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Abstract

Initialisation of the EM algorithm in model-based clustering is often crucial. Various starting 

points in the parameter space often lead to different local maxima of the likelihood function and, 

so to different clustering partitions. Among the several approaches available in the literature, 

model-based agglomerative hierarchical clustering is used to provide initial partitions in the 

popular mclust R package. This choice is computationally convenient and often yields good 

clustering partitions. However, in certain circumstances, poor initial partitions may cause the EM 

algorithm to converge to a local maximum of the likelihood function. We propose several simple 

and fast refinements based on data transformations and illustrate them through data examples.
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1 Introduction

Model-based clustering is an increasing popular method for unsupervised learning. In 

contrast to classical heuristic methods, such as k-means and hierarchical clustering, model-

based clustering methods rely on a probabilistic assumption about the data distribution. 

According to the main underlying assumption, data are generated from a mixture 

distribution, where each cluster is described by one or more mixture components. Maximum 

likelihood estimation of parameters is usually carried out via the EM algorithm (Dempster et 

al 1977). The EM algorithm is an iterative, strictly hill-climbing procedure whose 

performance can be very sensitive to the starting point because the likelihood surface tends 

to have multiple modes, although it usually produces sensible results when started from 

reasonable starting values. Thus, good initialisation is crucial for finding MLEs, although no 

method suggested in the literature uniformly outperforms the others.

In the case of Gaussian model-based clustering (Fraley and Raftery 2002), several 

approaches are available, both stochastic and deterministic, for selecting an initial partition 
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of the observations, or an initial estimate of the parameters. In the mclust R package 

(Fraley et al 2012, 2015), the EM algorithm is initialised using the partitions obtained from 

model-based agglomerative hierarchical clustering. Efficient numerical algorithms exist for 

approximately maximise the classification likelihood with multivariate normal models. 

However, in certain circumstances, poor initial partitions may cause the EM algorithm to 

converge to a local maximum of the likelihood function.

In this contribution we discuss cases where an initial partition may lead to suboptimal 

maximum likelihood estimates when applied to coarse data with ties (e.g. discrete data or 

continuous data that are rounded in some form when measured), and we present some 

possible refinements to improve the fitting of such finite mixture models.

The outline of this article is as follows. Section 2 gives a brief review of background 

material on model-based clustering, with special attention devoted to some of the proposals 

available in the literature for the initialisation of EM algorithm. Section 3 discusses the 

model-based hierarchical agglomerative clustering method used for starting the EM 

algorithm. This is a very convenient and efficient algorithm, but in certain circumstances 

presents a serious drawback. Section 4 contains some simple transformation-based methods 

to refine the EM initialisation step derived from model-based agglomerative hierarchical 

clustering. The behaviour of these methods is illustrated through the use of real data 

examples in Section 5. The final section provides some concluding remarks.

2 Background

2.1 Model-based clustering overview

Let x1, x2,…, xn be a sample of n independent identically distributed observations. The 

distribution of every observation is specified by a probability mass or density function 

through a finite mixture model of G components, which takes the following form

(1)

where ψ = {π1,…, πG−1, θ1,…, θG} are the parameters of the mixture model, fk (x, θk) is the 

kth component density at x with parameter(s) θk,(π1,…, πG−1) are the mixing weights or 

probabilities (such that ), and G is the number of mixture components.

Assuming G fixed, mixture model parameters ψ are usually unknown and must be estimated. 

The log-likelihood function corresponding to equation (1) is given by 

. Direct maximisation of the log-likelihood function 

is often complicated, so MLE of finite mixture models is usually carried out via the EM 

algorithm (McLachlan and Peel 2000).

In the model-based approach to clustering, each component of a finite mixture of density 

functions belonging to a given parametric class is associated with a group or cluster. Most 

applications assume that all component densities arise from the same parametric distribution 
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family, although this need not be the case in general. A popular model assumes a Gaussian 

distribution for each component, i.e. N(μk, Σk). Thus, clusters are ellipsoidal, centred at the 

mean vector μk, and with other geometric features, such as volume, shape and orientation, 

determined by Σk. Parsimonious parameterisations of the covariance matrices can be defined 

by means of eigen-decomposition in the form , where γk is a scalar 

controlling the volume of the ellipsoid, Ak is a diagonal matrix specifying the shape of the 

density contours, and Ok is an orthogonal matrix which determines the orientation of the 

corresponding ellipsoid (Banfield and Raftery 1993; Celeux and Govaert 1995). Fraley et al 

(2012, Table 1) summarized some parameterisations of within-group covariance matrices 

available in the mclust software, and the corresponding geometric characteristics.

