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Abstract

This paper presents a finite mixture of multivariate betas as a new model-based
clustering method tailored to applications where the feature space is constrained to
the unit hypercube. The mixture component densities are taken to be conditionally
independent, univariate unimodal beta densities (from the subclass of reparameter-
ized beta densities given by |Bagnato and Punzol [2013)). The EM algorithm used
to fit this mixture is discussed in detail, and results from both this beta mixture
model and the more standard Gaussian model-based clustering are presented for
simulated skill mastery data from a common cognitive diagnosis model and for real
data from the Assistment System online mathematics tutor (Feng et al, 2009)). The
multivariate beta mixture appears to outperform the standard Gaussian model-
based clustering approach, as would be expected on the constrained space. Fewer
components are selected (by BIC-ICL) in the beta mixture than in the Gaussian
mixture, and the resulting clusters seem more reasonable and interpretable.

This article is in technical report form, the final publication is available at

http: //www.springerlink.com /openurl.asp?genre=article&id=doi: 10.1007 /s11634-013-
0149-z.

Keywords:Mixture Model Clustering, Multivariate Beta Densities, Skill Set Profiles,
Unit Hypercube

1 Introduction

One of the primary goals in educational research is to accurately estimate the extent of
students’ mastery of different skills. While assessment of students’ current knowledge is
obviously crucial in education, this estimation also has applications when teachers are
interested in grouping similar students based on their skill mastery. For example, students
showing consistent high levels of aptitude may be selected for an advanced class or, in
cases where teaching assistants are available, students with similar deficiencies could more
efficiently receive extra instruction as a group.

*Nema.Dean@glasgow.ac.uk
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Cognitive diagnosis models (CDMs) are commonly used in estimating skill mastery
based on students’ correctness of response to items involving the skills of interest. A
review and comparison of various different CDMs can be found in DiBello et al (2007)
and Rupp et al (2010). For each student, we estimate a set of individual skill masteries,
or a skill set mastery profile. Skill mastery is typically estimated on the [0,1] range, with
0 indicating total lack of mastery and 1, perfect mastery. The skill set profile (and its
estimate) for K skills then lies in the K-dimensional unit hypercube, [0,1]%. Figure
shows the three-dimensional unit hypercube feature space for the skill set profile estimates
for 400 students simulated from a common CDM, the Deterministic Inputs, Noisy “And”
gate (DINA) model (Junker and Sijtsmaj (2001)), Torre| (2009)), further details in Section
3.2.1). The students’ original skill set profiles are shown by character type; for example,
the group in the upper right corner corresponds to students with perfect mastery for all
three skills. Recovery of these original profile groups is our goal.

Skill 3
Skill 2

Skill 1

Figure 1: 3-D skill set profile estimates for 400 simulated students

Estimating these skill set profiles using even basic CDMs can be extremely com-
putationally intensive, involving Markov Chain Monte Carlo estimates that themselves
can only reasonably be found for a limited number of students and skills. |Ayers et al
(2008, 2009)) introduced a simple skill profile estimate (further details given in Section
3.2.2|) which, in combination with cluster analysis methods, performed as well at recov-
ering students’ skill mastery profiles. However, the clustering methods used in that work
(e.g. K-Means, hierarchical agglomerative clustering, model-based clustering) did not
accurately reflect the restricted hypercube feature space commonly found in educational
research.

This paper focuses on extending the common mixture based clustering approach for
use with the flexible (multivariate) beta distribution. It assumes each mixture component
can be modeled by a product of conditionally independent, univariate beta densities (one
for each dimension, here skill). Introduced in Section 2.1, this model is naturally tailored
to the unit hypercube. We also discuss the use of a sub-class of unimodal beta densities



due to Bagnato and Punzo| (2013) as well as the EM algorithm for fitting the mixture.
We compare this approach to the standard Gaussian mixture model for continuous (and
transformed) data. We provide simulation results from the popular DINA model (Section
and results on data from an online classroom tutoring system (Assistments, Feng
et all (2009), Section . Finally, the paper concludes with discussion and caveats for
the two approaches; computational considerations and possible future extensions follow
in Section

2 Mixture Model Clustering

Broadly, cluster analysis is a set of methodologies for grouping similar observations to-
gether in classes or clusters. These clusters are chosen such that the observations in
each cluster are more similar to each other than to observations in other clusters and
are assumed to estimate true, unknown underlying groups. Model-based clustering is a
particular approach based on finite mixture models (McLachlan and Peel, 2000), that
has become increasingly popular across diverse applications due to the flexibility of its
estimated cluster shapes and sizes, its automatic selection of the number of clusters, and
software and advanced extensions availability (Fraley and Raftery, |1998| 2002; Fraley
and Raftey, 2007; Raftery and Dean| 2006} [McLachlan and Peel, [1999). We adopt this
model-based approach here.

