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Abstract Mixture model-based clustering, usually applied to multidimen-
sional data, has become a popular approach in many data analysis problems,
both for its good statistical properties and for the simplicity of implementa-
tion of the Expectation-Maximization (EM) algorithm. Within the context of
a railway application, this paper introduces a novel mixture model for dealing
with time series that are subject to changes in regime. The proposed approach
consists in modeling each cluster by a regression model in which the poly-
nomial coefficients vary according to a discrete hidden process. In particular,
this approach makes use of logistic functions to model the (smooth or abrupt)
transitions between regimes. The model parameters are estimated by the max-
imum likelihood method solved by an Expectation-Maximization algorithm.
The proposed approach can also be regarded as a clustering approach which
operates by finding groups of time series having common changes in regime.
In addition to providing a time series partition, it therefore provides a time
series segmentation. The problem of selecting the optimal numbers of clusters
and segments is solved by means of the Bayesian Information Criterion (BIC).
The proposed approach is shown to be efficient using a variety of simulated
time series and real-world time series of electrical power consumption from rail
switching operations.
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1 Introduction

The application which gave rise to this study is an application for diagnosing
problems in rail switches, that is to say the mechanisms which enable trains
to change tracks at junctions. One preliminary task in the diagnostic process
is identifying groups of switching operations that have similar characteristics,
and this is accomplished by performing clustering on the time series of elec-
trical power consumption, acquired during various switching operations. This
kind of data is referred to in other contexts as longitudinal data [4], signals,
or curves [8].

The approach adopted in this paper is mixture model-based clustering [1,
2], which has successfully been applied in numerous domains [13], and which
provides, by means of the Expectation-Maximization algorithm [6], an effi-
cient implementation framework. Typical extensions of mixture models for
time series include regression mixture models [8] and random effect regression
mixture models [11,7,14,12]. These approaches are based on a projection of
the original time series into a space with fewer dimensions, defined by polyno-
mial or spline basis functions. Other approaches that combine Autoregressive
Moving Average (ARMA) methods and the Expectation-Maximization algo-
rithm have also been proposed [19]. Although these approaches can be seen as
an efficient way of classifying time series, all of them use a constant dynamic
within each cluster; in other words, the regressive or autoregressive coefficients
of the clusters do not vary with time.

However, the time series studied in this paper are subject to various changes
in regime (see figure 7) as a result of the successive mechanical movements that
are involved in a switching operation. Within this particular context, a specific
regression model has been proposed in [3] to deal with regime changes in time
series. The model in question is a regression model in which the polynomial
coefficients may vary according to a discrete hidden process, and which uses
logistic functions to model the (smooth or abrupt) transitions between regimes.
In this paper we extend this regression model to a finite mixture model, where
each cluster is represented by its own "hidden process regression model".

This paper is organized as follows. We first present a brief review of the
regression mixture model for time series clustering. Then, we detail the pro-
posed mixture model and its parameters estimation via the Expectation-
Maximization (EM) algorithm [6]. Section 5 illustrates the performances of
the proposed approach using simulated examples and real-world time series
from an application in the railway sector.

The time series to be classified takes the form of an independent random
sample (x1, . . . ,xn) where each series xi consists of a vector of m random real
values (xi1, . . . , xim) observed over the fixed time grid t = (t1, . . . , tm), with
t1 < t2 < . . . < tn. The unobserved clusters corresponding to (x1, . . . ,xn) will
be denoted as (z1, . . . , zn), where zi ∈ {1, . . . ,K}.
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2 Regression mixture model for time series clustering

This section briefly recalls the regression mixture model, as formulated by
Gafney and Smith [8], in the context of times series clustering.

2.1 Definition of the regression mixture model

Unlike standard vector-based mixture models, the density of each component
of the regression mixture is represented by a polynomial "mean series" (or
mean curve) parameterized by a vector of regression coefficients and a noise
variance.

