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Abstract

The paper introduces a methodology for visualizing on a dimension reduced subspace the
classification structure and the geometric characteristics induced by an estimated Gaussian
mixture model for discriminant analysis. In particular, we consider the case of mixture of
mixture models with varying parametrization which allow for parsimonious models. The
approach is an extension of an existing work on reducing dimensionality for model-based
clustering based on Gaussian mixtures. Information on the dimension reduction subspace is
provided by the variation on class locations and, depending on the estimated mixture model,
on the variation on class dispersions. Projections along the estimated directions provide
summary plots which help to visualize the structure of the classes and their characteristics.
A suitable modification of the method allows us to recover the most discriminant directions,
i.e., those that show maximal separation among classes. The approach is illustrated using
simulated and real data.
Keywords: Dimension reduction, Model-based discriminant analysis, Gaussian mixtures,
Canonical variates for mixture modeling

1 Introduction

Discriminant analysis or supervised learning indicates a broad set of statistical methods aimed
at classifying a categorical outcome variable Y , an indicator with K classes, on the basis of a
(p× 1) vector of features x. Among the several methods available for continuous features, one
of the most popular approach is classical linear discriminant analysis (LDA). This method has
been extended to quadratic discriminant analysis (QDA), and, more generally, to models based
on finite mixture modeling of Gaussian densities.

Independently from the statistical method adopted, visualization and graphics can play an
important role in the understanding of the classification results. Typically, canonical variates
are computed when the dimension of the features space is large. This allows us to visualize the
classes on a reduced subspace, often bi-dimensional. However, canonical variates are tailored to
LDA. Some methods have been proposed for QDA, while graphical methods for finite mixture
modeling is still a research area to be explored. From a different point of view, Hennig (2004) has
proposed an asymmetric discriminant projection method by looking at the projections where a
class appears as homogeneous as possible and separated from the remaining groups.

In this paper a dimension reduction method for visualizing and summarizing the fit of a
model-based mixture discriminant analysis is discussed. The approach is an extension of the
method proposed by Scrucca (2010) for model-based clustering. The estimated subspace is found
by looking at the variation in class means and class covariances depending upon the assumed
parameterization of the fitted Gaussian mixture model. The resulting projection subspace is able
to capture most of the classification structure available in the data. The proposal reduces to LDA
canonical variates for a specific parameterization of the mixture model, while it is equivalent to
a recently proposed method for QDA. In all the other cases, the proposed visualization method
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is able to show the main geometric characteristics of the fitted mixture model. Furthermore,
the proposal can be adapted to allow for the visualization of the separation among the classes.

The paper is organized as follows. In Section 2 a brief review of classification and graphical
methods based on the Gaussian distribution is provided. Section 3 describes the Gaussian
mixture models for discriminant analysis we consider in this paper. In Section 4 the methodology
is introduced and the main properties are described. Section 5 presents examples based on
both simulated and real data. In Section 6 the proposed method is extended to allow to
recover the most discriminant directions, i.e., those that show maximal separation among classes.
Concluding remarks appear in the final Section.

2 Classification based on the Gaussian distribution and existing
graphical methods

All the models discussed in this paper are probabilistic, i.e., based on the assumption that
the observations in the kth class (k = 1, . . . ,K) are generated by a probability distribution
fk(x), where x = (x1, x2, . . . , xp)

> is a column vector of p observed features. Most discriminant
analysis methods for continuous variables are based on the assumption that observations in each
class are multivariate normal, so that fk(x) = φ(x|µk,Σk), where φ is the p-variate Gaussian
density with mean µk and covariance matrix Σk.

Linear discriminant analysis (LDA) assumes normal populations with equal class covariance
matrices, i.e., Σk = ΣW for all k = 1, . . . ,K, where ΣW =

∑K
i=k πkΣk is the within-class

covariance matrix with class prior probabilities πk. The resulting discriminant function is linear
in the feature vector x and the acceptance regions for the classes are separated in Rp by
means of hyperplanes. However, Fisher’s (1936) original proposal did not rely on the Gaussian
distribution. Based on geometric arguments, he looked for a vector of d linear combinations
β>x, with β ∈ Rp×d, such that the between-class covariance, ΣB =

∑K
k=1 πk(µk−µ)(µk−µ)>

with µ =
∑K

k=1 πkµk, is maximized relative to the within-class covariance, ΣW . This amounts
to maximize the so called Rayleigh quotient, i.e.,

arg max
β

β>ΣBβ

β>ΣWβ
,

or, equivalently, find β ∈ Rp×d which maximizes β>ΣBβ subject to β>ΣWβ = Id, where Id is
the identity matrix of dimension (d × d). The problem is solved by the generalized eigenvalue
decomposition of ΣB with respect to ΣW .