We assume that the data X = {x3,...,xx} are an independently and identically
distributed sample from some unknown population density f(x) where each group ¢ in
the population is represented by a mixture component f,(x). The population density
f(x) is then a weighted mixture of these components:

f(x) = Zﬂg - fo(x;6y)

where 0 < 7, <1, > 7y = 1. The parameters for a mixture model with a given number
of components can be easily estimated using the EM algorithm (Dempster et al, [1977)).
The E-step estimates missing data identifying the probabilities of component membership
for each observation, given the current parameter estimates; the M-step calculates the
maximum likelihood estimates of the model parameters, given the current estimates of
component membership. The two steps are alternated until convergence. The Bayesian
Information Criterion (Schwarz, 1978) is used (as an approximation for Bayes factors)
to choose G, the number of components, that best fits the data (see Section .
Each fitted mixture component is then usually identified as a cluster; observations are
assigned to the component/cluster with highest posterior probability of membership.
Comprehensive reviews of the methodology can be found in McLachlan and Peel| (2000)
and |Fraley and Raftery| (2002)).

Commonly, f, is assumed to be Gaussian (i.e. 6, = {uy, X,}). In particular, the
M-step for Gaussian component densities has closed form solutions for the maximum
likelihood parameter estimates (see Fraley and Raftery, |2002). If this assumption is
violated, it is possible that the number of components (and so the number of popula-
tion groups) will be overestimated, as subgroups of Gaussian mixture components are
needed to estimate an underlying non-Gaussian group (Lindsay, |1995; McLachlan and
Peel, 2000)). Work done by Baudry et al (2010) and Hennig| (2010a,b)) and Dean and Nu-
gent, (2013)) have explored ways of identifying how/when to merge mixture components
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to create clusters under these circumstances. This paper will not look at this particular
extension of model-based clustering but instead focus on assuming a more appropriate
underlying distribution.

2.1 Finite Mixture of Beta Distributions

Since each profile of K skill mastery estimates will lie in the K dimensional unit hypercube
[0, 1]%, it seems desirable to use a component distribution that is defined only on the unit
hypercube (unlike the multivariate Gaussian defined on the whole real space R¥ | although
we will show it can work quite well in some circumstances).

The (standard) beta density given by

f(zle, ) = mfa_l(l —2)’ a,f>0 (1)
where B(a, ) = Fr(?gig) The density is defined on = € [0,1], and, as such, seems

well suited as a univariate component density for this application. The beta density is
also extremely flexible (depending on the values of its parameters). Figure 2 gives some
examples of the density shapes available for this parametric family. The beta density with
a =5, 8 = 2 might correspond to a group of students with moderate to high mastery of
a skill; the density with a = 1, 8 = 3 might be a group of students who tend to struggle
with that same skill.
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Figure 2: Beta densities with different parameter values; « values given by a, 8 values
by b.



2.1.1 Properties of the Beta Density

The beta density is symmetric when the shape parameters, o and 3, are equal and skewed
otherwise. I_ts mean is'giv'en b.y aaTB and Va?iance by m However, there are
two properties of this distribution that make it problematic in the model-based clustering

context:
e it is bimodal for @« < 1 and g < 1;
e there is no closed form maximum likelihood estimation solution for «, 5.

The first property means that if we allow solutions for shape parameter estimation where
both a, < 1, we will have a component density with two modes, one towards 0 and
another towards 1. This bimodality makes the interpretation of the component as a one-
group cluster problematic (unimodal component densities are desired). |Dean and Nugent
(2011) looked at constraints on the optimisation as a solution for bimodality in mixtures
of beta densities; this paper will take a different, more stable approach.