The regression mixture model therefore assumes that each series xi is dis-
tributed according to the conditional mixture density

f(xi|t; θ) =
K∑

k=1

πk N (xi;Tβk, σ
2
kI), (1)

where θ = (π1, . . . , πK ,β1, . . . ,βK , σ2
1 , . . . , σ

2
K) is the complete parameter vec-

tor, the πk are the proportions of the mixture satisfying
∑K

k=1 πk = 1, βk and
σ2
k are respectively the the (p + 1)-dimensional coefficient vector of the kth

regression model and the associated noise variance. The matrix T = (Tuj) is
a m× (p+1) Vandermonde matrix verifying Tuj = tu−1

j for all 1 ≤ j ≤ m and
1 ≤ u ≤ (p+ 1), and N (·;µ,Σ) is the Gaussian density with mean vector µ

and covariance matrix Σ.

2.2 Fitting the model

Assuming that the sample (x1, . . . ,xn) is independent, the parameter vector
θ is estimated by maximizing the conditional log-likelihood

L(θ) = log

n∑

i=1

f(xi|t; θ) =
n∑

i=1

log

K∑

k=1

πkN (xi;Tβk, σ
2
kI) (2)

via the Expectation-Maximization (EM) algorithm initiated by Dempster,
Laird and Rubin [6].

Once the parameters have been estimated, a time series partition is ob-
tained by assigning each series xi to the cluster having the highest posterior
probability

p(zi = k|t,xi; θ) =
πkN (xi;Tβk, σ

2
kI)∑K

h=1 πhN (xi;Tβh, σ
2
hI)

· (3)
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3 Clustering time series with changes in regime

3.1 The global mixture model

As with the standard regression mixture model, the mixture model introduced
for clustering time series with changes in regime assumes that the series xi are
independently generated according to the global mixture model

f(xi|t; θ) =
K∑

k=1

πkfk(xi|t; θk), (4)

where θ = (π1, . . . , πK , θ1, . . . , θK), π1, . . . , πK denote the proportions of the
mixture, and θk the parameters of the different component densities fk. The
main difference between the model proposed here and Gafney and Smith’s
regression mixture model [8] lies in the definition of the component densities
fk, described in the following section.

3.2 Definition of the mixture components

We assume that the kth cluster, that is to say the time series corresponding to
the component fk of the proposed mixture, is generated as follows. Given the
cluster label zi = k and the fixed time vector t, a time series xi is generated
according to a specific regression model which implicitly supposes that there
are L pth order polynomial regression models involved in the generation of xi.
The assignment of the xij ’s to the different (sub) regression models is specified
by a hidden process denoted by wi = (wi1, . . . , wim), where wij ∈ {1, . . . , L}.
Thus, given the cluster label zi = k, the individual observations xij of a series
xi are generated as follows:

∀j = 1, . . . ,m,

{
xij =

∑L

ℓ=1 wijℓ

(
T

′
jβkℓ + σkℓεij

)

εij ∼ N (0, 1)
, (5)

where wijℓ = 1 if wij = ℓ and 0 otherwise. The parameters σkℓ and βkℓ are
respectively the noise standard deviation and the (p+1)-dimensional coefficient
vector of the ℓth regression model of the kth cluster. T′

j denotes the transpose

of the vector Tj = (1, tj, . . . , t
p
j )

T .
The regression component labels wij (j = 1, . . . ,m) are assumed to be gen-

erated according to the multinomial distribution
M(1, πk1(tj ;αk), . . . , πkL(tj ;αk)), where

πkℓ(t;αk) =
exp(αkℓ1t+αkℓ0)∑L

h=1 exp(αkh1t+αkh0)
· (6)

is a logistic function with parameter vector αk = {αkℓ; ℓ = 1, . . . , L} and
αkℓ = (αkℓ0,αkℓ1). A logistic function defined in this way ensures a smooth
transition between the different polynomial regimes. Thus, given zi = k and
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tj , the individual observations xij of a series xi are independently distributed
according to the mixture model given by

p(xij |tj ; θk) =

L∑

ℓ=1

πkℓ(tj ;αk)N (xij ;β
T
kℓTj , σ

2
kℓ). (7)

The density fk can thus be written as

fk(xi|t; θk) =

m∏

j=1

L∑

ℓ=1

πkℓ(tj ;αk)N (xij ;β
T
kℓTj , σ

2
kℓ). (8)

3.3 A cluster-segmentation model

The proposed model leads to the segmentation Ek = (Ekℓ)ℓ=1,...,L of the set
of time series originating from the kth cluster, where

Ekℓ =
{
t ∈ [t1; tm] / πkℓ(t;αk) = max

1≤h≤L
πkh(t;αk)

}
. (9)

It can be proved that the set Ekℓ is convex (see appendix A). Therefore, Ek

is a segmentation into contiguous parts of {t1, . . . tm}. Figure 1 illustrates the
latent structure of the proposed model with K = 3 and L = 3.