The directions given by the d columns of β form the basis of the d-dimensional reduction
subspace, S(β), which shows the maximal separation among classes, and decision boundaries are
linear in the projected features subspace. The dimension of this subspace is d = min(p,K − 1),
so just one direction can be estimated in two-class problems. Fisher’s or LDA canonical variates,
β>x, express the projection onto this subspace, and provide a graphical counterpart to LDA
(Mardia et al, 1979, Chap. 11).

There exists some connection between LDA canonical variates and other dimension reduction
methods. In particular, it has been shown that for a categorical response variable sliced inverse
regression (SIR; Li, 1991) is equivalent to LDA, except for a different scaling. In fact, SIR
covariates are scaled to have unit covariance while the LDA canonical variates are scaled to
have unit within-class covariance (Chen and Li, 2001). See also Kent (1991) for more discussion
on the connection between SIR and LDA.

Quadratic discriminant analysis (QDA) is obtained by removing the assumption of a common
class covariance matrix. The resulting discriminant function is quadratic, and the decision
boundaries are quadratic surfaces over the features subspace. However, in this case there appears
to be no standard canonical variates analysis for QDA as there is for LDA. Some authors have
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considered dimension reduction methods for quadratic discrimination in normal populations
with different covariance matrices. Pardoe et al (2007) proposed the use of sliced average
variance estimation (SAVE; Cook and Weisberg, 1991) as a graphical representation in quadratic
discriminant analysis. Velilla (2008, 2010) discussed the concept of quadratic subspace as a tool
for dimension reduction in QDA.

Other extensions to LDA are regularized discriminant analysis (RDA, Friedman, 1989),
flexible discriminant analysis (FDA, Hastie et al, 1994), and penalized discriminant analysis
(PDA, Hastie et al, 1995). RDA represents a compromise between LDA and QDA; it uses a
tuning parameter α for class covariance matrix estimation, i.e., the covariance matrix for class
k is estimated by the convex combination

Σk(α) = αΣk + (1− α)ΣW .

FDA fits by optimal scoring a linear regression model using a basis expansion h(x) of the
feature vector x. PDA also uses optimal scoring on a basis expansion h(x) as in FDA, but with
a quadratic penalty on the coefficients, i.e., solving the following optimization problem

arg max
β

β>ΣBβ subject to β>(ΣW + λΩ)β = Id,

where Ω is a (p× p) symmetric, nonnegative definite, penalty matrix. All these methods have
no direct graphical representation associated, so usually canonical variates are computed as in
LDA using the estimated class means.

Finally, we mention the LAD proposal by Cook and Forzani (2009), a likelihood-based di-
mension reduction method under the assumption of conditional normality of predictors given
the response. This model closely resembles the family of models we adopted, but the estima-
tion procedure is quite different. In fact, no closed-form solution to the maximum likelihood
estimation of the central subspace (the parameter of interest) is available. Thus, numerical
optimization is used for maximization of the log-likelihood on Grassman manifolds.

3 Finite mixture modelling in discriminant analysis

Mixture discriminant analysis generalizes the previous approaches by allowing the density for
each class conditional density to be expressed by a finite mixture of normals. Thus, a Gaussian
mixture model for the k-th class (k = 1, . . . ,K) has density

fk(x) =

Gk∑
g=1

πgkφ(x;µgk,Σgk), (1)

where πgk are the mixing probabilities (πgk > 0,
∑Gk

g=1 πgk = 1), µgk is the mean of component
g in class k, and Σgk is the covariance matrix of component g in class k. Thus, Gaussian
components are ellipsoidal, centered at µgk, and with other geometric features, such as volume,
shape and orientation, determined by Σgk.

Hastie and Tibshirani (1996) introduced mixture discriminant analysis (MDA) assuming a
common full covariance matrix, i.e. Σgk = Σ for all g, k, with known fixed number of mixture
components for each class.