In particular, we adopt an alternative method of specifying the beta distribution that
allows only unimodal univariate densities, first explored by Bagnato and Punzo (2013))
focusing on restricted unimodal reparameterizations of the gamma and beta densities.
This subclass of beta densities is given by:

xm/v(l _ x)(l—m)/v
B(Z4+1,5241)

v

f(zxm,v) =

(2)

where m € [0,1], v > 0, and v = a+}3_2. As with the standard beta density, there is no

closed form solution for the maximum likelihood estimates of m and v. EM algorithm
starting values can be found using the method of moments.

According to Bagnato and Punzo| (2013), the two parameterizations in Equations (I,
are equivalent for «, 5 > 1. This subclass excludes beta densities that are bimodal,
unlimited (reverse) J-shaped, or uniform. Note that the remaining betas still have a large
degree of flexibility (Figure 3).

Since the usual EM algorithm for estimating component parameters requires max-
imum likelihood estimates, the second undesirable property seems to preclude us from
fitting mixtures of beta distributions. We discuss our proposed solution in Sections 2.1.2,
2.1.3.

2.1.2 Mixtures of Multivariate Beta Distributions

Mixtures of univariate beta distributions have been previously looked at by |Ji et al| (2005)
in the context of modelling correlations between gene-expression levels, particularly to
systematically identify “large” correlations. In our setting, mixtures of univariate beta
distributions would refer to looking for clusters of students based on their mastery es-
timates for only one skill (or an overall mastery). We are more interested in a general
K-skill framework and, as such, need to fit mixtures of multivariate betas.

To model multivariate data in the unit hypercube, we use the local independence (or
conditional independence) assumption common to latent class analysis (Lazarsfeld and
Henry, 1968). This assumption allows independence between variables conditional on
the component membership. It is less restrictive than an unconditional independence
assumption but still fairly strong.
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Figure 3: Densities for unimodal betas with different parameter values; a values given
by a, B values by b; corresponding m and v parameters also given.

Given this assumption and the Bagnato and Punzo| (2013) beta density reparameter-
ization, for K-dimensional multivariate data x; = (x;1, ..., z;x ), the multivariate density
for the ¢'* component is given by

fo(xi[my, vy) = H for(ir|mgr, vgr) (3)
k=1

where
ik
BG4 1, Imak 4 1)

Vgk

mgk/vgk 1 — 1 (1—mgr)/vgk
fgk(xik’mgk,vgk) = x ( x’Lk}) .

Then the finite mixture of G multivariate beta distributions is given by
e}
X;) = Zﬂgfg(xilmwvg)' (4)
g=1

2.1.3 Fitting the Mixture of Multivariate Beta Densities

We use the expectation-maximization (EM) algorithm (Dempster et al, |1977)) to estimate
the model parameters. As usual for the mixture model context, we introduce missing data
z; to identify the component membership of each observation x;, defined as follows:

zig = 1 if x; belongs to component g and 0 otherwise.



The algorithm proceeds as follows:

1. Initialize the z;4 either by assigning the data using quantiles to each of G groups in
the univariate setting (i.e. split the data into G quantiles; observations, z;, whose
value falls in the k™ quantile have z;, set to 1 and z;; set to 0 Vj # k) or assigning
the data using k-means (or some other multivariate assignment) in the multivariate
case (i.e. k-means is run on the data for k=G; if k-means assigns observation x; to
cluster k then we set z;, to be 1 and z;; set to 0 Vj # k).

2. M-Step: Given the current values for the z;’s, estimate the set of parameters

(71, ..., Tg, My, V1, ..., Mg, Vg) by:
(a) 7y = 25

(b) Obtain a numerical maximizer for mg, vy, by solving

> 2ig10g(for (ik| Mgk, Vo)) Ly, 2N A

i=1
subject to mg, € [0,1] and vy, >0for k=1,...,Kandg=1,...,G,
where 1) is the indicator function (here used to check non-missingness) equal
to 1 if the statement in [] is true and 0 otherwise. Starting values for the
Mgk, Vg, in the numerical optimiser are taken to be the previous M-step esti-
mates or method of moments estimates in the initial M-step.