Fig. 1 Latent hierarchical structure of the proposed model with K = 3 clusters: for each
time series cluster, the vertical lines define a segmentation into L = 3 segments
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3.4 Parameter estimation via the EM algorithm

The parameters of the proposed model are estimated by maximizing the con-
ditional log-likelihood defined by

L(θ) =
n∑

i=1

log f(xi|t; θ)

=

n∑

i=1

log

K∑

k=1

πk

( m∏

j=1

L∑

ℓ=1

πkℓ(tj ;αk)N (xij ;β
T
kℓTj , σ

2
kℓ)

)
. (10)

The Expectation Maximization (EM) algorithm [6] is used for the maxi-
mization of this log-likelihood, a problem which cannot be solved analytically.
Let us recall that the EM algorithm requires a complete data specification,
whose log-likelihood can be maximized more easily than the observed data
log-likelihood. Here, the "complete data" are obtained by adding to each se-
ries xi its cluster membership zi and its assignment process wi = (wij)j=1,...,m

to the different sub-regression models. Using the binary coding of zi and wij ,

zik =

{
1 if zi = k
0 otherwise

and wijℓ =

{
1 if wij = ℓ
0 otherwise,

the complete data log-likelihood can be written as

Lc(θ) =

n∑

i=1

log p(xi, zi,wi|t; θ) =
n∑

i=1

K∑

k=1

zik log πk +

n∑

i=1

m∑

j=1

K∑

k=1

L∑

ℓ=1

zikwijℓ log
(
πkℓ(tj ;αk)N (xij ;β

T
kℓTj , σ

2
kℓ)

)
. (11)

Given an initial value of the parameter vector θ(0), the EM algorithm
alternates the two following steps until convergence.

E-Step (Expectation)

This step consists in evaluating the expectation of the complete data log-
likelihood conditionally on the observed data and the current parameter vector
θ(q), q denoting the current iteration:

Q(θ, θ(q)) = E
[
Lc(θ)

∣∣t,x1, . . . ,xn; θ
(q)

]
=

n∑

i=1

K∑

k=1

r
(q)
ik log πk +

n∑

i=1

m∑

j=1

K∑

k=1

L∑

ℓ=1

λ
(q)
ijkℓ log

(
πkℓ(tj ;αk)N (xij ;β

T
kℓTj , σ

2
kℓ)

)
(12)
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where

r
(q)
ik = E[zik|t,xi; θ

(q)] =
π
(q)
k fk(xi|t; θ

(q)
k )

∑K

h=1 π
(q)
h fh(xi|t; θ

(q)
h )

(13)

is the posterior probability that time series xi originates from cluster k, and

λ
(q)
ijkℓ = E[zik wijℓ|t,xi; θ

(q)]

=
π
(q)
k

fk(xi|t; θ
(q)
k

)
∑K

h=1 π
(q)
h

fh(xi|t; θ
(q)
h

)
×

πkℓ(tj ;α
(q)
k

)N (xij ;β
(q)T

kℓ
Tj , σ2(q)

kℓ
)

∑L
h=1 πkh(tj ;α

(q)
k

)N (xij ;β
(q)T

kh
Tj , σ2(q)

kh
)

(14)

is the posterior probability that (tj , xij) originates from the ℓth sub-regression
model of cluster k.