In a procedure named eigenvalue decomposition discriminant analysis (EDDA), Bensmail
and Celeux (1996) proposed the use of Gaussian finite mixture modeling for discriminant anal-
ysis in which each class is modeled by a single Gaussian term, i.e., Gk = 1 for all k, with the
same (possibly parsimonious) class covariance structure factorized as

Σk = λkDkAkD
>
k ,
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where λk is a scalar value controlling the volume of the ellipsoid, Ak is a diagonal matrix
specifying the shape of the density contours, and Dk is an orthogonal matrix which determines
the orientation of the ellipsoid (Banfield and Raftery, 1993; Celeux and Govaert, 1995). Table 1
shows the MCLUST family of mixture models supported by the mclust package (Fraley et al,
2012) for the R software (R Core Team, 2013).

Table 1: Parametrizations of covariance matrices available in the mclust software (Fraley et al,
2012) and related geometric characteristics.

Model Σk Distribution Volume Shape Orientation

E σ Univariate equal
V σk Univariate variable
EII λI Spherical equal equal
VII λkI Spherical variable equal
EEI λA Diagonal equal equal coordinate axes
VEI λkA Diagonal variable equal coordinate axes
EVI λAk Diagonal equal variable coordinate axes
VVI λkAk Diagonal variable variable coordinate axes
EEE λDAD> Ellipsoidal equal equal equal
EEV λDkAD

>
k Ellipsoidal equal equal variable

VEV λkDkAD
>
k Ellipsoidal variable equal variable

VVV λkDkAkD
>
k Ellipsoidal variable variable variable

A generalization of the previous two approaches is the method called MclustDA (Fraley and
Raftery, 2002), where a density estimate for the data is obtained by a Gaussian finite mixture
model with a different number of components and a different (possibly parsimonious) covariance
matrix for each class. The corresponding family is thus very flexible allowing the distribution
of each class to be approximated by a mixture of Gaussian components.

Maximum likelihood estimates for finite mixture models can be computed via the EM algo-
rithm (Dempster et al, 1977). Model selection, which requires choosing the number of mixture
components and the covariance parameterization for each class, is usually based on penalized
criteria, such as the Bayesian information criterion (BIC, Schwartz, 1978) or the integrated
complete likelihood (ICL, Biernacki et al, 2000).

4 Dimension reduction for model-based discriminant analysis

4.1 Methodology

Suppose we would like to find a suitable reduced number of projections which, depending on
the estimated Gaussian mixture model, are able to visualize variation both in groups location
and dispersion. Following the proposal of Scrucca (2010) for model-based clustering, consider
the following matrices:

M I =
K∑
k=1

Gk∑
g=1

ωgk(µgk − µ)(µgk − µ)>,

where ωgk = πkπgk (ωgk > 0,
∑

k,g ωgk = 1), µ =
∑K

k=1 πkµk =
∑

k,g ωgkµgk is the marginal

mean vector, µk =
∑Gk

g=1 πgkµgk is the mean vector for class k, and

M II =

K∑
k=1

Gk∑
g=1

ωgk(Σgk − Σ̄)Σ−1X (Σgk − Σ̄)>,
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where Σ̄ =
∑

k,g ωgkΣgk is the pooled within-class covariance matrix, and ΣX = 1
n

∑n
i=1(xi −

µ)(xi − µ)> is the marginal covariance matrix.
The matrix M I contains information on class-component means variation, while M II con-

tains information on class-component covariances variation. The two types of information can
be summarized using the following kernel matrix

M = M IΣ
−1
X M I +M II. (2)

The matrix β ∈ Rp×d (d = min(p,
∑K

k=1Gk − 1) spanning the desired subspace is the solution
of the following optimization

arg max
β

β>Mβ subject to β>ΣXβ = Id, (3)

where Id is the (d× d) identity matrix. The solution of (3) is obtained through the generalized
eigen-decomposition of M with respect to ΣX . Hence, the basis β of the dimension reduction

subspace S(β) is obtained as Σ
−1/2
X times the eigenvectors of Σ

−1/2
X MΣ

−1/2
X , with directions

ordered according to the corresponding eigenvalues. The projections onto such subspace is then
given by z = β>x. In analogy with the name of the method proposed in Scrucca (2010),
these are called GMMDRC (Gaussian Mixture Model Dimension Reduction for Classification)
variables and provide a graphical method to display the classification structure resulting from
a Gaussian mixture model.

Note that in the presentation made so far we have assumed that the parameters of the
population are known. Usually, however, they are unknown and must be estimated from training
data as discussed in Section 4.3.

