral to peak and then to neutral again. In view of this, we
select the first frame of each sequence with the label of
neutral and the peak frame of each sequence with the tar-
get label to generate 618 experimental images.

e MMI is recorded from 30 objects with rich details
of annotations, and 398 images are generated by select-
ing the first frame of each sequence with the label of
neutral and one peak frame of each sequence.

For the RAF-DB and SFEW datasets, their training
sets are directly used to train the model, and testing sets
are used to evaluate the performance. For the AffectNet
dataset, its training set is used to train the model, and its
validation set is used as the testing set, since the testing
set of AffectNet is not given the annotated labelsl4. For
the CK+ and MMI datasets, we adopt the fivefold cross-
validation scheme to evaluate the recognition perform-
ance to make a fair comparison with other methods.

Additionally, to fairly compare with the state-of-the-
art methods of FER, we initialize the parameters of U-
Net by the Xavier initializer rather than pretraining. In
the experiments, the original images are resized to
144 x 144, and the training images are augmented by
standard approaches, such as image flips and random

cropping. The number M of local regions is set as 16, and
each patch (local region) overlaps approximately 16 pixels
with its adjacent patches, and the parameter « is set as
0.7 in (1). The size of the epoch is set to 24, the initial
learning rate is 0.000 3, and the weight decay is set as
0.95 for each epoch. All experiments are implemented on
the framework of TensorFlow and GTX 2080Ti with 11G
memory.

4.2 Comparisons with state-of-the-art me-
thods

To validate the performance of the proposed method,
we first compare it with eight state-of-the-art methods on
five datasets. Eight compared methods are VGG16[29]
DLP-CNNI23,  NALB7,  Soft-CNNB8,  CenterLoss/?8,
gACNNL[2 LDL-ALSGP and IPA2LTB7, where VGG16
is applied as the baseline method in the experiments.

e DLP-CNNI2] decomposes the image structurally
rather than spatially into regions (parts) that are discrim-
inative for matching. According to the representations
over the regions, it aggregates discriminative features for
classification.

e NALL utilizes a noise adaptation layer to address
the problem of noise labels.

e Soft-CNNDB8! fuses the latent label probability dis-
tribution predicted by the trained model to obtain soft la-
bels with a novel label-level perturbation strategy.

e CenterLoss®®l minimizes the center loss calculated
by the distance between each data point and its corres-
ponding class center to reduce the intraclass discrepancy.

e gACNNI2 uses 24 facial landmarks as the atten-
tion mechanism to conduct multiregion ensemble at the
feature level.

e LDL-ALSGI/ considers the subjectivity of human
annotators and ambiguous expression labels and then
leverages the topological information of the labels from
related but more distinct tasks, such as AU recognition
and facial landmark detection, to explore the label distri-
bution of facial expressions.

e Ad-Corel® proposes an adaptive correlation (Ad-
Corre) loss to guide the network towards generating em-
bedded feature vectors with high correlation for within-
class samples and less correlation for between-class
samples.

e TPA2LTE" employs an inconsistent pseudo annota-
tions framework to solve the inconsistent annotations
between different facial expression databases.

Noticeably, IPA2LTB7 applies both RAF and Affect-
Net as the training set, differently from our method
(LNLAttenNet) and other compared methods where only
the training set of one dataset is employed to train a
model. In LNLAttenNet, both non-local attention and
local attention mechanisms are utilized. Thus, we also
make a comparison with three special cases of our model:
the model without both local and non-local attention
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(Model-S), the model with only local attention (Model-
Local), and the model with only non-local attention
(Model-NonLocal). Table 1 shows the experimental res-
ults of 12 models, where the highest accuracy is bold for
each dataset. All results are the average of the last 10
epochs.

From Table 1, it is obviously seen that the perform-
ance of the proposed method (LNLAttenNet) is superior
to all compared methods except LDL-ALSG and IPA2LT
on AffectNet, RAF-DB, CK+, MMI and SFEW. In con-
trast to LNLAttenNet, IPA2LTB7 utilizes two large data-
sets (RAF and AffectNet) as the training set, which res-
ults in its obtaining better performance. However,
LNLAttenNet still achieves competitive performance on
two datasets (RAF-DB and SFEW) and outperforms
IPA2LT on three datasets (AffectNet, CK+ and MMI).
Compared with LDL-ALSG[F9, LNLAttenNet outper-
forms on RAF-DB, SFEW and CK+, ties on AffectNet
and loss on MMI. In the last column of Table 1, we also
show the average accuracies for five datasets given by
each method in the last column. LNLAttenNet obtains
the highest average accuracy: 74.03%, which illustrates
that LNLAttenNet can obtain a more competitive per-
formance of FER on all five datasets than the eight com-
pared methods.

