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Abstract

Finite mixtures of skew distributions have emerged as an effective tool in modelling
heterogeneous data with asymmetric features. With various proposals appearing rapidly
in the recent years, which are similar but not identical, the connections between them
and their relative performance becomes rather unclear. This paper aims to provide a
concise overview of these developments by presenting a systematic classification of the
existing skew symmetric distributions into four types, thereby clarifying their close re-
lationships. This also aids in understanding the link between some of the proposed
expectation-maximization (EM) based algorithms for the computation of the maximum
likelihood estimates of the parameters of the models. The final part of this paper presents
an illustration of the performance of these mixture models in clustering a real dataset,
relative to other non-elliptically contoured clustering methods and associated algorithms
for their implementation.

1 Introduction

In recent years, non-normal distributions have received substantial interest in the statistics lit-
erature. The growing need for more flexible tools to analyze datasets that exhibit non-normal
features, including asymmetry, multimodality, and heavy tails, has led to intense develop-
ment in non-normal model-based methods. In particular, finite mixtures of skew distributions
have emerged as a promising alternative to the traditional Gaussian mixture modelling. They
have been successfully applied to numerous datasets from a wide range of fields, including
the medical sciences, bioinformatics, environmetrics, engineering, economics, and financial sci-
ences. Some recent applications of multivariate skew normal and skew t-mixture models include
Pyne et al. (2009), Soltyk and Gupta (2011), Contreras-Reyes and Arellano-Valle (2012), and
Riggi and Ingrassia (2013).

The rich literature and active discussion of skew distributions was initiated by the pioneering
work of Azzalini (1985), in which the univariate skew normal distribution was introduced. Fol-
lowing its generalization to the multivariate skew normal distribution in Azzalini and Dalla Valle
(1996), the number of contributions have grown rapidly. The concept of introducing additional
parameters to regulate skewness in a distribution was subsequently extended to other para-
metric families, yielding the skew elliptical family; for a comprehensive survey of skew distri-
butions, see, for example, the articles by Azzalini (2005), Arellano-Valle and Azzalini (2006),
Arellano-Valle et al. (2006), and also the book edited by Genton (2004).

Besides the skew normal distribution, which plays a central role in these developments,
the skew t-distribution has also received much attention. Being a natural extension of the t-
distribution, the skew t-distribution retains reasonable tractability and is more robust against
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outliers than the skew normal distribution. Finite mixtures of skew normal and skew t-
distributions have been studied by several authors, including Lin et al. (2007a,b), Pyne et al.
(2009), Basso et al. (2010), Frühwirth-Schnatter and Pyne (2010), Lin (2010), Cabral et al.
(2012), Vrbik and McNicholas (2012), Lee and McLachlan (2013), and Vrbik and McNicholas
(2013), among others. With the existence of so many proposals, with their various characteri-
zations of skew normal and skew t-distributions, it becomes rather unclear how these proposals
are related to each other, and to what extent can the subtle differences between them have in
practical applications.

This paper provides a concise overview of various recent developments of mixtures of skew
normal and skew t-distributions. An illustration is given of the performance of mixtures of
these distributions and some other skew mixture models in clustering a real dataset. We first
present a systematic classification of multivariate skew normal and skew t-distributions, with
special references to those used in various existing proposals of finite mixture models. We then
illustrate the relative performance of these models and other related algorithms by applications
to a real dataset.

Recently, Lee and McLachlan (2011) referred to the skew normal and skew t-distributions of
Pyne et al. (2009) as ‘restricted’ skew distributions, and the class of skew elliptical distributions
of Sahu et al. (2003) as having the ‘unrestricted’ form. While this terminology was later briefly
discussed in Lee and McLachlan (2013) when outlining the equivalence between the skew distri-
butions of Azzalini and Dalla Valle (1996), Pyne et al. (2009), and Basso et al. (2010), further
details were not given. This papers aims to fill this gap. We shall adopt the above terminology,
and expand this idea further to classify more general forms of skew distributions, namely, the
‘extended’ and ‘generalized’ forms.

The remainder of this paper is organized as follows. In Section 2, we present the classifica-
tion scheme for multivariate skew normal and skew t-distributions, clarifying the connections
between various variants. Next, we discuss the development of currently available algorithms
for fitting mixtures of multivariate skew normal and skew t-distributions in Section 3, point-
ing out the equivalence between some of these algorithms. Section 4 presents an application
to automated flow cytometric analysis, and comparisons are made with the results of other
model-based clustering methods. Finally, some concluding remarks are given in Section 5.

2 Classification of multivariate skew normal and skew

t-distributions

2.1 Multivariate skew normal distributions

Since the seminal article by Azzalini and Dalla Valle (1996) on the multivariate skew nor-
mal (MSN) distribution, numerous ‘extensions’ of the so-called skew normal distribution have
appeared in rapid succession. The number of contributions are now so many that it is be-
yond the scope of this paper to include them all here. However, most of these develop-
ments can be considered as special cases of the fundamental skew normal (FUSN) distribution
(Arellano-Valle and Genton, 2005), and can be systematically classified into four types, namely,
the restricted, unrestricted, extended, and generalized forms.

We begin by briefly discussing the FUSN distribution, since it encompasses the first three
forms of MSN distributions. The FUSN distribution itself is a generalized form of the MSN
distribution. It can be generated by conditioning a multivariate normal variable on another (uni-
variate or multivariate) random variable. Suppose Y 1 ∼ Np(0,Σ) and Y 0 is a q-dimensional
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Case Notation Restrictions on FUSN Examples

restricted rMSN q = 1, τ = 0, and

[

Y0

Y 1

]

∼ N1+p A-MSN, B-MSN, SNI-SN, P-MSN

unrestricted uMSN q = p, τ = 0, and

[

Y 0

Y 1

]

∼ N2p S-MSN, G-MSN

extended eMSN τ 6= 0, and

[

Y 0

Y 1

]

∼ Nq+p ESN, CSN, HSN, SUN

generalized gMSN Y 1 is normally distributed FUSN, GSN, FSN, SMSN

Table 1: Classification of multivariate skew normal distributions.

random vector. Adopting the notation as used in Azzalini and Dalla Valle (1996), we let
Y 1 | Y 0 > 0 be the vector Y 1 if all elements of Y 0 are positive and −Y 1 otherwise. Then
Y = µ + (Y 1 | Y 0 + τ > 0) has a FUSN distribution. It is important to note that Y 0 is
not necessarily normally distributed, but in the restricted, unrestricted, and extended cases, it
is restricted to be a random normal variate. The parameter τ ∈ R

q, known as the extension
parameter, can be viewed as a location shift for the latent variable Y 0. When the joint distri-
bution of Y 1 and Y 0 is multivariate normal, the FUSN distribution reduces to a location-scale
variant of the canonical FUSN (CFUSN) distribution, given by

Y = (Y 1 | Y 0 > 0), (1)

where
[

Y 0

Y 1

]

∼ Nq+p

([

τ

µ

]

,

[

Γ ∆T

∆ Σ

])

, (2)

where τ is a q-dimensional vector, µ is p-dimensional vector, Γ is a q× q scale matrix, ∆ is an
arbitrary p× q matrix, and Σ is a q × q scale matrix.