M-Step (Maximization)

This step consists in computing the parameter vector θ(q+1) that maximizes
the quantity Q(θ, θ(q)) with respect to θ. For our purposes this quantity can
be written as

Q(θ, θ(q)) = Q1((πk)) +Q2((αk)) +Q3((βkℓ, σ
2
kℓ)),

where

Q1((πk)) =

n∑

i=1

K∑

k=1

r
(q)
ik log πk, (15)

Q2((αk)) =

n∑

i=1

m∑

j=1

K∑

k=1

L∑

ℓ=1

λ
(q)
ijkℓ log

(
πkℓ(tj ;αk)

)
, (16)

Q3((βkℓ, σ
2
kℓ)) =

n∑

i=1

m∑

j=1

K∑

k=1

L∑

ℓ=1

λ
(q)
ijkℓ log

(
N (xij ;β

T
kℓTj , σ

2
kℓ)

)
. (17)

Q can thus be maximized by separately maximizing the quantities Q1, Q2 and
Q3. As in the classical Gaussian mixture model, it can easily be shown that
the proportions πk that maximize Q1 under the constraint

∑K

k=1 πk = 1 are
given by

π
(q+1)
k =

∑n

i=1 r
(q)
ik

n
· (18)

Q2 can be maximized with respect to the αk by separately solving K
weighted logistic regression problems:

α
(q+1)
k = argmax

αk

n∑

i=1

m∑

j=1

L∑

ℓ=1

λ
(q)
ijkℓ log

(
πkℓ(tj ;αk)

)
(19)

through the well known Iteratively Reweighted Least Squares (IRLS) algo-
rithm [9,3]. Let us recall that the IRLS algorithm, which is generally used
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to estimate the parameters of a logistic regression model, is equivalent to the
following Newton Raphson algorithm [9,3]:

α
(v+1)
k = α

(v)
k −

[ ∂2Q2k

∂αk∂αT
k

]−1

αk=α
(v)
k

[∂Q2k

∂αk

]
αk=α

(v)
k

, (20)

where

Q2k =

n∑

i=1

m∑

j=1

L∑

ℓ=1

λ
(q)
ijkℓ log πkℓ(tj ;αk).

Maximizing Q3 with respect to βkℓ consists in analytically solving K × L
weighted least-squares problems. It can be shown that

β
(q+1)
kℓ =

[
T

′
( n∑

i=1

Λ
(q)
ikℓ

)
T

]−1[
T
( n∑

i=1

Λ
(q)
ikℓ

)
xi

]
, (21)

where Λ
(q)
ikℓ is the m × m diagonal matrix whose diagonal elements are{

λ
(q)
ijkℓ ; j = 1, . . . ,m

}
. The maximization of Q3 with respect to σ2

kℓ gives

(
σ2
kℓ

)(q+1)
=

∑n

i=1

∥∥
√
Λ
(q)
ikℓ

(
xi −Tβ

(q+1)
kℓ

)∥∥2
∑n

i=1 trace(Λ
(q)
ikℓ)

, (22)

where

√
Λ
(q)
ikℓ is the m × m diagonal matrix whose diagonal elements are

{√
λ
(q)
ijkℓ ; j = 1, . . . ,m

}
and ‖ · ‖ is the norm corresponding to the euclidian

distance.

M-step for three parsimonious models

Common segmentation for all clusters

In certain situations, the segmentation defined by the αk (k = 1, . . . ,K) may
be constrained to be common for each cluster, that is αk = α ∀k. In that case,
the quantity Q2 to be maximized can be rewritten as:

Q2(α) =
n∑

i=1

m∑

j=1

L∑

ℓ=1

λ
(q)
ij·ℓ log

(
πℓ(tj ;α)

)
, (23)

where λ
(q)
ij·ℓ =

∑K

k=1 λ
(q)
ijkℓ. The IRLS algorithm can therefore be used to com-

pute the parameter α(q+1), in the same way as for the unconstrained situation.
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Common variance for regression models from the same cluster

In other situations, it may be useful to constrain the regression models vari-
ances to be common within a same cluster. In that case, σ2

kℓ = σ2
k ∀k, ℓ. The

updating formula for the variance can thus be written as:

(
σ2
k

)(q+1)
=

∑n

i=1

∑L

ℓ=1

∥∥∥∥
√
Λ
(q)
ikℓ

(
xi −Tβ

(q+1)
kℓ

)∥∥∥∥
2

∑n

i=1

∑L

ℓ=1 trace(Λ
(q)
ikℓ)

· (24)

Common variance for all regression models

If the model variances are constrained to be common all regression models, we
have σ2

kℓ = σ2 ∀k, ℓ. The updating formula for the variance takes the form:

(
σ2

)(q+1)
=

∑n

i=1

∑K

k=1

∑L

ℓ=1

∥∥∥∥
√
Λ
(q)
ikℓ

(
xi −Tβ

(q+1)
kℓ

)∥∥∥∥
2

n×m
· (25)

3.5 Time series clustering, approximation and segmentation

From the parameters estimated by the EM algorithm, a partition of the time
series can easily be deduced by applying the maximum a posteriori (MAP)
rule

zi = argmax
k

rik. (26)

The clusters "mean series" can be approximated by the series ck = (ckj),
with

ckj = E[xij |tj , zi = k; θ] =

L∑

ℓ=1

πkℓ(tj ;αk)T
′
jβkℓ. (27)

Moreover, a segmentation Ek = (Ekℓ)ℓ=1,...,L of the time series originat-
ing from the kth cluster can be derived from the estimated parameters by
computing Ekℓ as defined in equation 9.

3.6 Assessing the number of clusters, segments and the regression order

In the context of mixture models and the EM algorithm, the natural criterion
for model selection is the Bayesian Information Criterion (BIC) [16]. Unlike
for classical mixture regression models, three parameters need to be tuned:
the number of clusters K, the number of segments L and the degree p of the
polynomials. The BIC criterion, in this case, can be defined by:

BIC(K,L, p) = L(θ̂)−
ν(K,L, p)

2
log(n), (28)
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where θ̂ is the parameter vector estimated by the EM algorithm, and ν(K,L, p)
is the number of free parameters of the model. In the proposed model, the
number of free parameters

ν(K,L, p) = (K − 1) + 2K(L− 1) + LK(p+ 1) + LK (29)

is the sum of the mixture proportions, the logistic functions parameters, the
polynomial coefficients and the variances.

From a practical point of view, the maximum numbers Kmax, Lmax and
pmax are first specified. Then, the EM algorithm is run for K ∈ {1, . . . ,Kmax},
L ∈ {1, . . . , Lmax} and p ∈ {1, . . . , pmax}, and the BIC criterion is computed.
The set (K,L, p) with the highest value of BIC is taken to be right solution.

4 Experimental study

This section is devoted to an evaluation of the clustering accuracy of the pro-
posed algorithm, carried out using simulated time series and real-world time
series from a railway application. Results obtained from the proposed algo-
rithm are compared with those provided by the clustering approach, based
on the regression mixture described in section 2. To measure the cluster-
ing accuracy, two criteria were used: the misclassification percentage between
the true partition and the estimated partition, and the intra-cluster inertia∑K

k=1

∑n

i=1 ẑik||xi − ĉk||2, where (ẑik) and ĉk = (ĉkj)j=1,...,m represent re-
spectively the binary partition matrix and the kth mean series estimated by
each of the two compared algorithms:

– ĉkj =
∑L

ℓ=1 πkℓ(tj ;αk)T
′
jβkℓ for the proposed algorithm,

– ĉkj = T
′
jβk for the regression mixture EM algorithm.

4.1 Experiments using simulated data

4.1.1 Simulation protocol and algorithms tuning

The time series are simulated as follows: n series of length m are generated ac-
cording to a mixture of K clusters whose mean series can be either polynomial
or the sum of polynomials weighted by logistic functions.

The polynomial coefficients and variances are initialized as follows: K series
are randomly selected and segmented into L regularly spaced segments; the
polynomial regression parameters are derived from a pth order regression on
each segment. The logistic regression parameters are initialized to the null vec-
tor. The initial polynomial coefficients and variances of the regression mixture
approach are obtained by performing a pth-order regression on K randomly
drawn series. The proportions of the initial clusters are set to 1/K for all algo-
rithms. Each algorithm starts with 20 different initializations and the solution
with the highest log-likelihood is selected.
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4.1.2 Comparison between the proposed model and the standard regression
mixture

The experiments were performed in order to compare the relative performances
of the proposed EM algorithm and the EM algorithm for standard regression
mixtures. So as not to favor either method unduly, the data were generated
without reference either to the proposed model or to the regression mixture.
Each data set, consisting of n = 50 time series of length m = 60, was simulated
according to a mixture of K = 2 clusters with equal proportions (π1 = π2 =
1/2). The first cluster mean curve was built from three polynomials of degree
p = 0 weighted by logistic functions, while the second was a single polynomial
of degree p = 8. Values of the variance σ2

kℓ were chosen equal for each of the
simulated sets of time series. The parameters of the mean curves are given in
table 1, and figure 2 provides an illustration of time series simulated according
to this model.