Furthermore, Model-S is inferior to Model-Local, Mod-
el-NonLocal and LNLAttenNet, which demonstrates that
the attention mechanism is meaningful for improving the
performance of FER in our model. Meanwhile, Model-
NonLocal is slightly better than Model-Local but obvi-
ously inferior to LNLAttenNet, which also demonstrates
our model jointly utilizing local and non-local informa-
tion of facial expression is more effective. In short, the ex-
perimental results illustrate that adaptively enhancing
the facial crucial regions in feature learning by LNLAt-
tenNet is effective for improving the performance of FER.

Machine Intelligence Research 21(2), April 2024

Considering that the RAF and AffectNet datasets
have a large number of images, we also show the confu-
sion matrices for them in Figs.8 and 9, respectively. Ac-
cording to the confusion matrices, it is observed that the
categories (fear and surprise) are easily distinguishable for
RAF-DB (shown in Fig.8) and the categories (disgust
and anger) are easily distinguishable for AffectNet (shown
in Fig.9).

4.3 Analyses of non-local attention

LNLAttenNet adaptively enhances the feature learn-
ing of facial crucial regions by jointly optimizing for local
and non-local parts, where the non-local attention net-
work is constructed to obtain the global weights wY of
multiple local regions. One purpose of our work is to ex-
plore how to automatically enhance the significance of
local crucial regions in deep FER, while any landmarks
are not given as the prior information of facial crucial re-
gions. Thus, to validate it, we analyse for the weights of
16 local regions obtained by our non-local attention for
the RAF-DB dataset.

First, the visualization results from 16 persons are
shown in Fig.10. In Fig. 10, the first and third rows show
the original facial expression images, and the second and
fourth rows exhibit the matrix (4 x 4) of the final global
weights w? (16 x 1) corresponding to 16 local regions.
For each matrix, the darker the color is, the higher the
weight is. From Fig. 10, it is obvious that some crucial re-
gions obtain higher weights and noncrucial regions ob-
tain smaller weights for each facial expression. For ex-
ample, the areas including or around eyes are given high-
er weights for the first person in the first row, where the
maximum is given the local region located at the coordin-
ate (2, 2) including eyes. For the sixth person in the first
row, four local regions (located at (3, 2), (3, 3), (4, 2),

Table 1 Accuracy (%) of the proposed method (LNLAttenNet) compared with state-of-the-art methods

Methods AffectNet RAF-DB SFEW CK+ MMI Average
VGG16129 51.11 80.96 54.45 90.37 63.21 68.02
DLP-CNNI23] 54.47 80.89 - - - -
NALP7 55.97 84.22 58.13 91.20 64.71 70.85
Soft-CNNI38] 56.77 85.20 55.73 - - -
CenterLossl?8] 57.37 84.42 56.19 95.48 - -
gACNND(2 58.78 85.07 - 97.03 - -
LDL-ALSGPY 59.35 85.53 56.50 93.08 70.49 72.99
Ad-Corel60] 59.67 86.10 57.64 97.13 67.95 73.70
IPA2LTB 55.11 86.77 58.29 91.67 65.61 71.49
Model-S 56.26 83.80 54.82 94.14 63.52 70.51
Model-Local 57.63 84.55 56.42 96.44 65.42 72.09
Model-NonLocal 58.09 85.04 55.73 96.63 66.56 72.41
LNLAttenNet 59.28 86.15 57.80 98.18 68.75 74.03
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Fig. 10 Non-local weights of 16 local regions of one face in RAF-DBI23] obtained by the proposed model. The first and the third lines
show the facial images, and the second and the fourth lines show the non-local weights of 16 local regions corresponding to images.

and (4, 3)), including his mouth, are boosted and given
higher weights. In the third and fourth rows, the local re-
gions located around the eyes and mouth are boosted for
the second person, and all regions, including the eyes, are
given higher weights for the last person. Visually, these
enhanced local regions are more discriminative and signi-
ficant for FER.

From Fig.10, it is also observed that the location of
crucial regions is different for different facial images.
However, our network still automatically tracks down
more discriminative regions for each different face,

without the supervision of any annotated crucial points.
Based on this, we conduct an experiment to pursue the
change of weights corresponding to each local region in
the process of training our model. More visual exhibi-
tions are shown in the Appendix.

4.4 Visualization of local attentions
In the proposed method, local attention is designed to
address the problem that local regions are missed or ob-

scured. In this part, the visualization of local attention
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will be shown to validate the robustness of the proposed
method for faces with missing regions, experimented on
the RAF-DB database. Note that the sigmoid function is
employed to select the information flowing into the next
layer in our local attention model. Fig.11 shows the visu-
al results of local attention obtained by our method.