The restricted case corresponds to a highly specialized form of (2), where Y 0 is restricted
to be univariate (that is, q = 1), τ = 0, and Γ = 1. In the unrestricted case, both Y 0 and
Y 1 have a p-dimensional normal distribution (that is, q=p). Note that the use of “restricted”
here refers to restrictions on the random vector in the (conditioning-type) stochastic definition
of the skew distribution. It is not a restriction on the parameter space, and so a “restricted”
form of a skew distribution is not necessarily nested within its corrresponding “unrestricted”
form. Indeed, the restricted and unrestricted forms coincide in the univariate case.

The extended form has no restriction on the dimensions of Y 0, but τ can be a non-zero
vector. When Y 0 is not normally distributed, the density of Y has the generalized form. A
summary of some of the existing multivariate skew normal distributions is given in Tables 1
and 2, where rMSN , uMSN, eMSN, and gMSN refer to the restricted, unrestricted, extended,
and generalized version, respectively, of the multivariate skew normal distribution. The list is
not exhaustive, and the names appearing in the final columns are representative examples only.

2.1.1 Restricted multivariate skew normal distributions

The restricted case is one of the simplest multivariate forms of the FUSN distribution. The
latent variable Y0 is assumed to be a univariate random normal variable, and its correlation
with Y 1 is controlled by δ ∈ R

p. There exists two parallel forms of stochastic representation for
a MSN random variable, obtained via the conditioning and convolution mechanism (Azzalini,
2005). In general, the conditioning-type stochastic representation of a restricted MSN (rMSN)
distribution is given by

Y = µ+ (Y 1 | Y0 > 0), (3)
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Abbreviation Name References
rMSN
A-MSN Azzalini’s MSN Azzalini and Dalla Valle (1996)
B-MSN Branco’s MSN Branco and Dey (2001)
SNI-SN skew normal/independent MSN Lachos et al. (2010)
P-MSN Pyne’s MSN Pyne et al. (2009)
uMSN
S-MSN Sahu’s MSN Sahu et al. (2003)
G-MSN Gupta’s MSN Gupta et al. (2004)
eMSN
ESN Extended MSN Azzalini and Capitanio (1999)
CSN Closed MSN González-Farás et al. (2004)
HSN Hierarchical MSN Liseo and Loperfido (2003)
SUN Unified MSN Arellano-Valle and Azzalini (2006)

gMSN
FUSN Fundamental MSN Arellano-Valle and Genton (2005)
GSN Generalized MSN Genton and Loperfido (2005)
FSN Flexible MSN Ma and Genton (2004)
SMSN Shape mixture of MSN Arellano-Valle et al. (2008)

Table 2: Summary of the abbreviations of skew normal distributions used in Table 1.

where
[

Y0

Y 1

]

∼ N1+p

([

0
0

]

,

[

1 δT

δ Σ

])

. (4)

Alternatively, the rMSN distribution can be generated via the convolution approach, which
leads to a convolution-type stochastic representation, given by

Y = µ+ δ̃
∣

∣

∣
Ỹ0

∣

∣

∣
+ Ỹ 1, (5)

where Ỹ0 ∼ N1(0, 1) and Ỹ 1 ∼ Np(0, Σ̃) are independent, and where |Ỹ 0| denotes the vector
whose ith element is given by the absolute value of the ith element of Ỹ 0. Note that the
parameters in (5) are not identical to those in (3) and (4), but can be obtained from the latter
by taking δ̃ = δ and Σ̃ = Σ − δδT . The connection between the pairs (δ,Σ) and (δ̃, Σ̃),
are discussed in more detail in Azzalini and Capitanio (1999). The skew normal distribution
proposed by Azzalini and Dalla Valle (1996), Branco and Dey (2001), Lachos et al. (2010), and
Pyne et al. (2009) are identical after reparameterization, and can be formulated as the rMSN
distribution.

The first multivariate skew normal distribution (A-MSN)
The first formal definition of the univariate skew normal distribution dates back to Azzalini
(1985). However, its extension to the multivariate case did not appear until just over a decade
later. The widely accepted ‘original’ multivariate skew normal distribution was introduced by
Azzalini and Dalla Valle (1996). The density of this distribution, denoted by A-MSN(µ,Σ, δA)
(with some changes in notation) takes the form

f(y;µ,Σ, δA) = 2φp(y;µ,Σ)Φ1(δ
T
AR

−1D−1(y − µ); 0, 1− δT
AR

−1δA), (6)

where R = D−1ΣD−1 is the correlation matrix, D = diag(
√
Σ11, . . . ,

√
Σpp) is a diagonal

matrix formed by extracting the diagonal elements of Σ, and Σij denotes the ijth entry of Σ.
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We let φp(.;µ,Σ) be the p-dimensional normal density with mean µ and covariance matrix
Σ, and Φ1(.;µ, σ

2) is the (univariate) normal distribution function of a normal variable with
mean µ and variance σ2. To avoid ambiguity in the notation, we have appended a subscript
to some of the parameters used in different versions of the rMSN distributions throughout this
paper, for example, δA denotes the version of δ used in the A-MSN distribution. The density
(6) was obtained via the conditioning method (3), with Y = µ + D(Y 1 | Y0 > 0), where
Y0 and Y 1 are distributed according to (4). It corresponds to the rMSN distribution in (4)
with δ replaced by DδA. This characterization of the MSN distribution was adopted in the
work of Frühwirth-Schnatter and Pyne (2010) when formulating finite mixtures of skew normal
distributions, and parameter estimation was carried out using a Bayesian approach.

The skew normal distribution of Branco and Dey (B-MSN)
Branco and Dey (2001) generalized the original skew normal distribution to the class of (re-
stricted) skew elliptical distributions. In their parameterization, the termD used in the A-MSN
distribution was removed, resulting in an algebraically simpler form. However, under this vari-
ant parameterization, a change in scale will affect the skewness parameter. The reader is
referred to Arellano-Valle and Azzalini (2006) for a discussion on the effects of adopting this
parameterization. The skew normal member of this family, denoted by B-MSN, has density

f(y;µ, δ,Σ) = 2φp(y;µ,Σ)Φ1(δ
TΣ−1(y − µ); 0, 1− δTΣ−1δ). (7)

It follows that the conditioning-type stochastic representation for Y is given by
Y = µ+ (Y 1 | Y0 > 0), where

[

Y0

Y 1

]

∼ N1+p

([

0
0

]

,

[

1 δT

δ Σ

])

, (8)

and the corresponding convolution-type representation is

Y = µ+ δ
∣

∣

∣
Ỹ0

∣

∣

∣
+ Ỹ 1, (9)

where Ỹ0 ∼ N1(0, 1) and Ỹ 1 ∼ Np(0, Σ̃) are independent, and where Σ̃ = Σ − δδT . Note
that (8) and (9) are identical to (4) and (5) respectively. It can be observed that (7) is a
reparameterization of the A-MSN distribution. Replacing δ in (7) with DδA recovers (6).