4.2 Properties

For MDA models the subspace spanned by M is equivalent to that spanned by M I. This
because under the MDA assumption of common class covariance, i.e., Σgk = Σ for all g, k, we
get M II = 0, so no contribution comes from the variation on class covariances. The same also
happens for those EDDA models which assume constant class covariance matrices (i.e., models
EII, EEI, and EEE – see Table 1), because here Σk = Σ for all k. In all the other cases,
i.e., for those mixture models which allow different class covariance matrices, M II adds further
information for the identification of the reduction subspace.

In two specific cases the subspace identified by GMMDRC reduces to simple known situations
as described in the following propositions, whose proofs are contained in the Appendix.

Proposition 1 Consider the EDDA mixture model with common full class covariance matrix
(EEE). The subspace S(β), obtained by solving the GMMDRC constrained optimization in (3)
with M = M IΣ

−1
X M I , is identical to the subspace S(βSIR) spanned by SIR, and also to the

subspace S(βLDA) spanned by LDA canonical directions.

Based on Proposition 1 we claim that using canonical LDA variables is only relevant when the
adopted mixture model for classification assumes a single component with common covariance
matrix for each class (see also Chen and Li, 2001).

Proposition 2 Consider the EDDA mixture model with different full class covariance matrices
(VVV). The subspace S(β), obtained by solving the GMMDRC constrained optimization in (3)
with M as in (2), is identical to the subspace S(βSAVE) spanned by SAVE.

Noting that an EDDA mixture model with a different full covariance matrix for each class
is essentially equivalent to QDA, Proposition 2 supports the use of SAVE as a graphical coun-
terpart to QDA.
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Proposition 3 Let l1 ≥ l2 ≥ · · · ≥ ld > 0 be the eigenvalues from the generalized eigen-
decomposition of the kernel M , i.e., Mβj = ljΣXβj, for j = 1, . . . , d. Each eigenvalue lj,
corresponding to the direction βj of the projection subspace S(β), can be written as

lj = Var(E(β>j x|Y ))2 + E(Var(β>j x|Y )2) for j = 1, . . . , d. (4)

Thus, the eigenvalues can be decomposed in the sum of the contributions given by

• the squared variance of the between class-component means,

• the average of the squared within class-component variances,

along the corresponding directions.

This result provides an interpretation for the contribution of each direction to the visualiza-
tion of the classification structure. Along each GMMDRC direction classes can be separated by
location, by dispersion, or both. In addition, those directions associated with zero or approxi-
mately zero eigenvalues can be neglected since their contribution to class location or dispersion
is negligible. A formal assessment of dimensionality could be pursued, for instance, by imple-
menting a permutation test as described in Li (1991), however, is beyond the scope of this paper
and deserves further study and investigation.

4.3 Estimation

For a (n × p) sample data matrix X and the corresponding (n × 1) vector Y containing the

observed classes, the sample version M̂ of (2) is obtained using the corresponding estimates
from the fit of a Gaussian finite mixture model among those discussed in Section 3. Then,
sample GMMDRC directions are calculated from the generalized eigen-decomposition of M̂
with respect to Σ̂X , the sample marginal covariance matrix.

5 Examples

5.1 Waveform data

This is an artificial three-class problem with p = 21 variables, often used in machine learning
and considered to be a difficult pattern recognition problem (Breiman et al, 1984; Hastie and
Tibshirani, 1996). Consider the following three shifted triangular waveforms defined as

w1(j) = max(6− |j − 11|, 0), w2(j) = w1(j − 4), w3(j) = w1(j + 4),

for j = 1, . . . , 21. Then, the variables Xj are generated within each class Y as a random convex
combination of two basic waveforms with noise added:

Xj =


u1w1(j) + (1− u1)w2(j) + εj for Y = 1

u2w2(j) + (1− u2)w3(j) + εj for Y = 2

u3w3(j) + (1− u3)w1(j) + εj for Y = 3

,

where j = 1, 2, . . . , 21, wh = (wh(1), . . . , wh(21))> for h = 1, 2, 3, (u1, u2, u3) be independent
random variables uniformly distributed on [0, 1], and εj following a standard normal distribution.

Figure 1 shows a scatterplot of data points projected onto the directions estimated for the
EDDA mixture model with EEE covariance structure, i.e., assuming a common class covari-
ance. As already mentioned, this is equivalent to a plot of LDA canonical variates. Panel (a)
contains the density contours for the three classes, which have the same shape, orientation, and
volume. The graph on panel (b) displays the corresponding decision boundaries with associated
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Figure 1: Plot of waveform data projected onto the first two directions for the EDDA model
with common class covariance. Panel (a) shows the class density contours, while panel (b) the
decision boundary with corresponding uncertainty.

classification uncertainty, with the uncertainty shown using a greyscale where darker regions
indicating higher uncertainty. As expected the decision boundaries are linear.