In Fig.11, the 1st and 3rd rows show one original fa-
cial image and six obscured images (from the 2nd to 7th
columns), and the 2nd and 4th rows show the weights of
16 patches of each facial image obtained by our method.
Compared with the result of the original images (shown
in the first column of Fig.11), it is found that the weight
is weakened while one patch is obscured and the weights
of other patches are unchanged. Note that the weights of
some adjacent patches are also decreased with the cent-
ral patch due to overlapping pixels between two adjacent
patches. Practically, the local vector encoded based on
one obscured patch is given a small weight, which effect-
ively diminishes the influence of that obscured patch for
facial expression recognition. In short, the experimental
results illustrate that the proposed method equipped with
local attention is more robust for complex facial expres-
sion databases in practice.

4.5 Analyses for the parameter o

In the non-local attention network, we formulate (1)
to obtain the non-local feature vector g* based on the
global information of facial expression, where the para-
meter « is used to traffic off the feature vectors g and s.

W 0160 02635

- 03002

0n7e R - s

Fig. 11

)

36 02594
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In the previous experiments, we set a = 0.7. Therefore,
we analyse to observe the performance of the proposed
method with different values of « in this part. In this ex-
periment, the experimental setups are the same as the
above experiments except a, and « is set as {0, 0.1,
0.2, -+, 0.9, 1}. Table 2 shows the accuracy under differ-
ent « for five datasets. From Table 2, it is seen that the
accuracy first increases and then decreases with a change
in trend while increasing the value of . According to (1),
we obtain g* =g if a =0 and g* = s if @ = 1. Combin-
ing the network optimization, it is known that the back
propagation in LNLAttenNet has no constraint on s
when a = 0, which implies that the same effect (or feed-
back) is given the non-local attention and that each com-
ponent of the non-local weights w? should be random in
theory. In contrast, & = 1 means that the back propaga-
tion has no constraint on the global vector g, which
means that the back propagation in LNLAttenNet has no
global information and may result in an extreme result.
Actually, as shown in Fig.12, we also find that the ob-
tained weights (w?) tend to be random under a small «
and equal under a large «, which effectively verifies that
the effect of « is the same as the above analysis.

4.6 Analyses for different M

In our method, multiple individual networks are gen-
erated based on facial local regions, and the previous ex-
periments are implemented with the number of local
number

patches M = 16. Therefore, we also analyse the

€279 06819 | 05619

02347 02399

01006 02043 01013 00812

01631 02635 01550 02635 02635

Local weights of 16 patches of each face on RAF-DB[23 obtained by the proposed model. The first column shows the results

corresponding to original images, and the second to the seventh columns show the results corresponding to obscured images.
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Fig. 12 Change in the non-local weight of an image from RAF-
DBI23] at different o

(M) of local patches on five datasets. In this experiment,
M is set as 4, 9, 16, 25 and 36. Table 3 shows the accur-
acy rates with different M. In this experiment, the size of
the input image is 144 x 144, and the size of overlapping
pixels between adjacent patches is approximately one
third of the size of each patch, which is computed by

N X Pgze — (n—1) X ¥ X Pgize = 144 (5)
where v is approximately 1/3, n?> =M and Psi.. is the
size of each patch. Note that the parameters of our
network except M are set as the same as previous
experiments.

From Table 3, it is observed that the performance
with more local regions is superior to that with fewer loc-
al regions. This implies that the size of each local region
is too large to attain multiple diverse local information
when M is set as a small value. However, it is also no-
ticed that the computational complexity will be in-
creased when M is set as a high value, and thus we fi-
nally set M = 16 to implement most experiments.

4.7 Analyses for overlapped pixels bet-
ween local regions

In the previous experiments, 1/3 of all pixels in each

patch are applied as the overlapping pixels between two
neighboring patches, which is a more appropriate value,
since the number of pixels overlapping between the
middle patch and its two sides is only 2/3, and the in-
formation of 1/3 of the pixels at the center of the patch is
still retained. If a larger number of overlapping pixels is
employed, such as 1/2, the middle patch will completely
overlap with the patches on both sides. If a smaller num-
ber is used, such as 1/4, the number of pixels in the over-
lapping region will be too small to solve the problem of
regional connectivity. To analyse the influence of overlap-
ping pixels between two patches, an experiment in which
the other experimental settings are the same as before is
implemented based on the RAF-DB dataset, and the res-
ult is shown in Table 4.

Table 4 shows the accuracy obtained by the proposed
method based on different numbers (V) of overlapping
pixels. From the results, it is seen that the performance
on the test set increases slowly to plateau as the number
of overlapping pixels increases. This illustrates that the
more overlapping pixels there are, the larger the number
of network parameters. According to our analysis, the
main reason is that it is easier to introduce redundant in-
formation between adjacent patches when the number of
overlapping pixels is larger.