The skew normal/independent skew normal distribution (SNI-SN)
The skew normal Independent (SNI) distributions are, in essence, scale mixtures of the skew nor-
mal distribution. Introduced by Branco and Dey (2001), and considered further in Lachos et al.
(2010), the family includes the multivariate skew normal distribution as the basic degenerate
case, the density of which is given by

f(y;µ, δS,Σ) = 2φp(y;µ,Σ)Φ1(δ
T
SΣ

−

1
2 (y − µ); 0, 1− δT

SδS), (10)

where Σ
1
2 is the square root matrix of Σ; that is, Σ

1
2Σ

1
2 = Σ. We shall adopt the notation

Y ∼ SNI-SNp(µ,Σ, δS) when Y has density (10). As with all restricted MSN distributions,
the SNI-SN distribution also enjoys two parallel stochastic representations. This density is very
similar to (6) and (7), and actually, is a reparameterization of them. The connection between
them can be easily observed by directly comparing their stochastic representations. The two
stochastic representations of the SNI-SN are given by

Y = µ+ (Y 1 | Y0 > 0), (11)
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and

Y = µ+Σ
1
2δS|Ỹ0|+Σ

1
2 (Ip − δSδ

T
S )

1
2 Ỹ 1, (12)

where

[

Y0

Y 1

]

∼ N1+p

(

[

0
0

]

,

[

1 δT
SΣ

1
2

Σ
1
2δS Σ

])

, (13)

and Ỹ0 ∼ N1(0, 1), Ỹ 1 ∼ Np(0, Ip) are independent. It can be observed that (10) becomes

identical to (7) by replacing δ in (10) with Σ
1
2δS. Cabral et al. (2012) described maximum

likelihood (ML) estimation for the SNI-SN distribution via the expectation-maximization (EM)
algorithm, and an extension to the mixture model was also studied.

The skew normal distribution of Pyne et al. (P-MSN)
In a study of automated flow cytometry analysis, Pyne et al. (2009) proposed yet another
parametrization of the restricted skew normal distribution. This variant, hereafter referred to as
the rMSN distribution (as used in Lee and McLachlan (2013)), was obtained as a ‘simplification’
of the unrestricted skew normal distribution described in Sahu et al. (2003) (see Section 2.1.2).
Its density is given by

f (y;µ,Σ, δ) = 2φp (y;µ,Σ)Φ1

(

δTΣ−1 (y − µ) ; 0, 1− δTΣ−1δ
)

. (14)

It follows that the conditioning-type stochastic representation of (14) is given by

Y = µ+ (Y 1 | Y0 > 0) , (15)

where
[

Y0

Y 1

]

∼ N1+p

([

0
0

]

,

[

1 δT

δ Σ

])

, (16)

and the corresponding convolution-type representation is given by

Y = µ+ δ|Ỹ0|+ Ỹ 1, (17)

where again Ỹ0 ∼ N1(0, 1) and Ỹ 1 ∼ Np(0, Σ̃) are independent, and where Σ̃ = Σ − δδT . It
can be observed that (14) is identical to (7). One advantage of this parameterization is that the
convolution-type representation is in a relatively simple form, and leads to a nice hierarchical
form which facilitates implementation of the EM algorithm for ML parameter estimation.

For ease of reference, we include a summary of the density and stochastic representation of
the above-mentioned restricted MSN distributions in Table 3 and 4, respectively.
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Distribution Density

A-MSN f (y) = 2φp (y;µ,Σ) Φ1

(

δT
AR

−1D−1 (y − µ) ; 0, 1− δT
AR

−1δA

)

(1996) D = diag(
√
Σ11, · · · ,

√

Σpp), R = D−1ΣD−1

B-MSN
f(y) = 2φp(y;µ,Σ)Φ1(δ

TΣ−1(y − µ); 0, 1− δTΣ−1δ)
(2001)

P-MSN
f(y) = 2φp(y;µ,Σ)Φ1(δ

TΣ−1(y − µ); 0, 1− δTΣ−1δ)
(2009)

SNI-SN
f(y) = 2φp(y;µ,Σ)Φ1

(

δT
SΣ

−

1
2 (y − µ) ; 0, 1− δT

SδS

)

(2010)

Table 3: Summary of the densities of selected restricted forms of multivariate skew normal
distributions.
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Distribution Conditioning-type representation Convolution-type representation

A-MSN Y = µ+D(Y 1 | Y0 > 0) Y = µ+DδA|Ỹ0|+ Ỹ 1

(1996)

[

Y0

Y 1

]

∼ N1+p

([

0
0

]

,

[

1 δT
A

δA R

])

Ỹ0 ∼ N1(0, 1)

Ỹ 1 ∼ Np(0,Σ−DδAδ
T
AD)

B-MSN Y = µ+ (Y 1 | Y0 > 0) Y = µ+ δ|Ỹ0|+ Ỹ 1

(2001)

[

Y0

Y 1

]

∼ N1+p

([

0
0

]

,

[

1 δT

δ Σ

])

Ỹ0 ∼ N1(0, 1)

Ỹ 1 ∼ Np(0,Σ− δδT )

P-MSN Y = µ+ (Y 1 | Y0 > 0) Y = µ+ δ|Ỹ0|+ Ỹ 1

(2009)

[

Y0

Y 1

]

∼ N1+p

([

0
0

]

,

[

1 δT

δ Σ

]) Ỹ0 ∼ N1(0, 1)

Ỹ 1 ∼ Np(0, Σ̃)

Σ̃ = Σ− δδT

SNI-SN Y = µ+ (Y 1 | Y0 > 0) Y = µ+Σ
1
2δS|Ỹ0|+Σ

1
2 (Ip − δSδ

T
S )

1
2 Ỹ 1

(2010)

[

Y0

Y 1

]

∼ N1+p

(

[

0
0

]

,

[

1 δT
SΣ

1
2

Σ
1
2δS Σ

])

Ỹ0 ∼ N1(0, 1)

Ỹ 1 ∼ Np(0, Ip)

Table 4: Summary of stochastic representations of selected restricted forms of multivariate skew normal distributions.
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2.1.2 Unrestricted multivariate skew normal distributions

The unrestricted case is very similar to the restricted case, except that the scalar latent variable
is replaced by a p-dimensional normal random vector Y 0. Accordingly, the constraint Y0 > 0
becomes a set of p constraints Y 0 > 0, which implies each element of Y 0 is positive. Similar
to (3) and (4), the unrestricted MSN (uMSN) distribution can be described by

Y = µ+ (Y 1 | Y 0 > 0), (18)

where
[

Y 0

Y 1

]

∼ N2p

([

0
0

]

,

[

Ip ∆T

∆ Σ

])

. (19)

Here, the skewness parameter ∆ is a p × p matrix. The convolution-type representation is
analogous to (5), and is given by

Y = µ+ ∆̃|Ỹ 0|+ Ỹ 1, (20)

where the random vectors Ỹ 0 ∼ Np(0, Ip) and Ỹ 1 ∼ Np(0, Σ̃) are independently distributed.
The relationship between the parameters in (19) and (20) is similar to that in (3)-(5). In this
case, they satisfy ∆̃ = ∆ and Σ̃ = Σ−∆∆T . The skew normal version of Sahu et al. (2003)
is an unrestricted form of the MSN distribution, with ∆ restricted to be a diagonal matrix.

The skew normal distribution of Sahu et al. (S-MSN)
In Sahu et al. (2003), skewness is introduced to a class of elliptically symmetric distributions by
conditioning on a multivariate variable, which produces a class of (unrestricted) skew elliptical
distribution. The multivariate skew normal distribution proposed by Sahu et al. (2003), which
is a member of this family, is given by

f (y;µ,Σ, δ) = 2pφp (y;µ,Σ)Φp

(

∆Σ−1 (y − µ) ; 0,Λ
)

, (21)

where ∆ = diag (δ) and Λ = Ip − ∆Σ−1∆. Observe that with this characterization of the
MSN distribution, the density involves the multivariate normal distribution function, whereas
the restricted forms is defined in terms of the univariate distribution instead. Accordingly, the
conditioning-type stochastic representation of (21) is given by Y = µ+ (Y 1 | Y 0 > 0), where

[

Y 0

Y 1

]

∼ N2p

([

0
0

]

,

[

Ip ∆
∆ Σ

])

, (22)

and the convolution-type representation is given by

Y = µ+∆|Ỹ 0|+ Ỹ 1, (23)

where Ỹ 0 and Ỹ 1 are independent variables distributed as Ỹ 0 ∼ Np(0, Ip) and Ỹ 1 ∼ Np(0, Σ̃),
respectively, and where Σ̃ = Σ−∆2. ML estimation for the uMSN distribution, and its mix-
ture case, is studied in Lin (2009).