3. E-Step: Given the current parameter estimates from the M-step, compute
A 7%lfl*<xiyrhlv‘A[l)

Zil = G - - N
zg:1 7o fy (%3], V)

where f;(x;[hy, v,) = HkK:1 For(Ti|irge, Dgp,) o)
and c(xy) = 1 if 2 # NA and 0 otherwise.

fori=1,....n;l=1,...,G

4. Repeat the M-step and E-step until convergence is reached.

Note that the conditional independence assumption means that, in the event of missing
data for some variables on some observations, the incomplete observations can still be
used in the estimation of the parameters for which data are observed and the observation
component /cluster membership can still be estimated.

The estimated Z;s will typically fall anywhere on the range of the interval [0, 1]. To
get hard classifications for points to components, we can define the hard label estimate,
Z; as:

zZy = 1if arg mgax Zig = [, and 0 otherwise.

2.1.4 Selecting the Number of Mixture Components

The usual method for selecting the number of mixture components G is to fit mixtures
with different numbers of components, scoring each proposed model using some infor-
mation criterion. The model with the optimal criterion value and consequently the best
number of components is selected.



In Gaussian component mixtures, the most common information criterion used is the
Bayesian Information Criterion (BIC), first introduced by [Schwarz (1978)) and further dis-
cussed in [Kass and Raftery| (1995), which we define for the G component, K-dimensional
beta mixture model Mg as:

BIC(M¢) = 2 x maximized log likelihood of model Mg — v x log(n)

where G is the number of components, v is the number of independent parameters (=
(2x G x K)+ G —1), and n is the number of observations in the data. The model
with the largest BIC is considered the best fit for the data; its corresponding number of
components is chosen for G.

Ji et all (2005)) found that BIC did not perform well in selecting the number of com-
ponents in univariate beta mixture simulations and suggested the BIC-ICL criterion as a
preferred alternative. The BIC-ICL criterion is defined as follows:

BIC-ICL(Mg) = BIC(M¢) — 2 x EN(2)

where EN(z) = — >0, Zngl Ziglog(Z;,) is the estimated entropy of the fuzzy classifi-
cation given by the final E-step value of z for model Mg. Again, the model with the
highest BIC-ICL and its corresponding number of components are chosen as the best fit
to the data. The range of number of components being fit was allowed to increase until
the BIC(-ICL) values began to decrease.

2.1.5 Competing model strategies

In situations where the data are continuous on a restricted space, standard (Gaussian
mixture) model-based clustering is often applied, ignoring the possible violation of model
assumptions. Although this model is not tailored to the unit hypercube space, it can still
be a useful tool.

Another common approach is to transform or normalise the data prior to applying
standard mixture models. For x; € [0, 1], the most commonly used transformation is the
arcsine transformation (Sokal and Rohlf, [1981), mapping the [0, 1] domain to the [0, 7/2]
range by taking the square root of the observation and then finding the arc sine value in

radians, i.e.
yie = f(za) =sin~' (Vo).

In this paper we apply Gaussian model-based clustering to the resulting transformed
data and report the results. The cluster means and variances estimated on the trans-
formed data can be easily transformed back onto the original scale by using the inverse
transformation, i.e.

fig = fﬁ(/ﬁg) = (Sin(ﬂg))z'

3 Results

The Gaussian component model-based clustering was implemented using the mclust
library (Fraley et al, 2012) in the R programming language (R Core Team, [2012). R code
to fit the EM algorithm for the beta mixture is available at

http:/ /www.stats.gla.ac.uk/ " nd29c¢/software.html.


http://www.stats.gla.ac.uk/~nd29c/software.html

3.1 Assessing Performance

The Adjusted Rand Index, ARI, (Hubert and Arabie, |1985) is a measure used to compare
two different clustering partitions on the same data. It counts the proportion of observa-
tion pairs where the clusterings agree (i.e. both partitions put the pair of observations in
the same cluster or both put them in different clusters) and adjusts for random chance
matching. The expected value of the ARI is zero under random assignment; an ARI
of 1 indicates the two clusterings (or the clustering and the true set of class labels) are
identical. For our results, we report both the misclassification rate and the corresponding

ARI value.