Moving to a more complex model, we fitted an EDDA mixture model with VVV covariance
structure, i.e., different class covariances. The corresponding projection is shown in Figure 2.
In this case, the contours have different orientation (see panel (a)) because no restrictions
were placed on the class covariance matrices, hence the estimated model provides a better
approximation to the data distribution. The triangular form of the data appears more clearly
than in the previous case. The plot on panel (b) contains the classification boundaries given by
quadratic polygons, which shows a lower overall uncertainty than in the previous case.
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Figure 2: Plot of waveform data projected onto the first two directions for the EDDA model
with different class covariances. Panel (a) shows the class density contours, while panel (b) the
decision boundary with corresponding uncertainty.
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Finally, Figure 3 shows the data projected onto the first two directions estimated from the
selected MclustDA mixture model. This model fitted a mixture of three class-specific Gaussian
mixtures where the class-specific mixtures had G1 = 3, G2 = 4, and G3 = 3 spherical Gaussian
distributions as components. These characteristics are clearly visible on panel (a) of Figure 3.
The resulting decision boundaries are shown on Figure 3b; these appear to be highly nonlinear
with a relative larger uncertainty where the classes overlap. Finally, note that, on the basis of
the corresponding eigenvalues, the first two directions account for 96% of the overall information
available in the 21 estimated directions.
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Figure 3: Plot of waveform data projected onto the first two directions for the selected MclustDA
model. Panel (a) shows the class density contours, while panel (b) the decision boundary with
corresponding uncertainty.

5.2 Swiss banknotes

Flury and Riedwyl (1988, Table 1.1 and 1.2) presented a dataset containing six physical mea-
surements made on a sample of 1000 Swiss Franc bills. 100 observations were classified as
genuines, and 100 as counterfeits.

The EDDA mixture model selected by BIC is a EEV model, which assume class covariance
structures with different orientations but same volume and shape (see Table 1). Figure 4a shows
the data projected onto the first two GMMDRC directions with the corresponding density
contours; there appears a clear separation between classes with a larger variability for the
group of counterfeit banknotes. The corresponding classification boundary is quadratic with
an outlying genuine note classified as counterfeit (see panel (b) of Figure 4). The estimated
subspace is quite similar to that obtained by SAVE, which we recall is equivalent to the one we
would have obtained by fitting an EDDA mixture model with VVV covariance structure.

Fitting a MclustDA mixture model we obtain the graphs in panels (c) and (d) of Figure (4).
The model selected by BIC uses a three components mixture with common covariance structure
for the group of counterfeits, and a single component mixture model for the group of genuine
notes. The latter appears as an homogeneous group, whereas the counterfeits are more het-
erogeneous with a clear separated cluster of observations (see panel (c)). Finally, panel (d)
of Figure (4) shows the classification boundaries which are clearly nonlinear in this case and
classify correctly all the observed banknotes.
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Figure 4: Plot of genuine (g) and counterfeit (c) Swiss banknotes projected onto the first two
directions estimated for the “best” EDDA mixture model (top panels) and the “best” MclustDA
mixture model (bottom panels). Panels (a) and (c) show the class density contours, while panels
(b) and (d) plot the decision boundaries with corresponding uncertainty.

5.3 Simulated data with irrelevant and redundant features

GMMDRC directions are able to identify those variables which contain information about the
classification structure. The estimated basis of the subspace is thus formed by linear combina-
tions of the original features. However, when irrelevant and/or redundant correlated variables
are present, the corresponding estimated coefficients have negligible values.

Consider the synthetic data example described in Maugis et al (2009, Sec. 6, scenario 5). A
sample of size n = 200 is generated for a 10-dimensional ifeature vector. The first two variables
are drawn from a mixture of four Gaussian distributions x[1:2] ∼ N(µk, I2) with µ1 = (−2,−2),
µ2 = (−2, 2), µ3 = −µ2, µ4 = −µ1, and mixing probabilities π = (0.3, 0.2, 0.3, 0.2). The
remaining eight variables are simulated according to the model x[3:10] = β>x[1:2] + ε, where

β =

(
0.5 0 2 0
0 1 0 3

04

)
, ε ∼ N(010,Ω) with Ω = diag(I2, 0.5I2, I4), and 0p is the p × p

matrix of zeroes. For this scenario only the first two variables contain relevant information for
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classification; the following four variables are correlated with the first two and therefore are
redundant for classification purposes, whereas the remaining variables are independent both
from the previous variables and from the classification.