2.1.3 Extended multivariate skew normal distributions

We consider now the extended skew normal (ESN) distribution, which originates from a selective
sampling problem, where the variable of interest is affected by a latent variable that is truncated
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at an arbitrary threshold. It can be obtained via conditioning by setting Y = µ+(Y 1 | Y0+τ >
0), where Y 1 and Y0 are distributed according to (4), which leads to the density

f(y;µ,Σ, τ) = φp(y;µ,Σ)
Φ1

(

τ + δTΣ−1(y − u); 0, 1− δTΣ−1δ
)

Φ1(τ ; 0, 1)
. (24)

This expression for an ESN distribution is due to Arnold et al. (1993), and the threshold τ is
known as an extension parameter. With this additional parameter, the normalizing constant
is no longer a simple fixed value (such as 2 in the restricted case and 2p in the unrestricted
case), but a scalar value that depends on the extension parameter. Although the ESN is
more complicated than the restricted and unrestricted skew normal distributions, it has nice
properties not shared by these ‘no-extension’ cases, including closure under conditioning.

The ESN distribution represents one of the simplest cases of the extended form. Replac-
ing the latent variable Y0 with a q-dimensional version Y 0 leads to the unified skew normal
(SUN) distribution (Arellano-Valle and Azzalini, 2006). The SUN distribution is an attempt
to unify all of the aforementioned skew normal distributions. Its conditioning-type stochastic
representation is given by (1) and (2). It follows that the SUN density is given by

f(y;µ,Σ,Γ,∆, τ ) = φp(y;µ,Σ)
Φq

(

τ +∆TΣ−1(y − µ); 0,Γ−∆TΣ−1∆
)

Φq(τ ; 0,Γ)
. (25)

Its construction can also be achieved via the convolution approach, where the q-dimensional
latent variable Y 0 follows a truncated normal distribution with mean τ . More specifically, let
Ỹ 1 ∼ Np(0,Σ) and Ỹ 0 ∼ TNq(τ ,Γ) be independent variables, where TNq(τ ,Γ) denotes a
multivariate normal variable with mean vector τ and covariance Γ truncated to the positive
hyperplane. Then Y = µ+∆Ỹ 0 + Ỹ 1 has an extended MSN density. Note that in this case,
the skewness parameter is a p × q matrix instead of the p-dimensional vector δ used in the
restricted and unrestricted forms of the MSN distribution.

It is not difficult to show that the SUN distribution includes the restricted MSN distribu-
tions, the unrestricted MSN distributions, and the ESN distribution as special cases. There
are also various versions of MSN distributions which turns out to be equivalent to the SUN
distribution, including the hierarchical skew normal (HSN) of Liseo and Loperfido (2003), the
closed skew normal (CSN) of González-Farás et al. (2004), the skew normal of Gupta et al.
(2004) and a location-scale variant of the canonical fundamental skew normal (CFUSN) distri-
bution (Arellano-Valle and Genton, 2005). For a detail discussion on the equivalence between
these extended forms of MSN distributions, the reader is referred to Arellano-Valle and Azzalini
(2006).

2.1.4 Generalized multivariate skew normal distributions

A further generalization of the extended form of the MSN distribution is to relax the distribu-
tional assumption of the latent variable Y 0. For the ‘generalized form’ of the MSN distribution,
there are no other restrictions on the MSN density except that the symmetric part must be
a multivariate normal density, that is, Y 1 is normally distributed. This form is very general
and apparently includes the other three forms discussed above. A prominent example is the
fundamental skew normal distribution (FUSN), a member of the class of fundamental skew
distributions considered by Arellano-Valle and Genton (2005). Its density is given by

f(y;µ,Σ, Qq) = K−1
q φp(y;µ,Σ)Qq(y), (26)

10



Case Restrictions on FUST Examples

restricted q = 1, τ = 0 and

[

Y0

Y 1

]

∼ t1+p B-MST, A-MST, G-MST, P-MST, SNI-ST

unrestricted q = p,

[

Y 0

Y 1

]

∼ t2p S-MST

extended

[

Y 0

Y 1

]

∼ tq+p EST, CST, CFUST, SUT

generalized Y 1 is t-distributed FST, GST

Table 5: Classification of MST distributions.

where Kq = E {Qq(Y )} is a normalizing constant and Qq(y) is a skewing function. Notice
that the skewing function here is not restricted to the normal family. As mentioned previously,
the FUSN density can be obtained by defining Y = (Y 1 | Y 0 > 0), where Y 1 follows the
p-dimensional normal distribution with location parameter µ and scale matrix Σ and Y 0 is
a q × 1 random vector. Under this definition, Kq and Qq(y) is given by P (Y 0 > 0) and
P (Y 0 > 0 | Y 1), respectively.

An interesting special case of (26) is the location-scale variant of the so-called canonical

fundamental skew normal (CFUSN) distribution, obtained by taking Y 0 ∼ Nq(0, Iq) and
cov(Y 1,Y 0) = ∆. In this case, we have Y 0 | Y 1 ∼ Nq(∆

TΣ−1(y − µ),Λ), where Λ =
Iq −∆TΣ−1∆. This leads to the density

f(y;µ,Σ,∆) = 2qφp(y;µ,Σ)Φq(∆
TΣ−1(y − µ); 0,Λ). (27)

We shall write Y ∼ CFUSNp,q(µ,Σ,∆). It should be noted that by taking q = p and
∆ = diag(δ), (27) reduces to the unrestricted skew normal density introduced by Sahu et al.
(2003). Also, the CFUSN density reduces to the restricted B-MSN distribution (7) when q = 1
and ∆ = δ.

2.2 Multivariate skew t-distributions

The multivariate skew t-distribution is an important member of the family of skew-elliptical
distributions. Like the skew normal distributions, there exists various different versions of the
MST distribution, which can be naively classified into four broad forms. The MST distribution
is of special interest because it offers greater flexibility than the normal distribution by combin-
ing both skewness and kurtosis in its formulation, while retaining a fair degree of tractability
in an algebraic sense. This additional flexibility is much needed in some practical applications,
as will be demonstrated in the example in Section 4.

In the past two decades, many variants of the multivariate skew t-distribution have been
proposed. Some notable proposals include the skew t-member of Branco and Dey (2001)’s
skew elliptical class, the skew t-distribution of Azzalini and Capitanio (2003), the skew t-
distribution of Gupta (2003), the skew t-distribution of Sahu et al. (2003)’s skew elliptical
class, the skew normal/independent skew t (SNI-ST) distribution of Lachos et al. (2010), the
closed skew t (CST) distribution of Iversen (2010), and the extended skew t (EST) distribu-
tion of Arellano-Valle and Genton (2010). Many of these can be considered as special cases of
the fundamental skew t (FUST) distribution introduced by Arellano-Valle and Genton (2005).
They may be classified as ‘restricted’, ‘unrestricted’, ‘extended’, and ‘generalized’ subclasses of
the FUST distribution (see Table 5).
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Abbreviation Name References
rMST
B-MST Branco’s MST Branco and Dey (2001)
A-MST Azzalini’s MST Azzalini and Capitanio (2003)
G-MST Gupta’s MST Gupta (2003)
P-MST Pyne’s MST Pyne et al. (2009)
SNI-ST skew normal/independent MST Lachos et al. (2010)
uMST
S-MST Sahu’s MST Sahu et al. (2003)
eMST
EST Extended MST Arellano-Valle and Genton (2010)
CST Closed MST Iversen (2010)
SUT Unified MST Arellano-Valle and Azzalini (2006)

gMST
FUST Fundamental MST Arellano-Valle and Genton (2005)
GST Generalized MST Genton and Loperfido (2005)
FST Flexible MST Ma and Genton (2004)

Table 6: Summary of the abbreviations of skew t-distributions used in Table 5.