Table 1 Clusters’ mean series with their parameters

Cluster Mean series Parameters

k = 1 c1j =
∑3

ℓ=1 π1ℓ(tj ;α1)T
′

jβ1ℓ β11 = 10 α11 = (1039,−34.4)′

β12 = 20 α12 = (677,−16.7)′

β13 = 30 α13 = (0, 0)′

k = 2 c2j = T
′

jβ2 β2 = (7.4, 1.9, −0.3, −2 × 10−3, 2 × 10−4,

−1.3×10−4, 3.2×10−6,−3.7×10−8, 1.6×10−10)′

0 10 20 30 40 50 60
0
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10
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25

30

35

40

time

(a)
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0 10 20 30 40 50 60
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5

10

15

20

25
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35

40

time

(b) (c)

Fig. 2 Example of n = 50 simulated time series (a) and series corresponding to the two
clusters, with their mean (b and c)
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Preliminarily, the triplet (K,L, p) for the proposed approach is tuned using
the BIC criterion as follows: (i) twenty-five sets of 50 time series are randomly
generated with σ2

k = 2 ; (ii) the proposed algorithm is run on each data set,
with K ∈ {1, . . . ,Kmax}, L ∈ {1, . . . , Lmax} and p ∈ {1, . . . , pmax} ; (iii) the
selection rate for each triplet (K,L, p) over the 25 random samples is computed
as a percentage. The model with the highest percentage of selections is the
one with (K,L, p) = (2, 3, 3). The same strategy was applied to the regression
mixture approach, where the pair (K, p) = (2, 10) was found to have the
highest percentage of selections. Figure 3 shows the percentages obtained with
the two algorithms, only for K = 2.

1
2

3
4

5
6

71
2

3
4

5

0

20

40

60

80

100

pL

%

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

p

%

Fig. 3 Percentage of selecting respectively (L, p) and p by the BIC criterion for the proposed
approach (left) and the regression mixture approach (right), with K = 2

Using the optimal numbers of clusters, segments and polynomial orders
computed above, the two algorithms are then compared. Table 2 gives the
obtained misclassification percentages and intra-cluster inertia averaged over
25 random samples. The overall performance of the proposed algorithm is seen
to be better than that of the regression mixture EM algorithm.

Table 2 Misclassification rate and intra-cluster inertia obtained with the two compared
algorithms

Misclassification percentage Intra-cluster inertia
Proposed approach 0 1.20× 104

Regression mixture 0.08 2.25× 104

Figure 4 shows the misclassification percentage and the intra-cluster inertia
(averaged over 25 different random samples of time series) in relation to the
variance σ2

k, obtained with the proposed algorithm and the regression mixture
EM algorithm. The proposed algorithm is seen to outperform its competitor.
Although the misclassification percentages of the two approaches are close in
particular for σ2

k ≤ 2, the intra-cluster inertia differs from about 104. Mis-
classification provided by the regression mixture EM algorithm increases for
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variances greater than 2.5. The intra-cluster inertia obtained by the two ap-
proaches naturally increases with the variance level, but the proposed approach
performs better than its competitor. Examples of clustering results provided
by the proposed approach are displayed in figure 5. It will be observed that
our approach is also capable of modeling the cluster 2, whose mean series is
a polynomial of degree 8, by means of three polynomials of order 3 weighted
by logistic functions. Figure 6 illustrates that the regression mixture model,
in contrast to the proposed model, cannot accurately model cluster 1, whose
series are subject to changes in regime.
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Fig. 4 Misclassification rate (left) and intra-cluster inertia (right) in relation to the noise
variance, obtained with the proposed EM algorithm and the standard regression mixture
EM algorithm