3.2 Simulation with Known Group Structure

In order to assess the ability to recover known group structure, we simulate from the
DINA model, a common CDM (detailed in Section [3.2.1). The simulated values can
then be used to estimate skill set profiles which fall in groups on the unit hypercube.
In practice, CDM estimation of the skill set profiles often requires lengthy MCMC-type
procedures which are impractical or computationally infeasible for scenarios with large
numbers of questions or skills. We then use the resulting estimated skill set profiles to
identify the different profile groups present in a population. In this paper, we instead
calculate quicker estimates of the students’ skill mastery profiles (detailed in Section
and then apply our finite mixture of betas to cluster the students. However, note that
the finite mixture of betas is applicable to any estimates that lie in the unit hypercube
(including those obtained through MCMC).

3.2.1 Simulation from the DINA Model

Each student has a true skill-set profile v, = (Vi1, V2, - - -, Vi) Where 7y, is 1 if student ¢
has mastered skill £ and 0 otherwise. Estimation of the skill set profiles is done using a
N x J student response matrix Y where Y;; is 1 if student ¢ answered item j correctly, 0
if answered incorrectly and NA if student i did not see item j and a J x K skill transfer
(-matrix (Barnes, 2005) where gj is 1 if item j required skill &, 0 otherwise. Here N
is the total number of students, J is the total number of questions being examined, and
K is the total number of skills. Under the DINA model (Junker and Sijtsmal 2001)), the
probability of a correct response given 7;; (a function of ~;) is

I ij
P(Yijlnij, 55, 95) = (1 = s5)"g; " (5)
dik

where 7;; = HkK:1 v (= 1if student ¢ has all the skills required for item j, 0 otherwise),
representing the conjunctive assumption that essentially all required skills should be
mastered for the student to answer an item correctly; and s; = P(Y; = Oln;; = 1)
and g; = P(Y;; = 1|n;; = 0) are slip and guess parameters (here randomly drawn from
Uniform|0, 0.01] for illustrative purposes).

Returning to the Figure 1 scenario, we simulate responses from the DINA model for
N = 400 students given their true skill set profiles for K = 3 skills (2° = 8 possible profiles
= the true number of groups) using J = 30 items (18 = 6 x 3 single skill questions for each
skill, 9 = 3 x 3 double skill questions for each possible pair of skills and three questions
involving all three skills). The rows of @) are either (1,0,0), (0,1,0) or (0,0,1) for single
skill questions, (1,1,0), (0,1,1) or (1,0,1) for double skill questions or (1,1,1) for triple skill
questions. Students were randomly assigned 15 questions.
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3.2.2 Skill Mastery Estimates

Rather than use lengthy MCMC estimation procedures to find 4,, previous papers (Ayers
et al, 2008, |2009)) have discussed the use of quicker skill mastery estimates from the
response data and skill transfer matrix in conjunction with clustering methods to estimate
the original profile group. In this paper, we use the capability estimate described in |Ayers
et al (2008) and below in equation (). This student-skill estimate matrix, B, is defined
as:

J
2T Y g
Bz’k:Z]_l [Yi;#NA] * Yij * Qjk i=1. Nik=1. K (6)

J
> im1 LN a) - Gk

where 1}; is the indicator function equal to 1 if the statement inside the brackets is true
and 0 otherwise. Our unknown skill set masteries, 7;;, are estimated by the B;,. Note
that although the true 7;’s will fall only on the hypercube corners, the B;; estimates can
lie anywhere within the hypercube. After fitting the beta mixture model, the clusters
can be mapped to the closest corners, or the cluster centres could be used as estimates if
it is believed that skill mastery lies on a spectrum rather than a binary scale.

3.2.3 Simulation Results

We estimate the three-skill set profiles, with all 8 (possible) groups, for our 400 simulated
students (see Figure 4). Note that some points in the hypercube represent more than one
observation (e.g. 46 students were estimated to have the point (1,1,1)). The questions
requiring multiple skills are responsible for the migration of skill set profile estimates
towards the bottom-left (0,0,0) corner, since not mastering just one of several required
skills corresponds to a reduction in the mastery estimates for all the required skills for
that item.

A summary of our results is given in Table [l Model-based clustering with Gaussian
components selects 14 “EEV” (equal volume and shape but variable orientation) compo-
nents which gives a misclassification rate of 13.5% and an ARI of 0.84 when compared
to the true profile groups. Model-based clustering with Gaussian components applied to
the arcsine transformed data also selects 14 “EEV” components, but the misclassification
is improved to 8.25% with an ARI of 0.90. This improvement is due to better estimation
of the main groups, with the extra components being small groups (e.g. singletons).