The plot of the sample data projected onto the subspace spanned by the first two GMMDRC
directions is presented in Figure 5, which also contains the table of coefficients defining the
basis of the estimated subspace. The first two GMMDRC directions contain all the information
pertaining to the partition of the classes, with the last direction clearly negligible based on
the value of the corresponding eigenvalue. Furthermore, the coefficients defining the first two
directions are very close to zero for all the variables except the first two, those which are really
needed for classification.
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Dir1 Dir2 Dir3
x1 −0.729 −0.481 −0.368
x2 0.672 −0.843 0.701
x3 −0.008 0.012 −0.169
x4 0.051 0.055 0.123
x5 0.052 −0.138 0.212
x6 0.046 0.083 −0.270
x7 −0.023 −0.025 −0.183
x8 0.033 −0.087 −0.363
x9 0.011 −0.035 0.033
x10 0.083 0.143 0.214

Eigenvalues 0.6527 0.6069 0.0005
Cum. % 51.79 99.96 100.00

Figure 5: Plot of simulated data, generated with irrelevant and redundant variables, projected
onto the subspace spanned by the first two GMMDRC directions. The table at right shows the
coefficients of the linear combinations that define the estimated directions with the correspond-
ing eigenvalues.

5.4 High-dimensional data example

High-dimensional data represents a very challenging problem for many statistical methods,
particularly when the number of available observations is small compared to the number of
variables. Finite mixture models may be highly parameterized, thus fitting Gaussian mixtures
to high-dimensional data requires some form of dimension reduction and/or some form of reg-
ularization. For a recent review see Bouveyron and Brunet-Saumard (2013).

Microarray data are an extreme case of high-dimensional data, for the reason that the
number of variables (genes) is usually much larger than the number of observations (samples).
For instance, consider the famous gene expression cancer dataset from Golub et al (1999). The
data contain information on gene expressions in samples from human acute myeloid (AML) and
acute lymphoblastic (ALL) leukemias obtained from high-density Affymetrix oligonucleotide
arrays. There are 3571 genes and 38 samples: 27 in class ALL, and 11 in class AML. The
samples in class ALL could be further split into B-cell and T-cell types. A preliminary filtering
of genes, based on t-tests with p-values adjusted for multiple comparisons using the Benjamini
and Hochberg (1995) method, selected a subset of 731 genes differentially expressed. Then,
an MclustDA model was fitted on the selected subset assuming a common spherical covariance
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matrix (EII) for each component within any class. From this model the matrices M I and M II

can be estimated as discussed in Section 4.3. However, to apply the eigen-decomposition (3)
we need a regularized estimate of the marginal covariance matrix. Several approaches could be
adopted, but here for simplicity we used Σ̂X = diag[s2i ]i=1,...,p, where s2i is the sample variance
of the i-th gene. Such estimate ignores correlations between genes, which is not biologically
realistic, but it has been shown to have no effect on classification accuracy (Dudoit et al, 2002).

Figure 6a shows a boxplot of AML and ALL samples projected along the first GMMDRC
direction, which accounts for about 94% of total variation. A single direction is clearly able to
separate the two types of cancer. However, the inclusion of the second direction, which accounts
for another 4%, allows us to highlight an interesting feature previously not evident. Looking at
Figure 6b we see that the group of ALL samples can be further divided into B-cell and T-cell
tumour types along the second GMMDRC direction, except for one unusual B-cell which is very
close to the group of T-cell samples.
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Figure 6: Plots of Golub data projected along the first GMMDRC direction (a) and the first
two GMMDRC directions (b). Points are marked as � for AML samples, as • for ALL B-cell
and N for ALL T-cell samples.

6 Finding the most discriminant directions

The methodology introduced in Section 4 allows to visualize on a reduced subspace the under-
lying characteristics of class densities. However, if groups differ not only on location but also on
dispersion, this second type of information may be dominant, and the classes would not appear
clearly separated along the main directions.