2.2.1 Restricted multivariate skew t-distributions

The restricted skew t-distribution is obtained by conditioning on a univariate latent variable
Y0 being positive. The correlation between Y 1 and Y0 is described by the vector δ. Like the
MSN distributions, the MST distributions can be obtained via a conditioning and convolution
mechanism. In general, the restricted MST distribution has a conditioning-type stochastic
representation given by:

Y = µ+ (Y 1 | Y0 > 0), (28)

where
[

Y0

Y 1

]

∼ t1+p

([

0
0

]

,

[

1 δT

δ Σ

]

, ν

)

. (29)

The equivalent convolution-type representation is given by

Y = µ+ δ̃|Ỹ0|+ Ỹ 1, (30)

where the two random variables Ỹ0 and Ỹ 1 have a joint multivariate central t-distribution with

scale matrix

[

1 0

0 Σ̃

]

and ν degrees of freedom. The link between the pairs of parameters

(δ,Σ) and (δ̃, Σ̃) is the same as that for the rMSN distribution. The skew-t distribution of
Branco and Dey (2001), Azzalini and Capitanio (2003), Gupta (2003), the SNI-ST, and the
skew t-version given by Pyne et al. (2009) are equivalent to (28) up to a reparametrization.
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Name Density

B-MST f(y) = 2tp(y;µ,Σ, ν)T1(δ
TΣ−1(y − µ)

√

ν+p

ν+d(y)
; 0, 1− δTΣ−1δ, ν + p)

(2001) d(y) = (y − µ)TΣ−1(y − µ)

f (y) = 2tp (y;µ,Σ, ν) T1

(

δT
AR

−1D−1 (y − µ)
√

ν+p

ν+d(y)
; 0, 1− δT

AR
−1δA, ν + p

)

A-MST D = diag(
√
Σ11, · · · ,

√

Σpp),
(2003) R = D−1ΣD−1

d(y) = (y − µ)TΣ−1(y − µ)

G-MST f(y) = 2tp(y;µ,Σ, ν)T1(δ
T
G(y − µ)

√

ν+p

ν+d(y)
; 0, 1− δT

GΣδG, ν + p)

(2003) d(y) = (y − µ)TΣ−1(y − µ)

P-MST f(y) = 2tp(y;µ,Σ, ν)T1

(

δTΣ−1 (y − µ)
√

ν+p

ν+d(y)
; 0, 1− δTΣ−1δ, ν + p

)

(2009) d(y) = (y − µ)TΣ−1(y − µ)

SNI-ST f(y) = 2tp(y;µ,Σ, ν)T1

(

δT
SΣ

−

1
2 (y − µ)

√

ν+p

ν+d(y)
; 0, 1− δT

SδS, ν + p
)

(2010) d(y) = (y − µ)TΣ−1(y − µ)

Table 7: Densities of selected restricted forms of multivariate skew t-distributions.
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Distribution Conditioning-type representation Convolution-type representation

B-MST Y = µ+ (Y 1 | Y0 > 0) Y = µ+ δ|Ỹ0|+ Ỹ 1

(2001)

[

Y0

Y 1

]

∼ t1+p

([

0
0

]

,

[

1 δT

δ Σ

]

, ν

) [

Ỹ0

Ỹ 1

]

∼ t1+p

([

0
0

]

,

[

1 0
0 Σ− δδT

]

, ν

)

A-MST Y = µ+D(Y 1 | Y0 > 0) Y = µ+DδA|Ỹ0|+ Ỹ 1

(2003)

[

Y0

Y 1

]

∼ t1+p

([

0
0

]

,

[

1 δT
A

δA R

]

, ν

) [

Ỹ0

Ỹ 1

]

∼ t1+p

([

0
0

]

,

[

1 0

0 Σ−D∆Aδ
T
AD

]

, ν

)

G-MST Y = µ+ (Y 1 | Y0 > 0) Y = µ+ΣδG|Ỹ0|+ Ỹ 1

(2003)

[

Y0

Y 1

]

∼ t1+p

([

0
0

]

,

[

1 δT
GΣ

ΣδG Σ

]

, ν

) [

Ỹ0

Ỹ 1

]

∼ t1+p

([

0
0

]

,

[

1 0

0 Σ−ΣδGδ
T
GΣ

]

, ν

)

P-MST Y = µ+ (Y 1 | Y0 > 0) Y = µ+ δ|Ỹ0|+ Ỹ 1

(2009)

[

Y0

Y 1

]

∼ t1+p

([

0
0

]

,

[

1 δT

δ Σ

]

, ν

)

[

Ỹ0

Ỹ 1

]

∼ t1+p

([

0
0

]

,

[

1 0

0 Σ̃

]

, ν

)

Σ̃ = Σ− δδT

SNI-ST Y = µ+ (Y 1 | Y0 > 0) Y = µ+Σ
1
2δS|Ỹ0|+Σ

1
2 (Ip − δSδ

T
S )

1
2 Ỹ 1

(2010)

[

Y0

Y 1

]

∼ t1+p

(

[

0
0

]

,

[

1 δT
SΣ

1
2

Σ
1
2δS Σ

]

, ν

)

[

Ỹ0

Ỹ 1

]

∼ t1+p

([

0
0

]

,

[

1 0
0 Ip

]

, ν

)

Table 8: Stochastic representations of selected restricted forms of multivariate skew t-distributions.
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The skew t-distribution of Branco and Dey (B-MST)
The skew elliptical class of Branco and Dey (2001) includes a skew t-distribution, which is a
special case of a scale mixture of the B-MSN distribution. Its density is given by

f(y) = 2tp(y;µ,Σ, ν)

T1

(

δTΣ−1(y − µ)

√

ν + p

ν + d(y)
; 0, 1− δTΣ−1δ, ν + p

)

, (31)

where d(y) = (y−µ)TΣ−1(y−µ) is the squared Mahalanobis distance between y and µ with
respect to Σ. Here, we let tp(.;µ,Σ, ν) denote the p-dimensional t-density with location vector
µ, scale matrix Σ, and degrees of freedom ν, and T1(.;µ, σ

2, ν) denote the distribution function
of the (univariate) t-distribution with mean µ, variance σ2 and degrees of freedom ν. It can
be observed from representation (31) that the multivariate skew t-distribution converges to the
B-MSN density (7) when the degrees of freedom ν approaches infinity.

It follows that Y has a conditioning-type representation given by Y = µ + (Y 1 | Y0 > 0),
where

[

Y0

Y 1

]

∼ t1+p

([

0
0

]

,

[

1 δT

δ Σ

]

, ν

)

, (32)

and a corresponding convolution-type representation given by

Y = µ+ δ
∣

∣

∣
Ỹ0

∣

∣

∣
+ Ỹ 1, (33)

where
[

Ỹ0

Ỹ 1

]

∼ t1+p

([

0
0

]

,

[

1 0
0 Σ− δδT

]

, ν

)

.