4.2 Experiments using real world data

As mentioned in the introduction, the main motivation behind this study was
diagnosing problems in the rail switches that allow trains to change tracks
at junctions. An important preliminary task in the diagnostic process is the
automatic identification of groups of switching operations that have similar
characteristics, by analyzing time series of electrical power consumption ac-
quired during switching operations. The specificity of the time series to be
analyzed in this context is that they are subject to various changes in regime
as a result of the mechanical movements involved in a switching operation.
We accomplished this clustering task using our EM algorithm, designed for
estimating the parameters of a mixture of hidden process regression models.
We compared the proposed EM algorithm to the regression mixture EM algo-
rithm previously described, on a data set of n = 140 time series (see figure 7).
This data set is composed of four clusters identified by an expert: a defect-free
cluster (35 time series), a cluster with a minor defect (40 time series), a cluster
with a type 1 critical defect (45 time series) and a cluster with a type 2 critical
defect (20 time series).
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Fig. 5 Clustering results provided by the proposed EM algorithm applied with K = 2,
L = 3 and p = 3: clusters with their estimated polynomials (top), logistic probabilities
(middle), clusters with their mean series (bottom)
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Fig. 6 Clusters and mean series estimated by the regression mixture EM algorithm applied
with (K, p) = (2, 10)

The number of regression components of the proposed algorithm was set
to L = 5 in accordance with the number of mechanical phases in a switching
operation, and the degree of the polynomial regression p was set to 3, which is
more appropriate for the different regimes in the time series. The polynomial
order for the regression mixture approach was set to p = 10 which, in practice,
gives the best error rates. For all the compared algorithms the number of clus-
ters was set to K = 4. Table 3 shows the misclassification error rates and the
corresponding intra-cluster inertia. It can be seen that the proposed regression
approach provides the smallest intra-cluster error and misclassification rate.
Figure 8 displays the clusters provided by the three compared algorithms and
their estimated mean series.
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Fig. 7 Electrical power consumption time series acquires during n = 140 switch operations

Table 3 Error obtained for the three compared approaches

Regression mixture EM Proposed EM
Misclassification % 11.42 9.28
Intra-cluster inertia 2.6583× 107 1.1566 × 107

Cluster 1 Cluster 2 Cluster 3 Cluster 4
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Fig. 8 Clusters and mean series estimated by the proposed EM algorithm (top) and the
regression mixture EM algorithm (bottom)

5 Conclusion

A new mixture model-based approach for the clustering of univariate time
series with changes in regime has been proposed in this paper. This approach
involves modeling each cluster using a particular regression model whose poly-
nomial coefficients vary over time according to a discrete hidden process. The
transition between regimes is smoothly controlled by logistic functions. The
model parameters are estimated by the maximum likelihood method, solved
by a dedicated Expectation-Maximization (EM) algorithm. The proposed ap-
proach can also be regarded as a clustering approach which operates by find-
ing groups of time series having common changes in regime. The Bayesian
Information Criterion (BIC) is used to determine the numbers of clusters and



16 Allou Samé et al.

segments, as well as the regression order. The experimental results, both from
simulated time series and from a real-world application, show that the pro-
posed approach is an efficient means for clustering univariate time series with
changes in regime.
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A Convexity of the set Ekℓ

The set Ekℓ defined by:

Ekℓ =
{

t ∈ [t1; tm] / πkℓ(t;αk) = max
1≤h≤L

πkh(t;αk)
}

.

is a convex set of R. In fact, we have the following equalities:

Ekℓ =
{

t ∈ [t1; tm] / πkℓ(t;αk) = max
1≤h≤L

πkh(t;αk)
}

=
{

t ∈ [t1; tm] / πkh(t;αk) ≤ πkℓ(t;αk) for h = 1, . . . , L
}

=
⋂

1≤h≤L

{

t ∈ [t1; tm] / πkh(t;αk) ≤ πkℓ(t;αk)
}

=
⋂

1≤h≤L

{

t ∈ [t1; tm] / ln
πkh(t;αk)

πkℓ(t;αk)
≤ 0

}

From the definition of πkℓ(t;αk) (see equation 6), it can be easily verified that ln πkh(t;αk)
πkℓ(t;αk)

is a linear function of t. Consequently, Ekℓ is convex, as the intersection of convexes parts
of R.
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