The finite mixture of multivariate betas will not fit beyond eight components (likely
due to difficulty in finding sensible starting values for number of components higher than
the truth), and BIC-ICL selects G = 8 as the best fit, the correct number of groups. The
misclassification rate drops to 3.25%, and the ARI increases to 0.93.

Table 1: Summary of Adjusted Rand Index and misclassification rates for simulated data

Cluster Method Adjusted Rand Index (ARI) Misclassification Rate (%)
Model-Based Clustering 0.84 13.5%
Model-Based Clustering 0.90 8.3%
Transformed Data

Mixture of Betas 0.93 3.3%

Figure 4 shows the misclassifications (compared to the underlying true groups, lighter
coloured stars) for both the beta and Gaussian mixture approaches. For the beta mixture,
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Figure 4: Comparing the beta and Gaussian mixture results; misclassified obs. given by
stars

the misclassifications are from singletons or pairs of points lying close to the boundary of
two groups. The Gaussian mixture suffers from these types of misclassifications as well
but also from true groups being split into more than one component.

In general, any set of appropriate skill mastery estimates that lie in (or could be
mapped into) the unit hypercube can be clustered with this approach. For example, a
scaled version of sum scores (Henson et al, |2007)) could be used in place of the capability
estimates. Similarly, the DINA model is just one common CDM estimating skill mastery;
similar analyses could be done with other CDMs like the NIDA or RedRUM (for example,
see [Rupp et al, 2010).

3.3 Assistment System: Online Tutoring Data

We examine a subset of 26 items requiring three skills from the Assistment System online
mathematics tutor (Feng et al, 2009). We have student response data from 551 stu-
dents on the skills Evaluating Functions, Multiplication, and Unit Conversion. Unlike
our previous simulation, the ()-matrix is unbalanced; Evaluating Functions appears in
eight items, Multiplication in 20 items, and Unit Conversion in two items. Note that
Unit Conversion only occurs in conjunction with the other two skills. This imbalance
means that estimation will be more difficult due to the conjunctive assumption. Our
skill estimates, e.g. Equation @, will be pulled away from the corners of the hypercube
as any multiple skill question answered incorrectly will penalize all corresponding skill
estimates even if only a subset of unmastered skills led to the error.

3.3.1 Summary of Student Responses

Students were shown a random selection from the 26 questions, and, for the purposes
of this analysis, we assume that the students answered all shown questions. That is,
missing values are assumed to be due to the student not seeing the question rather
than refusing to answer. The students attempted different numbers of questions (see
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Figure 5(a)). The lower and upper quartiles for the number of questions answered are six
and sixteen; all answered at least two. The lower and upper quantiles for the number of
questions answered correctly are five and thirteen with corresponding histogram in Figure
5(b). Finally, ignoring which skills belong to which question, we look at the proportion
of attempted questions correctly answered by each student (a rough approximation of
overall mastery). Gratifyingly, the lower and upper quartiles for this proportion are 0.75
and 0.93. We add a kernel density estimate to the corresponding histogram in Figure
5(c) as a possible preview of the number of different mastery groups.
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Figure 5: Histograms of (a) number of questions answered by students, (b) number of
questions answered correctly by students and (c) proportion of correct answers

3.3.2 Clustering Student Overall Ability

It might first be of interest to group students according to overall ability (i.e. proportion
of total attempted questions correctly answered). If we ignore the restricted sample space
([0,1]) and apply standard model-based clustering with Gaussian components to this uni-
variate summary data, we still struggle with the problem of replicated observations (here
this occurs numerous times; for example, 9 students observed at the value 0, 13 observed
at 0.33, 25 observed at 0.8, etc). These points likely will be modeled as Gaussian compo-
nents with zero variance, corresponding to an infinite likelihood. In general, we will be
unable to fit models assuming clusters with unequal variance, but forcing equal variances
across clusters still can give an overly large number of components (as selected by BIC).
For example, when clustering the overall ability estimates from Figure 5(c), the BIC for
Gaussian model-based clustering is maximized at 11 components. The corresponding
mixture density estimate (and component density estimates weighted by corresponding
mixing proportion) is given by the solid line (dashed lines) in Figure 6 (b). As expected,
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the density is overly “wiggly” due to the extra components associated with the duplicated
observations; furthermore, components overfitting to small numbers of observations are
less useful for broad summarization or classification.