The number of mixture components and the parameterisation of the component covariance 

matrices can be selected on the basis of model selection criteria, such as the Bayesian 

information criterion (BIC; Schwartz 1978; Fraley and Raftery 1998) or the integrated 

complete-data likelihood criterion (ICL; Biernacki et al 2000).

2.2 Initialisation of EM algorithm

The EM algorithm is an easy to implement, numerically stable algorithm, which has, under 

fairly general conditions, reliable global convergence. However, it may converge slowly 

and, like any other Newton-type method, does not guarantee convergence to the global 

maximum when there are multiple maxima (McLachlan and Krishnan 2008, p. 29). Further, 

in the case of finite mixture modelling, the estimates obtained depend on the starting values. 

Thus initialisation of EM is crucial because the likelihood surface tends to have multiple 

modes, although it usually produces sensible results when started from reasonable starting 

values (Wu 1983; Everitt et al 2011, p. 150).

Several approaches are available, both stochastic and deterministic, for initialising the EM 

algorithm. Broadly speaking, there are two general approaches. The first one starts from 

some initial values for the parameters to be estimated. A simple strategy is based on 

generating several candidates by drawing parameter values uniformly at random over the 

feasible parameters regions. Since the random-starts strategy has a fair chance of not 

providing good initial starting values, a common suggestion to alleviate this problem is to 

run the EM algorithm with several random starts and to choose the best solution. However, 

such a strategy can be quite time consuming and is not always practical, especially for high-

dimensional datasets.

Two other stochastic initialisation schemes are the so-called emEM and rndEM. The former 

approach, proposed by Biernacki et al (2003), uses several short runs of the EM initialised 

with valid random starts as parameter estimates until an overall number of total iterations is 

exhausted. Then, the solution with the highest log-likelihood is chosen to be the initialiser 

for the long EM, which runs until the usual strict convergence criteria are met. This 

approach is computationally intensive and the same comments made above about random 

starts apply to it also.
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Two related approaches were proposed by Maitra (2009), one called Rnd-EM where the 

short EM stage is replaced by choosing multiple starting points and evaluating the log-

likelihood at these values without running any EM iterations. Then, the best obtained 

solution serves as an initialiser for the long EM stage. The second proposal is a staged 

approach based on finding a large number of local modes of the dataset, and then to choose 

representatives from the most widely-separated ones. This approach is reported to be very 

time-consuming for high-dimensional data, and Melnykov and Maitra (2010) found the 

method to be outperformed by emEM and RndEM. Recently, Melnykov and Melnykov 

(2012) have proposed a strategy for initialising mean vectors by choosing points with higher 

concentrations of neighbours and using a truncated normal distribution for the preliminary 

estimation of dispersion matrices.

A second kind of approach for initialising the EM algorithm is based on the partition 

obtained from another clustering algorithm, e.g. k-means or hierarchical agglomerative 

clustering (HAC). In this case, the final classification is used to start the EM algorithm from 

the M-step. Unfortunately, most of these partitioning algorithm have several drawbacks, 

such as the need to be properly initialised or the tendency to impose specific shapes and 

patterns on clusters. In the popular mclust package for R, the EM algorithm is initialised 

using the partitions obtained from model-based hierarchical agglomerative clustering 

(MBHAC). In this approach, k clusters are obtained from a large number of smaller clusters 

by recursively merging the two clusters that have the smallest dissimilarity in a model-based 

sense, i.e. the dissimilarity used for agglomeration is derived from a probabilistic model. 

Banfield and Raftery (1993) proposed a dissimilarity based on a Gaussian mixture model, 

which is equal to the decrease in likelihood resulting by the merging of two clusters. Fraley 

(1998) showed how the structure of some specific Gaussian models can be exploited to yield 

efficient algorithms for agglomerative hierarchical clustering. More details about this 

approach are discussed in the following section.

3 Model-based hierarchical agglomerative clustering

The objective of MBHAC is to obtain a hierarchical ordering of clusters of n objects on the 

basis of the some measure of similarity among them. The result is a treelike structure, which 

proceeds from n clusters containing one object to one cluster containing all n objects by 

successively merging objects and clusters.