If class separation is the goal, an appropriate modification of the kernel matrix (2) should
be adopted, for instance, using the following convex linear combination

M = λM IΣ
−1M I + (1− λ)M II, (5)

where 0 ≤ λ ≤ 1 is a tuning parameter. By choosing a large λ the estimated directions will
focus more on differences on location. For λ = 0.5 we give equal weight to the two types
of information, while for λ = 1 differences in class covariances are completely ignored. More
generally, we could decide to optimize a measure of class separation, or minimize the uncertainty
in classification.
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Recently, Zhu and Hastie (2003) proposed a generalized log-likelihood-ratio (LR) statistic
criterion to find the relevant directions for classification. They compare their proposal with
SAVE on a simple bi-dimensional dataset with two groups. Figure 7a shows a data sample
generated from this setting (for details see the mentioned paper). Zhu and Hastie (2003) argue
that the relevant direction for discriminating the two groups corresponds to the first variable
X1, where there are differences in means. This turns out to be the direction selected by the LR
criterion they proposed. On the contrary, the first direction selected by SAVE corresponds to
X2, a direction which contains only differences in variances, so the two groups do not appear
well separated.
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Figure 7: Sample data from Zhu and Hastie (2003) simulation scheme. Panel (a) contains the
scatterplot of the two classification variables. Panel (b) and (d) show the data projected along
the first two estimated GMMDRC directions with, respectively, λ = 0.5 (default) and λ = 0.75.
The latter value has been selected on the basis of the LR criterion, whose trace is shown in
panel (c).

We fit a Gaussian mixture model to such dataset after adding eight noise variables gener-
ated from independent standard normals. The first two directions appears to be needed with
associated eigenvalues (0.54923, 0.28002), which accounts for a total contribution of about 83%.
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Figure 7b shows the data projected along such directions: the first direction correspond es-
sentially to X2, while the second direction to X1. As for SAVE, the information coming from
difference in variances is overwhelming that coming from difference in means, and this is what
the plot shows. However, if our goal is to look for the most separating directions we can adopt
the LR criterion for selecting the value of λ in equation (5). Figure 7c shows the trace of LR
over a regular grid for λ: the optimal value is obtained for λ = 0.75 (or greater), which yields
the projection shown in Figure 7d. Now, the first estimated direction is essentially equivalent
to X1, the most discriminating variable, while the second direction is equivalent to X2.

Instead of optimizing the LR criterion as discussed above, we could adopt a different per-
spective based on dynamic graphics. For example, one could imagine to build a dynamic graph
that, using a slider to manipulate the λ parameter, allows us to change interactively the data
projection. In this way, a user would be able to appreciate the transition between the focus
directed to differences in location to differences in the dispersion. Furthermore, depending on
the purpose of the analysis, by tuning the λ parameter we could decide to highlight the structure
of the classes and their characteristics, or to favor the separation of classes.

6.1 Ionosphere data

The ionosphere data were collected by 16 high-frequency antennas in Goose Bay, Labrador,
Canada, and contain information about radar signals returned from the ionosphere. “Good”
samples are those showing evidence of some type of structure in the ionosphere, while “bad”
returns are those whose signals pass directly through the ionosphere and show no structure.
A total of 351 signals were received, 225 were “good” returns and the remaining 126 were
“bad” returns. The signals were processed using a function of 2 attributes for each of 17 pulse
numbers that describe the complex electromagnetic signal. There are 34 continuous-valued
feature variables, although one is a constant of all zeroes. The dataset is taken from the UCI
Machine Learning Repository and it is available in the R package mlbench.

Figure 8a shows the data projected onto the first two GMMDRC directions using the default
λ = 0.5 for a MclustDA mixture model having covariance structure VII with 4 components for
the “bad” returns, and covariance VVV with 2 components for the “good” returns. On the
basis of the graph it can be said that the two groups of signals differ mainly in the dispersion,
with the “bad” returns showing a larger variance and “good” signals which are concentrated
around the center of the graph.

These findings are similar to those obtained with SAVE by Pardoe et al (2007). To improve
groups separation we selected the tuning parameter λ using the LR criterion discussed previ-
ously. The graph in Figure 8b shows the projection onto the first two GMMDRC directions
estimated using the optimal value λ = 1. Here the separation between the two types of signal
is clearly shown along the second direction, while the group of “good” signals appears to be
composed of two separable sub-groups along the first direction. The latter is an interesting
feature not previously recognized.

7 Final comments

The paper discussed a dimension reduction method for visualizing the classification structure
and the geometric characteristics induced by a Gaussian mixture model. The methodology
can also be easily adapted in order to recover the directions showing the maximum separation
between the classes.

Although in the article we have used two-dimensional projections, the proposed method
can, in principle, be easily extended to subspaces of higher dimensions. However, graphical
representations on spaces of dimension greater than 3 can be quite difficult. Preliminary results
for implementing a guided tour in 2-dimensions seem to be promising.
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Figure 8: Plot of ionosphere data projected onto two different estimated subspaces: (a) using
the default λ = 0.5; (b) using the optimal λ = 1 for groups separation. Points marked as �
refer to “good” signals, those marked as • to “bad” signals.

