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Abstract
Classical Biplot Methods allow for the simultaneous representa-

tion of individuals (rows) and variables (columns) of a data matrix.
For Binary data, Logistic biplots have been recently developed. When
data are nominal, linear or even binary logistic biplots are not ade-
quate and techniques as Multiple Correspondence Analysis (MCA),
Latent Trait Analysis (LTA) or Item Response Theory for nominal
items should be used instead.

In this paper we extend the binary logistic biplot to nominal data.
The resulting method is termed Nominal Logistic Biplot, although
the variables are represented as convex prediction regions rather than
vectors. Using the methods from Computational Geometry, the set
of prediction regions is converted to a set of points in such a way
that the prediction for each individual is established by its closest
“category point”.

Then interpretation is based on distances rather than on projec-
tions. We study the geometry of such a representation and construct
computational algorithms for the estimation of parameters and the
calculation of prediction regions. Nominal Logistic Biplots extend
both MCA and LTA in the sense that gives a graphical representa-
tion for LTA similar to the one obtained in MCA.

1. Introduction. The biplot method (Gabriel , 1971) is a simultaneous
graphical representation of the rows and columns of a data matrix. In prac-
tice, biplot fitting occurs either by computing the singular value decompo-
sition (SVD) of the data matrix or by performing an alternating regressions
procedure (Gabriel and Zamir, 1979). Jongman et al. (1987) fit the biplot
by alternating a regression and a calibration step, essentially equivalent to
the alternating regressions. Gower and Hand (1996) use the term interpo-
lation rather than calibration. For data with distributions from the expo-
nential family, Gabriel (1998), describes “bilinear regression” as a method
to estimate biplot parameters, but the procedure have never been imple-
mented and the geometrical properties of the resulting representations have
never been studied. Method is called “External Logistic Biplot”. De Leeuw
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(2006) proposes Principal Components Analysis for Binary data based on
an alternate procedure in which each iteration is performed using iterative
majorization and Lee et al. (2010) extends the procedure for sparse data
matrices, none of those describe a biplot representation for binary data.
Vicente-Villardon et al. (2006) propose a biplot representation based on lo-
gistic responses called “Logistic Biplot” that is linear, the paper studies the
geometry of this kind of biplots and uses a estimation procedure that is
slightly different from Gabriel’s method. A heuristic version of the proce-
dure for large data matrices in which scores for individuals are calculated
with an external procedure as Principal Components Analysis is described
in Demey et al. (2008).

When data are nominal, there are many techniques to deal with it, some of
them see the problem from a Factor Analytic point of view to obtain latent
factors that explain the correlation among variables, others as some kind of
non-parametric approximations to explore the similarities among individuals
(Principal Coordinates Analysis or Multidimensional Scaling) but there is a
lack of general exploratory techniques for the simultaneous representation of
individuals and variables except Multiple Correspondence Analysis, based
on the chi-squared distance, that is not always adequate to describe simi-
larities among individuals and correlations among variables. As we will see,
it is possible to combine the Factor Analytic approach with the exploratory
point of view to obtain a simultaneous representation of individuals and vari-
ables (Biplot) that helps to explore the information provided by the data. In
this paper we propose “Nominal Logistic Biplots” that share characteristics
from the previously mentioned techniques; on the one hand is a procedure
for dimension reduction, explaining the correlation among nominal variables
with a reduced number of latent factors and on the other hand can serve as
a exploratory biplot technique. Nominal Logistic Biplots represent the rows
of a data matrix as points on a reduced dimension representation (usually 2
or 3) and variables as prediction regions (convex polygons), in the same way
as is done in Gower and Hand (1996) for Multiple Correspondence Analysis.
For MCA the category points are calculated first and then the prediction
regions are obtained as regions of a voronoi diagram; in this case the pre-
diction regions are obtained first by nominal logistic regression that defines
tessellations of the space; the problem is then finding the voronoi diagram
that is the closest to the “logistic tessellation” and a set of generators for
such a diagram are the category points, the main advantage of doing so is
that the interpretation of the biplot is done in terms of distances, for each
individual the predicted category is the closest to it on the biplot.

There are several candidate methods for parameter estimation:
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• Alternated generalized regressions and interpolations. (Joint
Maximum Likelihood, (Gabriel, 1998; Vicente-Villardon et al., 2006)).

• Marginal Maximum Likelihood (As in Item Response Theory,
(Baker, 1992; Bock and Aitkin, 1981; Chalmers, 2012)).

• External Logistic Biplots: Heuristic approach for big data matrices.
(Logistic fits on the Principal Coordinates, (Demey et al., 2008)).

In the context of binary logistic biplots the first two procedures are par-
ticularly useful when the number of individuals (companies) is higher than
the number of variables (indicators), being the second more stable for cases
with a high number of individuals. The third method is more useful when
the number of indicators is higher than the number of companies, although
it can be applied in any case. In this paper we have chosen a version of the
second method. Final estimation of the variable parameters where calculated
using an algorithm developed for this paper, standard logistic regressions on
the scores provided by mirt or by Principal Coordinates Analysis.