It can be seen that (32) is identical to (29).

The skew t-distribution of Azzalini and Capitanio (A-MST)
Azzalini and Capitanio (2003) extended the A-MSN distribution of Azzalini and Dalla Valle
(1996) to the skew t-case. Its density is given by

f (y) = 2tp (y;µ,Σ, ν)

T1

(

δT
AR

−1D−1 (y − µ)

√

ν + p

ν + d(y)
; 0, 1− δT

AR
−1δA, ν + p

)

,

(34)

where d(y) = (y − µ)TΣ−1(y − µ), R = D−1ΣD−1 is the correlation matrix, and D is
the diagonal matrix created by extracting the diagonal elements of Σ. Note again that
the parameter δ in (34) is marked with a subscript A to indicate that it is different to
the definition used in (31) and other rMST distributions. The A-MST density (34) can
be obtained by a conditioning mechanism, similar to the A-MSN distribution, by setting
Y = µ+D(Y 1 | Y0 > 0), where

[

Y0

Y 1

]

∼ t1+p

([

0
0

]

,

[

1 δT
A

δA R

]

, ν

)

. (35)
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A parallel representation of (34) via the convolution mechanism is given by

Y = µ+DδA

∣

∣

∣
Ỹ0

∣

∣

∣
+ Ỹ 1, (36)

where
[

Ỹ0

Ỹ 1

]

∼ t1+p

([

0
0

]

,

[

1 0
0 Σ−DδAδ

T
AD

]

, ν

)

.

In this parameterization, the scale matrix Σ is partitioned into DRD, making the skew-
ness parameter invariant to a change of scale. Setting δ in (31) to DδA leads to the B-
MST distribution (34). This characterization of the rMST distribution was considered by
Frühwirth-Schnatter and Pyne (2010) to define a skew t-mixture model, and an algorithm for
parameter estimation was formulated using a Bayesian framework.

The skew t-distribution of Gupta (G-MST)
In Gupta (2003), another version of the restricted skew t-distribution is defined, starting from
the A-MSN distribution of Azzalini and Dalla Valle (1996). In this parameterization, the scale
matrix Σ is not factored into the productDRD, and the parameter δA is replaced byD−1ΣδG,
leading to a density in a slightly simpler algebraic form, given by

f(y) = 2tp(y;µ,Σ, ν)T1

(

δT
G(y − µ)

√

ν + p

ν + d(y)
; 0, 1− δT

GΣδG, ν + p

)

, (37)

where, as before, d(y) = (y −µ)TΣ−1(y −µ). Note that (37) is identical to (31) if we rewrite
δ in (31) as ΣδG. It follows that the stochastic representation of the G-MST distribution (37)
can be expressed as

Y = µ+ (Y 1 | Y0 > 0) , (38)

where
[

Y0

Y 1

]

∼ t1+p

([

0
0

]

,

[

1 δT
GΣ

ΣδG Σ

]

, ν

)

. (39)

The skew normal/independent skew t-distribution (SNI-ST)
The skew t member of the SNI class, denoted by SNI-ST, is introduced as a scale mixture of
SNI-SN distributions with gamma scale factor (Lachos et al., 2010). Its density is given by

f(y) = 2tp(y;µ,Σ, ν)

T1

(

δT
SΣ

−

1
2 (y − µ)

√

ν + p

ν + d(y)
; 0, 1− δT

SδS, ν + p

)

, (40)

where d(y) = (y−µ)TΣ−1(y−µ), and Σ
1
2 is the square root matrix of Σ; that is, Σ

1
2Σ

1
2 = Σ.

The SNI-ST distribution (40) can be generated by taking Y = µ+ (Y 1 | Y0 > 0), where

[

Y0

Y 1

]

∼ t1+p

(

[

0
0

]

,

[

1 δT
SΣ

1
2

Σ
1
2δS Σ

]

, ν

)

, (41)
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and the corresponding convolution-type representation is given by

Y = µ+Σ
1
2δS|Ỹ0|+Σ

1
2 (Ip − δSδ

T
S )

1
2 Ỹ 1, (42)

where Ỹ0 and Ỹ 1 are jointly distributed as

[

Ỹ0

Ỹ 1

]

∼ t1+p

([

0
0

]

,

[

1 0
0 Ip

]

, ν

)

It can observed that (40) is equivalent to (31) by replacing δ in (31) with Σ
1
2δS. Basso et al.

(2010) and Cabral et al. (2012) studied, respectively, finite mixtures of univariate and multi-
variate SNI-ST distributions, and derived an ECME algorithm for computing the ML estimates
of the model parameters.

The skew t-distribution of Pyne et al. (P-MST)
In Pyne et al. (2009), a restricted variant of Sahu et al. (2003)’s skew t-distribution was intro-
duced, and its density is given by

f(y) = 2tp(y;µ,Σ, ν)

T1

(

δTΣ−1 (y − µ)

√

ν + p

ν + d(y)
; 0, 1− δTΣ−1δ, ν + p

)

, (43)

where d(y) = (y − µ)TΣ−1(y − µ). We shall refer to the density (43) as the rMST dis-
tribution. This distribution has straightforward conditioning and convolution-type stochastic
representations, given by

Y = µ+ (Y 1 | Y0 > 0) ,

and
Y = µ+ δ|Ỹ0|+ Ỹ 1,

respectively, where

[

Y0

Y 1

]

∼ t1+p

([

0
0

]

,

[

1 δT

δ Σ

]

, ν

)

, (44)

and
[

Ỹ0

Ỹ 1

]

∼ t1+p

([

0
0

]

,

[

1 0

0 Σ̃

]

, ν

)

,

and where Σ̃ = Σ − δδT . It can be observed that the restricted MST (43) is identical to
(28). Mixtures of rMST distributions was first studied by Pyne et al. (2009), and a closed-form
implementation of the EM algorithm was outlined. Vrbik and McNicholas (2012) subsequently
provided an alternative exact implementation.

A summary of the correspondence between the parameters used in various versions of the
restricted MST distribution is given in Table 9. Their densities and stochastic representations
are listed in Tables 7 and 8.
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rMST δ Σ
B-MST δ Σ
A-MST DδA Σ
G-MST ΣδG Σ
P-MST δ Σ

SI-ST Σ
1
2δS Σ

Table 9: Correspondence between the parametrization of the restricted forms of MST distribu-
tions.

2.2.2 Unrestricted multivariate skew t-distributions

In the unrestricted case, the latent variable Y 0 is a p-dimensional random vector following a
t-distribution. Under this setting, Y is given in terms of the conditional distribution of Y 1

given Y 0 is positive. The condition Y 0 > 0 implies that each element of Y 0 is greater than
zero. Similar to (28), the unrestricted MST distribution takes the form

Y = µ+ (Y 1 | Y 0 > 0) , (45)

where
[

Y 0

Y 1

]

∼ t2p

([

0
0

]

,

[

Ip ∆
∆ Σ

]

, ν

)

. (46)

The analogous convolution-type representation is given by

Y = µ+∆|Ỹ 0|+ Ỹ 1, (47)

where the two random vectors Ỹ 0 and Ỹ 1 are jointly distributed as

[

Ỹ0

Ỹ 1

]

∼ t2p

([

0
0

]

,

[

Ip 0

0 Σ̃

]

, ν

)

,

and where Σ̃ = Σ−∆2.