5 Conclusions

In this paper, we propose the LNLAttenNet method
to effectively explore the significance of facial crucial re-
gions in feature learning for FER, without any landmark
information. In LNLAttenNet, the global information of
the facial expression is utilized to construct the non-local
attention network, and the local information is utilized to
supervise self-information. By the joint optimization of fa-
cial non-local and local feature vectors, LNLAttenNet can
adaptively enhance more crucial regions in the process of
deep feature learning. Specifically, an ensemble of mul-
tiple networks corresponding to local regions is construc-
ted to integrate the local feature with the non-local
weights, which achieves interactive guidance between the
facial global and local information. The experimental res-
ults also demonstrate that some local crucial regions can
be effectively enhanced in feature learning by LNLAtten-
Net while there is no given information on landmarks in
the training model. Moreover, the proposed method fo-

Table 2 Accuracy rates (%) given by the proposed method with different «

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RAF 84.09 85.60 85.69 86.15 85.59 85.33 85.17 85.23 83.74 83.54 83.02
SFEW 55.06 55.73 56.88 57.80 57.34 57.11 56.65 56.88 55.96 54.59 53.67
CK+ 96.02 96.75 97.56 98.18 98.30 97.74 97.36 96.60 96.22 96.04 95.28
MMI 67.00 67.45 68.50 68.75 68.88 68.25 67.50 67.38 66.93 66.50 66.25
AffectNet 57.94 58.71 59.43 59.28 58.03 57.80 56.83 56.86 56.71 56.66 56.63
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Table 3 Accuracy (%) of the proposed method with different
numbers (M) of patches

Machine Intelligence Research 21(2), April 2024

Table4 Accuracy (%) of the proposed method with different
overlapping numbers (V) of pixels

M 4 9 16 25 36 N 4 8 12 16 20 24
RAF 84.97  85.66  86.15  85.53  85.63 RAF  84.63 84.96 8529 86.15 86.16  86.24
SFEW 55.28  56.88  57.80  58.03  57.80
CK+ 96.22  97.17 9818  97.92  97.74 expressions in future works.
MMI 67.60  67.90  68.75  68.83  67.13 .

Appendix
AffectNet 58.06  58.43  50.28  59.06  57.97

cuses on enhancing facial crucial regions in FER without
any landmark information based on multiple patches, and
thus we will explore it from the view of pixels for facial

o-

-

-

Extended data. Fig. A1 shows the change of non-loc-
al weights in the training process. In Fig. A1, the first row
shows the original image and its final global weights ob-
tained by our model, and the second and third rows show
the given global weights of 16 local regions in the initial,
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(a) Change of non-local weights in the training process for a facial image with fear expression
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(b) Change of non-local weights in the training process for a facial image with sad expression

Fig. Al

16 non-local weights of two input images from RAF-DB[3l. In the first row, the input image and the non-local weights

corresponding to each patch are shown. In the second and the third rows, the six figures show the non-local weights of the input images
at different training stages, respectively. The last row shows the final non-local weights obtained by our model.

250th, 500th, 750th, 1000th and 1 250th iterations, re-
spectively, and the last row shows the final weights. From
Fig. A1, it is seen that the non-local weight of each local
patch is same at the beginning of training, which implies
that each local region is initially regarded as having equal
importance. With the training of our network, each local
region is given different weights, and the higher weights
are given some more discriminative regions, such as the
patches (located at (4, 2) and (4, 3)), including the
mouth shown in Fig. Al(a), the patches (located at (3, 2),
(3, 3), (4, 2) and (4, 4)) in Fig. A1(b), etc. It illustrates
that some more crucial local regions can be adaptively en-

hanced in the training of our network without any land-
marks.

In order to better observe the change of weights, we
also show the change of weights corresponding to 16 loc-
al regions in all iterations in Fig. A2. From Fig. A2, it is
seen that the weight value fluctuates at the beginning of
network training and it is gradually stabilized until the
end of the training. Some patches that are visually more
discriminative are given higher weights and some patches
located at the noncrucial regions cut down with smaller
weights. In summary, the analyses for non-local weights
demonstrate that the proposed method can effectively
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(b) Change of weights corresponding to 16 local regions in all iterations for a facial image with sad expression

Fig. A2 Change of weights w9 corresponding to 16 local regions of two images from RAF-DB[23 in the training process of
LNLAttenNet. The abscissa represents the number of iterations in the training process and the ordinate represents the magnitude of the
weight corresponding to each iteration.
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automatically enhance the significance of facial crucial re-
gions in deep feature learning, without any given prior in-
formation of facial crucial regions.
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