Given n objects or observations (x1,…, xn), let (z1,…, zn)⊤ denote the classification labels, 

i.e. zi = k if xi is assigned to cluster k. The unknown parameters are obtained by maximising 

the classification likelihood

Assuming the multivariate Gaussian distribution for fk (xi|θk), the parameters are the mean 

vector μk and the covariance matrix Σk. By imposing different covariance structures over Σk, 

different criterion can be derived (see Fraley 1998, Table 1). For instance, when the 
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covariance is allowed to be different among clusters, the criterion to be minimised at each 

hierarchical stage is

(2)

where nk is the number of observations in group k and Wk is the sample cross-product matrix 

for the kth group (k = 1,…, G). Efficient numerical algorithms are available for 

approximately maximising the classification likelihood (or, equivalently, minimising the 

corresponding criterion) with multivariate Gaussian models have been discussed.

As mentioned, the above MBHAC approach is used for starting the EM algorithm in the 

mclust R package. This is particularly convenient because the underlying probabilistic 

model can be shared by the initialisation step and the model fitting step. MBHAC is also 

computationally convenient because a single run provides the basis for initialising the EM 

algorithm for any number of mixture components and parameterisations of the component 

covariance matrices.

However, a serious problem for the MBHAC approach may arise when, at any stage, two 

pairs of objects attain the same minimum value for the criterion in (2). In the presence of 

coarse data, resulting from the discrete nature of the data or from continuous data that are 

rounded in some way when measured, ties must be broken by choosing the pair of entities 

that will be merged. This is often done at random but, regardless of which method is adopted 

for breaking ties, this choice can have important consequences because it changes the 

clustering of the remaining observations. In this case the final EM solution may depend on 

the ordering of the variables, and to a lesser extent on permutation of the observations (the 

latter case is not studied further in this paper).

This difficulty is known as the ties in proximity problem in the hierarchical clustering 

literature (see, for example, Jain and Dubes 1988, Sec. 3.2.6). This problem can also arise in 

other contexts, such as k-means clustering (Gordon 1999, p. 42) or partition around medoids 

(PAM; Kaufman and Rousseeuw 1990, p. 104).

4 Transformation-based approaches for obtaining starting partitions in 

model-based hierarchical agglomerative clustering

In this section we describe some simple proposals for starting the EM algorithm using the 

partitions obtained with MBHAC. Ideally, we would like to retain the positive aspects of 

such approach, but, at the same time, reduce the chance that a poor initial partition causes 

the EM algorithm to converge to a local maximum of the likelihood function.

The idea is to project the data through a suitable transformation before applying the 

MBHAC at the initialisation step. Once a reasonable hierarchical partition is obtained, the 

EM algorithm is run using the data on the original scale.
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Let X be the (n × p) data matrix, and  be the corresponding centred matrix, 

where  is the vector of sample means, and 1n is the unit vector of length n. 

Let  be the (p × p) sample covariance matrix. Consider the singular 

value decomposition (SVD) of the centred data matrix,

where ui are the right singular vectors,  the left singular vectors, λ1 ≥ λ2 ≥ … ≥ λr > 0 the 

singular values, and r the rank of matrix . Similarly, the centred and scaled data matrix can 

be decomposed as

where  is the diagonal matrix of sample variances. In both SVD 

decompositions the rank r is the rank of the data matrix, i.e. r ≤ min (n, p), with equality 

when there are no singularities.

We now provide the details of the transformations investigated and some remarks.

4.1 Data sphering

Sphering (or whitening) the data (SPH) is obtained by applying the following 

transformation:

where V and  are, respectively, the matrix of eigenvectors and the 

diagonal matrix of square root inverse of eigenvalues from the spectral decomposition of the 

sample marginal covariance,  For this transformation, E(ZSPH) = 0 and Var(ZSPH) = I, so 

the features are centred at zero, with unit variances and uncorrelated. Thus, this 

transformation converts an elliptically shaped symmetric cloud of points into a spherically 

shaped cloud.

4.2 PCA scores from covariance matrix

The principal component transformation from the covariance matrix (PCS) is obtained as:

for which E(ZPCS) = 0 and , so the features are centred, uncorrelated and 

with decreasing variances equal to the eigenvalues of . Usually the first few components 
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account for most of the dispersion in the data. A similar idea was proposed by McLachlan 

(1988), who discussed the use of principal component analysis in a preliminary exploratory 

analysis for the selection of suitable starting values.