This form of the MST distribution is studied in detail in Sahu et al. (2003), and its density
is given by

f(y) = 2p tp(y;µ,Σ, ν) Tp

(

∆Σ−1(y − µ)

√

ν + p

ν + d(y)
; 0,Λ, ν + p

)

, (48)

where ∆ = diag (δ), Λ = Ip − ∆Σ−1∆, and d(y) = (y − µ)TΣ−1(y − µ). ML estima-
tion for the unrestricted characterization of the MST distribution is a difficult computational
problem. Lin (2010) used a Monte Carlo (MC) E-step when implementing the EM algorithm.
Later, Lee and McLachlan (2011), Ho et al. (2012), and Lee and McLachlan (2013) proposed
an improved implementation using a truncated moments approach.

It is important to point out that, although the rMST distribution (43) was originally ob-
tained as a restricted variant of the uMST distribution (48), and both can be constructed by
the conditioning and convolution approach, where (48) uses a p-dimensional latent variable
instead of a scalar latent variable used in (43), the density (48) does not incorporate (43). The
two densities are equivalent only in the univariate case.
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2.2.3 Extended multivariate skew t-distributions

There are parallel versions of the ESN and the SUN distributions for the skew t-distribution,
known as the extended skew t (EST) distribution (Arellano-Valle and Genton, 2010) and the
unified skew t (SUT) distribution (Arellano-Valle and Azzalini, 2006), respectively. Their links
are analogous to those for the skew normal distributions in Section 2.1.3.

2.2.4 Generalized multivariate skew t-distributions

Similar to the generalized forms of the MSN distribution, analogous extensions to the skew t
case can be constructed. They include the FUST distribution and other subclasses of it, as
well as the generalized form of the t-distribution put forward by Arellano-Valle et al. (2006),
known as the selection t-distribution.

3 Mixtures of multivariate skew normal and skew

t-distributions

In a mixture model context, the underlying population can be conceptualized as being composed
of a finite number of subpopulations. Let Y = Y 1, . . . ,Y n denote a random sample of n
observations. Then the probability density function (pdf) of the g component finite mixture
model takes the form

f(y;Ψ) =

g
∑

h=1

πhf(y; θh), (49)

where f(y; θh) is the density of the hth population, and πh its corresponding weight. The mixing
proportions πh satisfies πh ≥ 0 (h = 1, . . . , h), and

∑g

h=1 πh = 1. The vector θh consists of the
unknown parameters in the postulated form of the hth component of the mixture model, and
Ψ = (π1, . . . , πg−1, θq, . . . , θg)

T denotes the vector containing all unknown parameters.
Computation of the ML estimates of the model parameters is typically achieved through the

EM algorithm. Under the EM framework, the observed data vector is regarded as incomplete,
and latent component labels (and possibly other latent variables as needed) are introduced. The
unobservable component labels zhj are defined as binary indicator variables, where zhj takes the
value of one when observation yj belongs to the hth component, and is zero otherwise. The E-
step computes the so-calledQ-function, which is the conditional expectation of the log likelihood
function given the observed data, using the current fit for Ψ. In the M-step, parameters are
updated by maximizing the Q-function obtained from the E-step. The algorithm then proceeds
by alternating the E- and M-steps until its likelihood increases by an arbitrary small amount
in the case of convergence of the sequence of likelihood values.

3.1 Finite mixtures of multivariate skew normal distributions

With reference to (14), the density of a g-component finite mixture of restricted multivariate
skew normal (FM-rMSN) distributions is given by

f(y;Ψ) =

g
∑

h=1

πhf(y;µh,Σh, δh), (50)
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Model Algorithm References
rMSN

FM-rMSN traditional EM Pyne et al. (2009)
FM-SNI-SN traditional EM Cabral et al. (2012)
FM-A-MSN Bayesian EM Frühwirth-Schnatter and Pyne (2010)
uMSN

FM-uMSN traditional EM Lin (2009)

Table 10: EM algorithms for fitting restricted and unrestricted forms of multivariate skew
normal mixture models.

where f(y;µh,Σh, δh) refers to the rMSN density (14). At the (k + 1)th iteration, the E-step
requires the computation of the conditional expectations

e
(k)
1,hj = E

Ψ
(k)

{

Uj | yj, zhj = 1
}

, (51)

e
(k)
2,hj = E

Ψ
(k)

{

U2
j | yj , zhj = 1

}

, (52)

where Uj | zhj = 1 ∼ HN(0, 1). Simple closed-form expressions for the E- and M-steps of the
EM algorithm for fitting mixtures of restricted forms of MSN distributions can be obtained.
Pyne et al. (2009), Cabral et al. (2012), and Frühwirth-Schnatter and Pyne (2010) studied, re-
spectively, finite mixtures of the rMSN, SNI-SN, and A-MSN distributions, the latter from
a Bayesian perspective (see Table 10). The closed-form EM implementations for FM-rMSN
and FM-SNI-SN are available publicly from the R packages EMMIX-skew (Wang et al., 2009a)
and mixsmsn (Prates et al., 2011). On closer examination of the EM algorithm provided by
Pyne et al. (2009) and Cabral et al. (2012), it is not difficult to show that their expressions
for the E- and M-steps are identical, after an appropriate change in the parameterization as
described in Section 2.1.1

For the unrestricted case, Lin (2009) provided an implementation of the EM algorithm
for fitting the FM-uMSN model. The conditional expectations required at the E-step are
equivalent to (51) and (52), except the latent variable Uj is replaced by a multivariate equivalent.
Closed-form expressions were also achieved for the FM-uMSN model. This, however, inevitably
results in higher computational cost. Whereas (51) and (52) can be written in terms of the
(univariate) normal distribution function for the restricted case, the unrestricted case requires
the computation of the multivariate equivalent.

3.2 Finite mixtures of multivariate skew t-distributions

The density of a finite mixture of restricted multivariate skew t (FM-rMST) distributions is
given by

f(y;Ψ) =

g
∑

h=1

πhf(y;µh,Σh, δh, νh), (53)

where f(y;µh,Σh, δh, νh) refers to the rMST density (43). The necessary conditional expecta-
tions required on the E-step at the (k + 1)th iteration are

e
(k)
1,hj = E

Ψ
(k)

{

log(Wj) | yj, zhj = 1
}

, (54)

e
(k)
2,hj = E

Ψ
(k)

{

Wj | yj, zhj = 1
}

, (55)

e
(k)
3,hj = E

Ψ
(k)

{

WjUj | yj , zhj = 1
}

, (56)

e
(k)
4,hj = E

Ψ
(k)

{

WjU
2
j | yj, zhj = 1

}

, (57)
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Model Algorithm References
rMST

FM-rMST EM with OSL Pyne et al. (2009)
FM-rMST traditional EM Vrbik and McNicholas (2012)
FM-SNI-ST ECME Cabral et al. (2012)
FM-A-MST Bayesian EM Frühwirth-Schnatter and Pyne (2010)
uMST

FM-uMST MCEM Lin (2009)
FM-uMST EM with OSL Lee and McLachlan (2011)
FM-uMST ECME Lee and McLachlan (2013)

Table 11: EM algorithms for fitting restricted and unrestricted forms of multivariate skew
t-mixture models.

where Uj | wj, zhj = 1 ∼ HN(0, 1) and Wj | zhj = 1 ∼ gamma(νh/2, νh/2). Simple closed-
form expressions for the E- and M-steps of the EM algorithm for fitting mixtures of restricted
forms of MST distributions can be obtained. Pyne et al. (2009) (c.f. Wang et al. (2009b)),
Frühwirth-Schnatter and Pyne (2010), Cabral et al. (2012), and Vrbik and McNicholas (2012)
studied, respectively, finite mixtures of the rMST, A-MST, SNI-ST, and rMST distributions
(see Table 11).