Next we fit mixtures of betas to the student’s overall proportion of questions correctly
answered. BIC-ICL decisively selects four components as being the best fit (1710.14 vs
1607.14). The final parameter estimates are given in Table ; the estimated density
is overlaid as a solid line (with weighted component densities as dashed lines) on the
histogram of proportion of correct answers in Figure 6 (a).

(a) (b)

- —
T Y - Filted Bata Mixlure = = Fitted Gaussian Mixiure
= = Waighted Component Densities = = Waighted Component Densities
oy — o — P
= =
tn ]
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18] o j4b] o
a =] 1RHR
| |
W™
|
! |
. — I
L I :‘ v
~ AL
L= - [ B‘— I |y P .Il ! it
[ | I I 1 [ | I I 1 E
00 02 04 06 08 1.0 00 02 04 06 08 1.0
prop.correct prop.correct

Figure 6: (a) Density estimate for the four component fitted beta mixture (solid line) and
(b) the eleven equal variance components fitted Gaussian mixture (solid line). Individual
components in the mixtures (weighted by the mixing proportions) are given by dashed
lines.

The first beta component appears to be a close-to-uniform noise component (centred at
0.5 with fairly large variance) soaking up lower-valued observations not assigned to other
components. The fourth component has only students answering all questions correctly.
Note that 20.5% of the students got a proportion correct value of exactly 1, hence the
extreme peakedness of this component capturing these students (this component’s dashed
line is obscured by the mixture line in Figure 6 (a)). As expected, this mixture seems to
give a smoother density estimate than the Gaussian model-based clustering estimate. The
cross-classification table for the Gaussian components (columns) and beta components

(rows) is in Table
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Table 2: Mixing proportions, means, and variances for the four beta mixture components

Component 1 2 3 4

g 0.09 027 044 0.21
Mean 0.50 0.70 0.85 1.00
Variance 0.083 0.018 0.005 1le™ "

Table 3: Cross-classification Table: Gaussian vs beta component assignments

Beta Gaussian components
components | 1 2 3 4 ) 6 7 8 9 10 11
1 o o o0 o0 o o0 0 2 9 13
2 256 0 15 0 20 14 0 28 0 O
3 7 0 26 8 0 0 64 7 50 0 O
4 o 0 0 0 113 0 0 0O 0O 0 O

3.3.3 Multivariate Clustering of Student Skill Estimates

In Figure 7, we show the three-dimensional skill mastery capability estimates (see Equa-
tion ([6])) for our subset of Assistment data. As there were only two questions involving the
Unit Conversion skill, there are only three possible values for its skill mastery estimate:
0, 0.5, and 1. There are 101 students with an estimated mastery of zero, 23 students with
0.5, and 35 students with one (perfect mastery). We condition on these three planes and
separately cluster each of the three 2-D conditional planes of skill mastery for Evaluating
Functions and Multiplication. Conditioning was shown in Nugent et al (2009)) to be a
more sensible approach for this data rather than direct three-dimensional multivariate
clustering (as the extreme coarseness of the distribution of Unit Conversion overwhelms
more interesting clustering information within the 2-D subplanes). The corresponding
conditional planes are shown in Figure 8.

Model-based clustering with Gaussian components chooses seven “VEI” (varying vol-
ume, equal shape diagonal) components for the first (0) plane, two “EEV” (equal volume
and shape and varying orientation) components in the second (0.5) plane and seven “EEV”
components in the third (1) plane (shown in Figure 9). As before, the use of Gaussian
densities tends to give a larger number of components resulting in a larger variability in
the density estimate. In Figure 9, we see that the resulting clusters within the sub-planes
seem to be defined by variation for both Evaluating Functions and Multiplication.