4.3 PCA scores from correlation matrix

The principal component transformation from the correlation matrix (PCR) is defined as:

for which E(ZPCR) = 0 and Var (ZSPH) = I, so the features are centred, uncorrelated and with 

decreasing variances equal to the eigenvalues of the marginal sample correlation matrix, 

.

4.4 Scaled SVD projection

The scaled SVD transformation (SVD) is computed as:

for which E(ZSVD) = 0 and . Again the features are 

centred, uncorrelated and with decreasing variances equal to the square root of the 

eigenvalues of the marginal sample correlation matrix, . In this case the 

features’ dispersion presents a gentle decline compared to the PCR case.

4.5 Remarks

All the above transformations allow one to remove the “ordering” effect, so that even in the 

presence of ties the partitions obtained by applying MBHAC are invariant to permutations of 

the input variables. Furthermore, as shown in the next section through examples with real 

data, most of them allow one to achieve better clustering results when used for initialising 

the EM algorithm in Gaussian model-based clustering.

To get an idea of this, consider Figure 1 where we report a scatterplot matrix with pairs of 

plots for the original variables in the Crabs dataset (to be discussed in Section 5.1) and for 

scaled SVD-transformed features in, respectively, the lower and upper panels, and with 

points marked according to the true classes. In the graphs for the variables in the original 

scale is hard to detect any clustering structure, whereas in the first three SVD features there 

appears to be a certain degree of separation among classes. Applying MBHAC on this 

features space should provide better starting points for applying the EM algorithm.

5 Data analyses

In this Section we present some examples using real data. We compare the behaviour of the 

proposed transformations against the usual MBHAC for starting the EM algorithm, and two 

common strategies for GMMs initialisation. The first strategy is to start from the best 
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partition obtained out of 50 runs of the k-means algorithm. The second is the emEM strategy 

as implemented in the mixmod software (Biernacki et al 2006; Auder et al 2014), which, by 

default, uses 50 short runs of EM, each made of 5 iterations, followed by a long run of EM 

from the solution maximising the log-likelihood. The tolerance used for assessing the log-

likelihood relative convergence of the EM algorithm is set to 10−5.

The comparison among the different initialising strategies is based on two measures, the 

BIC and the adjusted Rand index (ARI). The former is used to select the best Gaussian finite 

mixture model with respect to both the number of components and the component-

covariances decomposition. The BIC for model  with k components has the following 

form

where  is the maximised log-likelihood,  is the number of independent 

parameters to be estimated in model , and k is the number of mixture components. This 

criterion depends on the starting partition through the log-likelihood at the MLEs , 

penalised by the complexity of the model. It is the default criterion used in mclust for 

selecting a model, so the larger the value of the BIC the stronger the evidence for the 

corresponding model and number of components.

The ARI (Hubert and Arabie 1985) is used for evaluating the clustering obtained with a 

given mixture model. This is a measure of agreement between two partitions, one estimated 

by a statistical procedure independent of the labelling of the groups, and one being the true 

classification. The ARI has zero expected value in the case of a random partition, and it is 

bounded above by 1, with higher values representing better partition accuracy. Furthermore, 

it can be applied to compare partitions having different numbers of parts. The ARI is the 

index recommended by Milligan and Cooper (1986) for measuring the agreement between 

an external reference partition and a clustering partition. In the following data analysis 

examples, we take advantage of the knowledge of the true classes for measuring clustering 

accuracy, but not for model fitting.

5.1 Crabs data

We now consider a dataset consisting of data on five morphological measurements for 200 

Leptograpsus crabs, with 50 crabs for each of two colour forms (blue and orange) and both 

sexes. Figure 2 shows the marginal distribution for each variable. In each stripchart data 

points are stacked to avoid overalapping, so the presence of several ties in the data is 

evident.

Overall, there are 5! = 120 possible different ordering of the variables, of which 105 lead to 

selection of the (EEE,9) model, and 15 the (EEV,3) model. Table 1 shows the corresponding 

BIC and ARI obtained for these models and for models initialised using the transformations 

discussed in Section 4. As it can be seen, initialisation with the scaled SVD transformation 

returns the model with both the largest BIC and the most accurate partition (ARI = 0.7938). 

This transformation is the only one that selects the correct number of mixture components. 
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Initialisation based on k-means also yields the right number of components, but its fit and 

accuracy are substantially worse. The emEM initialisation strategy yields a better fit, but it 

selects the wrong number of clusters.