In Lee and McLachlan (2013), it is pointed out that the EM algorithms for fitting the FM-
rMSN distribution (in particular, the expressions for (55)-(57)) obtained by Pyne et al. (2009)
and Vrbik and McNicholas (2012) are equivalent. More specifically, the former uses expressions
for the moments of a (univariate) truncated t-distribution to solve (56) and (57), and the latter
expresses them in terms of hypergeometric functions. As in the case of the FM-rMSN and
FM-SNI-SN distributions, the expressions (55)-(57) for the FM-SNI-ST model are identical
to that for the FM-rMST model. The only difference between the two algorithm lies in the
estimation of the degrees of freedom, where Pyne et al. (2009) and Wang et al. (2009b) use a
one-step-late (OSL) approach to compute the conditional expectation (54), while Cabral et al.
(2012) employ an ECME algorithm. However, it should be noted that the ECME algorithm
presented in Cabral et al. (2012) assumes the degrees of freedom to be the same across all
components, whereas such a restriction was not imposed when applying the algorithm provided
by Pyne et al. (2009). Again, the implementations of the EM algorithm for fitting the FM-
rMST and FM-SNI-ST models are available from the R packages EMMIX-skew and mixsmsn,
respectively.

In the case of the FM-uMST model, Lin (2010) and Lee and McLachlan (2011) have put
forward two versions of an EM algorithm for fitting mixtures of unrestricted MST distributions.
The former implemented a Monte Carlo (MC) E-step for calculating the conditional expecta-
tions similar to (54)-(57), but for the unrestricted case. The latter employed the OSL approach
to calculate (54), and expressed (56) and (57) in terms of moments of the multivariate truncated
t-distribution. Lee and McLachlan (2013) have demonstrated that the second approach leads
to significant reduction in computation time and improvement in accuracy. They have also
sketched an exact implementation of the EM algorithm for the FM-uMST model, which results
in an ECME implementation similar to the algorithm provided by Cabral et al. (2012) for the
restricted model. However, even with the closed-form implementation, computation of ML es-
timates of the parameters for the FM-uMST model can be slow when the dimension of the data
p is large, due to the computationally intensive procedure involved in evaluating the moments
of a multivariate truncated t-variable. In view of this, Lin et al. (2013) recently proposed a
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(restricted) multivariate skew t-normal distribution, where the (univariate) t-distribution func-
tion in (34) is replaced by a (univariate) normal distribution function. With this formulation,
the computation time is reduced considerably, where the most computationally intensive part
of the E-step involves only evaluations of the first two moments of a (univariate) truncated
normal variable.

4 Clustering DLBCL samples

To demonstrate the performance of the multivariate skew mixture models discussed in Section
3, we consider the clustering of a trivariate Diffuse Large B-cell Lymphoma (DLBCL) dataset
provided by the British Columbia Cancer Agency. The data contain over 3000 cells derived
from the lymph nodes of patients diagnosed with DLBCL. Each sample was stained with three
markers, namely, CD3, CD5, and CD19. The task is to cluster the cells into three groups.
Hence, we fit a three-component FM-uMST model to the data. For comparison, we include the
results of the FM-rMSTmodel and two non-elliptically contoured mixture models, namely, finite
mixture of multivariate normal-inverse-Gaussian (FM-MNIG) distributions and finite mixture
of multivariate shifted asymmetric Laplace (FM-MSAL) distributions.

The MNIG distribution is a flexible parametric family with four parameters (Karlis and Santourian,
2009). Like the skew t-distribution, the MNIG distribution can accommodate skewness and
heavy tails in the data. Computation of the ML estimates of the parameters of the model is
carried out by the EM algorithm, with closed-form E- and M-steps involving modified Bessel
functions. The MSAL distribution is another alternative to the skew normal and skew t-
distribution. As a three-parameter distribution, the MSAL distribution has parameters that
controls its location, scale, and skewness. The EM algorithm for fitting mixtures of MSAL
distributions is computationally straightforward compared to that for the FM-MNIG model
and skew mixture distributions (Franczak et al., 2012).

A scatterplot of the data is shown in Figure 1(a), where the dots are coloured according
to the clustering provided by human experts, which is taken as the ‘true’ cluster labels. Fig-
ure 1(b)-(e) shows the density contours of the components of the fitted FM-uMST, FM-rMST,
FM-MNIG, and FM-MSAL models respectively, which are displayed with matching colours to
Figure 1(a). To assess the performance of these algorithms, we calculated the rate of misclas-
sification against the ‘true’ results, given by choosing among the possible permutations of the
cluster labels the one that gives the lowest value. A lower misclassification or error rate indicates
a closer match between the true labels and the cluster labels given by the candidate algorithm.
Note that dead cells were removed before evaluating the misclassification rate. From Table 12,
it can be seen that the multivariate skew t-mixture models outperform the other methods in this
dataset. This is also evident in Figure 1, where the component contours of the FM-uMST and
FM-rMST models resemble quite well the shape of the clusters identified by manual gating. The
results from Table 12 reveal that the unrestricted model is more accurate than the restricted
variant for this dataset. The FM-MSAL model gives an error rate comparable to that of the
FM-rMST model. However, the FM-MNIG model has a relatively disappointing performance,
having difficulty in separating the middle (green) and lower (red) clusters. In future work it
is our intention to undertake an extensive comparison of the restricted and unrestricted skew
t-mixture models with mixtures of other skew distributions including mixtures of MNIG and
MSAL distributions.
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Model FM-uMST FM-rMST FM-MSAL FM-MNIG
Misclassification rate 0.0405 0.0638 0.0685 0.1838

Table 12: Misclassification rates for various multivariate mixture models on the DLBCL dataset.
Cells identified as dead cells were not included in the calculation of error rate.

Figure 1: DLBCL dataset: Automated gating results of DLBCL sample using four different
finite mixture models. The population of 3290 cells were stained with three fluorescence reagents
- CD3 (FL1.LOG), CD5 (FL2.LOG), CD19 (FL4.LOG). (a) manual expert clustering of the
DLBCL into three groups; (b) the fitted component contours of the three-component FM-uMST
model; (c) the contours of the component densities of the fitted restricted (FM-rMST) model
using EMMIX-skew; (d) the fitted component contours of the FM-MSAL model; (e) the contour
plot of the fitted FM-MNIG model.
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5 Concluding Remarks

We have presented a schematic way to classify multivariate skew distributions into four types,
namely, the ‘restricted’, ‘unrestricted’, ‘extended’ and ‘generalized’ forms. Concerning the use of
the terminology ‘restricted’ and ‘unrestricted’, it should be noted that the restricted skew forms
are not nested within the corresponding unrestricted forms, with these two forms coinciding
in the univariate case. However, these two forms are both special cases of the extended form,
which itself is a special case of the generalized form.

Current work on finite mixtures of skew distributions has investigated only the restricted
and unrestricted forms of multivariate skew distributions. Mixtures based on skew distributions
of more general forms would be of interest for further research.
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González-Farás G, Domı́nguez-Molinz JA, Gupta AK (2004) Additive properties of skew normal
random vectors. Journal of Statistical Planning and Inference 126:521–534

Gupta AK (2003) Multivariate skew-t distribution. Statistics 37:359–363
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