Using a mixture of beta component densities, BIC-ICL selects three components in
the first Unit Conversion plane (0), one component in the second plane (0.5) and two
components in the third plane (1). Unlike our previous results, the clusters now tend to
be driven by the Evaluating Function values (see Figure 10). The clusters in the first
plane are students with zero mastery in both skills (diamond in Figure 10(a)), students
with non-zero mastery in both skills (circles in Figure 10(a)) and students with zero mas-
tery in Evaluating Functions and non-zero mastery in Multiplication (triangles in Figure
10(a)). The clusters in the third plane are students with perfect (1) mastery in Evaluating
Functions (triangles in Figure 10(c)) and non-perfect mastery in Evaluating Functions
(diamonds in Figure 10(c)). In general, the returned clusters seem very reasonable and
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Figure 9: Skill mastery estimates for Evaluating Function & Multiplication in the (a)
zero, (b) 0.5, and (c) 1 Unit Conversion planes; Gaussian component assignments given

by symbol

Figure 10: Skill mastery estimates for Evaluating Function & Multiplication in the (a)
zero, (b) 0.5, and (c¢) 1 Unit Conversion planes; beta component assignments given by

symbol
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interpretable from an educational testing point of view.

4 Discussion

In general, both Gaussian component and beta component mixture models can give use-
ful clustering results. In an effort to best fit the underlying population density, the use of
Gaussian components tends to select a larger number of components with a correspond-
ingly more variable density estimate. However, its use also assumes an unconstrained fea-
ture space. Modeling beta components tends to give a more useful summarization when
smaller numbers of components are desired or when the feature space is constrained (in
our application, by the unit hypercube). In our simulations, we also saw that the correct
number of components was selected for skill set profile data generated from the DINA
model (while the number of Gaussian components overestimated the correct number of
true profile groups).

The examples given in this paper were chosen to be three-dimensional for ease of
illustration and discussion of results. Mixture models using Gaussian components or
beta components are more generally applicable to higher dimensions, and their greatest
usefulness is in such higher-dimensional problems where the estimation of standard CDMs
is not feasible.

Computational issues can arise with fitting beta mixtures due to rounding error (par-
ticularly when taking the product of a large number of probability densities in the E-step
of the EM algorithm). Suitable care must be taken to avoid this problem as much as
possible. Other potential problems with multivariate data are associated with the specifi-
cation of EM starting parameter values. In this paper, K-Means clustering was used as a
quick and reasonable choice to give reasonable starting estimates for the z matrix in the
E-step. However, these estimates may not always be useful and, like all approaches, the
fitting of the mixture of beta densities may be plagued by entrapment in local maxima. In
addition to possibly using several sets of K-Means starting values, multiple random start
approaches could be used to try to avoid the issue of local optima. Numerical optimisa-
tion in the mixture of the subclass of beta densities must also be carefully constrained to
the correct parameter space and issues with precision (due to the calculation of the log
beta function in the log-likelihood) may occasionally arise.

One restriction with the proposed beta mixture approach is the assumption of con-
ditional independence between variables within the components. This assumption is not
necessarily required when using Gaussian components in model-based clustering. An
alternative model could be to specify more general unimodal multivariate densities de-
fined on the unit hypercube that allow dependence. In practice thus far, however, this
assumption does not appear overly stringent.

The beta mixture model approach in this paper was applied to skill mastery estimates
as given by equation @ but is more widely applicable to any estimates from CDMs that
fall in the unit hypercube. One clear problem with the estimates as given by equation ()
is the lack of uncertainty associated with the estimate. For example, we would be much
less confident in a value of one estimated from only one question involving a particular
skill than a value of one estimated from ten questions. An alternative approach would be
to look at the number of questions involving the skill and the number of correct answers
(e.g., the sum scores approach of Henson et al, 2007) and model these directly using a
mixture of binomial densities instead of beta densities. This approach would have the
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disadvantage that it could not be applied to most CDM estimates that lie directly in the
unit hypercube.

This mixture of multivariate betas could also be applied to multivariate data with
variables made up of correlations, for example time-wise correlation in gene-expression
levels, or for modelling recovery rates of loans of different types. Regardless of application,
though, one large advantage of working within the mixture model framework means that
variable selection techniques developed by |[Raftery and Dean (2006) and extended by
Maugis et al| (2009)) could be adapted to the mixture of betas setting. Similarly, extensions
to mixture of experts or mixed membership models could be developed.
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