The methodology and corresponding plots discussed in this paper are available in the
MclustDR function of the R package mclust (Fraley et al, 2012).
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Proof of proposition 1

Assume an EDDA mixture model with common full class covariance matrix. The last condition
implies that the matrix M II in equation (2) cancels out, so the kernel matrix simplifies to

M = M IΣ
−1
X M I,

where M I =
∑K

k=1 πk(µk − µ)(µk − µ)> = ΣB, the between-class covariance matrix. The
basis of the subspace S(β) provided by GMMDRC is obtained as the solution of the following
problem

Mβj = ljΣXβj ,

with l1 ≥ . . . ≥ ld, and d = min(p,K − 1). Thus, βj is the jth eigenvector associated to the jth
largest eigenvalue lj (j = 1, . . . , d) of the (p× p) matrix

Σ
−1/2
X MΣ

−1/2
X = Σ

−1/2
X M IΣ

−1
X M IΣ

−1/2
X

= (Σ
−1/2
X ΣBΣ

−1/2
X )>(Σ

−1/2
X ΣBΣ

−1/2
X ).

The subspace estimated by SIR is obtained as the solution of

ΣBβ
SIR
j = lSIRj ΣXβ

SIR
j (6)

which is given by the eigen-decomposition of Σ
−1/2
X ΣBΣ

−1/2
X . It is easily seen that βj = βSIR

j

and lj = (lSIRj )2, for j = 1, . . . , d. Thus, the basis of the subspace provided by GMMDRC under
model EDDA with full common class covariance matrix is equivalent to the basis estimated by
SIR.

We now consider the relation of GMMDRC with LDA canonical variates. From (6), we
may subtract l∗jΣBβ

SIR
j from both side and, recalling the decomposition of the total variance,

ΣX = ΣB + ΣW , we may write

ΣBβ
SIR
j − lSIRj ΣBβ

SIR
j = lSIRj ΣXβ

SIR
j − lSIRj ΣBβ

SIR
j

(1− lSIRj )ΣBβ
SIR
j = lSIRj (ΣX −ΣB)βSIR

j

ΣBβ
SIR
j = lSIRj /(1− lSIRj )ΣWβ

SIR
j .

It is clear that lSIRj /(1− lSIRj ) and βSIR
j are, respectively, the jth eigenvalue and the associated

eigenvector of Σ
−1/2
W ΣBΣ

−1/2
W , the decomposition solving the Rayleigh quotient used to derive

canonical variates in LDA. Thus, the basis of the subspace S(βLDA) is equivalent to S(βSIR),
which in turn is equivalent to that provided by GMMDRC under the specific model assumption.
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Proof of proposition 2

The kernel matrix of SAVE can be written in the original scale of the variables as

MSAVE =

K∑
k=1

ωk

(
Ip −Σ

−1/2
X ΣkΣ

−1/2
X

)2
.

Recalling that ΣX = ΣB + ΣW , we may write the expression within parenthesis as follows:

Σ
−1/2
X (ΣX −Σk)Σ

−1/2
X = Σ

−1/2
X (ΣB + ΣW −Σk)Σ

−1/2
X

= Σ
−1/2
X ΣBΣ

−1/2
X + Σ

−1/2
X (ΣW −Σk)Σ

−1/2
X .

Then,

MSAVE =
K∑
k=1

ωk

(
Σ
−1/2
X ΣBΣ

−1/2
X + Σ

−1/2
X (ΣW −Σk)Σ

−1/2
X

)2
= Σ

−1/2
X ΣBΣ−1X ΣBΣ

−1/2
X +

Σ
−1/2
X

(
K∑
k=1

wk(Σk −ΣW )Σ−1X (Σk −ΣW )>

)
Σ
−1/2
X

= Σ
−1/2
X M IΣ

−1
X M IΣ

−1/2
X + Σ

−1/2
X M IIΣ

−1/2
X

= Σ
−1/2
X (M IΣ

−1
X M I +M II)Σ

−1/2
X ,

where M I and M II are those obtained from an EDDA Gaussian mixture model with a single
component for each class and different class covariance matrices (VVV).

Proof of proposition 3

The proof is analogous to that provided for Prop. 2 in Scrucca (2010) and it is not replicated
here.
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