Raftery and Dean (2006) selected as optimal subset for clustering purposes the variables 

( FL, RW, CW, BD) (in the identified ordering). Also for such a subset, different orderings 

give different results in 7 out of 24 possible arrangements. Table 2 shows the clustering 

results obtained with different initialisation strategies using the above mentioned optimal 

subset of variables. Again, initialisation with the scaled SVD transformation yields the 

largest BIC and the highest ARI among the considered strategies, with a slight improvement 

over the default initialisation with the identified ordering of the variables. Note that emEM 

has results analogous to the best default MBHAC initialisation, but k-means results are 

markedly worse.

Finally, note that, using both the full set of the variables and the optimal subset, analysis 

with the initialisation using the scaled SVD transformation used the smallest computing 

time. This may appear counterintuitive at first sight, because computing the SVD is time 

consuming. However, this is more than balanced by the fact that having good starting values 

allows the EM algorithm to converge in fewer steps.

5.2 Female voles data

Flury (1997) reported the data for a sample of 86 female voles from two species, 41 from 

Microtus californicus and 45 from Microtus ochrogaster, and seven variables describing 

various body measurements in units of 0.1mm, so several ties are contained in this data set.

There are 7! = 5,040 possible orderings of the variables. When the default initialisation is 

used, there is considerable variation among the resulting solutions: 41 final models with 

different BIC values (up to 5 significant digits) are estimated, leading to 38 different 

partitions. About 67% of the solutions give a single component model, about 20% have 

three components, and only about 7.5% of the solutions correctly identify the correct 

number of clusters. On the contrary, three transformation-based initialisation strategies are 

able to achieve the best fit in term of BIC, which in turn provides the largest ARI. The same 

optimal solution is also achieved by the emEM strategy, whereas results from the k-means 

initialisation are inferior. Note that also in this case the scaled SVD transformation is among 

the best strategies, with no increase in computing time.

5.3 Italian wines data

Forina et al (1986) reported data on several chemical and physical properties of 178 wines 

grown in the same region in Italy but derived from three different cultivars (Barolo, 

Grignolino, Barbera). We consider 27 of the original 28 variables that were described in the 

Forina et. al paper and are available in the pgmm R package (McNicholas et al 2015). In what 

follows, the data are analysed on the standardised scale and, given the large number of 

features, only the common full covariance matrix model (EEE) is examined. Table 4 shows 

the results obtained using different MB-HAC initial partitions, k-means and emEM 

initialisation strategies. Except for one case, the MBHAC initialisations allow one to achieve 
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good clustering accuracy. In particular, SVD has the highest BIC and attains a clustering 

that perfectly matches the real classes. By comparison, the models initialised by k-means 

and emEM show somewhat worse values of both BIC and ARI.

6 Final comments

The mixture model-based approach to clustering provides a firm statistical framework for 

unsupervised learning. The EM algorithm is typically used for parameter estimation. 

However, because of the many local maxima of the likelihood function, an important 

problem for getting sensible maximum likelihood estimates is to obtain reasonable starting 

points. A computationally efficient approach to EM initialisation is based on the partitions 

obtained from agglomerative hierarchical clustering.

In this paper we have presented and experimented with simple transformation-based 

methods to refine the EM initialisation step derived from model-based agglomerative 

hierarchical clustering. The proposed transformation-based strategies allow one to remove 

the dependence on the ordering of the variables when selecting starting partitions. They also 

often lead to improved model fitting and more accurate clustering results. Among the 

investigated transformations, the scaled SVD transformation performed the best in our 

experiments. The proposed approach may be applicable to other mixture modelling contexts, 

but we have not explored this possibility yet. Future studies will be devoted to this aspect.

As mentioned by Biernacki et al (2003, p. 567) and Melnykov and Maitra (2010), we cannot 

expect an initialisation strategy to work uniformly well in all cases. Therefore, it is 

important to explore different strategies and to choose the solution with the highest log-

likelihood value, but also to consider those sub-optimal solutions on a more subject specific 

considerations.

The transformation-based initialisation strategies discussed in this paper are available in the 

R package mclust (version >= 4.4), which can be downloaded from CRAN at http://cran.r-

project.org/web/packages/mclust/index.html.
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Fig. 1. 
Scatterplot matrix for the Crabs data: lower panels show scatterplots for pairs of variables in 

the original scale; upper panels show the features obtained by applying the scaled SVD 

transformation. For all graphs points are marked according to the true classes.
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Fig. 2. 
Stripcharts with stacked data points for the Crabs data showing the marginal distribution for 

each variable. From this plot the presence of several ties is clearly visible.
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