In Section 2 we describe linear and logistic biplots as a basis for the
development of the nominal case. Section 3 describes the model and its
main geometrical characteristics. Section 4 presents an algorithm to obtain
the category points for each variable. Section 5 applies the nominal logistic
biplot to a classical set of data and Section 6 concludes the paper with a
discussion and some suggestions for further research.

2. Linear and Binary Logistic Biplots.

2.1. Classical Linear Biplots and the Singular Value Decomposition. Let
XI×J be a data matrix containing the measures of J variables ( continuous)
on I individuals. A S-dimensional biplot is a graphical representation of a
data matrix X by means of markers (points or vectors) a1, . . . ,aI for its rows
and markers b1, . . . ,bJ for its columns, in such a way that the product a′ibj

approximates the element xij as close as possible. Arranging the markers as
row vectors in two matrices A and B, the approximation of X can be written
as X ≈ AB′. Although the classical biplot is well known, we include here a
short description, in terms of alternating regressions, related to our proposal.

The most typical way to obtain the biplot is from the singular value
decomposition. Let R = rank(X), there exists a factorization of the form

(2.1) X = UΛV′ =
R
∑

r=1

λrurv
′
r

where U is an I ×R unitary matrix, Λ is an R×R diagonal matrix with
non-negative real numbers on the diagonal, and V an J ×R unitary ma-
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trix. Such a factorization is called the singular value decomposition of X.
The diagonal entries λr,r of Λ are known as the singular values of X, and
are placed in decreasing order, and the columns ur and vr of U and V are
known as left and right singular vectors. The Singular Value Decompositions

are closely related to the Eigen Decompositions, the columns of U are the
eigenvectors of XX′, the columns V the eigenvectors of X′X and the diag-
onal elements of Λ are the squared roots of the non-null eigenvalues of both
matrices (that are the same).

It is known that the best S − rank approximation of X is given by its
first S singular values and vectors

(2.2) X ∼=
S
∑

s=1

λsusv
′
s = U(S)Λ(S)V

′
(S)

From he SVD it is easy to obtain a factorization in the Biplot form with
the desired restriction taking

(2.3) A = U(S)Λ
γ
(S), B = V

1−γ
(S)

with 0 ≤ γ ≤ 1, as row and column coordinates respectively. This will be
referred in the later as PCA-Biplot or Classical Biplot. For example, with
γ = 1, A are the coordinates of individuals on the principal components and
B are the eigenvectors of the covariance matrix.

There is another way of obtaining biplots from alternated regressions.
If we consider the row markers A, as fixed, the column markers can be
computed by regression

(2.4) B′ = (A′A)−1A′X

In the same way, fixing B, A can be obtained as

(2.5) A′ = (B′B)−1B′X′

Alternating the steps (2.4) and (2.5) the product converges to the SVD. The
algorithm can then be completed with an orthogonalization step to ensure
the uniqueness of its solution. The regressions in (2.1) and (2.2) can be sepa-
rated for each row and column of the data matrix. This symmetrical process
is commonly used to adjust bilinear (or bi-additive) models with symmetrical
roles for rows and columns. For a data matrix of individuals by variables, the
roles of rows and columns are non-symmetrical, nevertheless the algorithm
is still valid and is interpreted as a two-step process, alternating a regres-
sion step and an interpolation/calibration step. The regression step adjusts
a separate linear regression for each column (variable) and the interpolation
step interpolates an individual using the column markers as the reference.
Geometry of the interpolation step is described in Gower and Hand (1996).
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2.2. Logistic Biplots for Binary Data. Let XI×J be a data matrix in
which the rows correspond to I individuals and the columns to J binary
characters. Let πij = E(xij) the expected probability that the character j
be present at individual i, and xij the observed probability, either 0 or 1,
resulting in a binary data matrix. The S-dimensional logistic biplot in the
logit scale is formulated as

(2.6) logit(πij) = log(
πij

1− πij
) = bj0 +

S
∑

s=1

bjsais = bj0 + a′ibj ,

where ais and bjs, (i = 1, . . . , I; j = 1, . . . , J ; s = 1, ..., S), are the model
parameters used as row and column markers respectively. The model is a
generalized (bi)linear model having the logit as a link function. In terms of
probabilities rather than logits

(2.7) πij =
ebj0+

∑

k
bjkaik

1 + ebj0+
∑

k
bjkaik

In matrix form,

(2.8) logit(Π) = 1Ib
′
0 +AB′,

where Π is the matrix of expected probabilities, 1I is a vector of ones and
b0 = (bj0) is the vector containing intercepts that have been added because
it is not possible to center the data matrix in the same way as in linear
biplots. The intercepts are the displacements of centroids in the same way
as it is the first ordination axis in Correspondence Analysis. The model is a
latent trait model for binary data, being the row coordinates the scores of
individuals on the latent trait. Although the biplot in the logit scale may be
useful, it would be more interpretable in a probability scale.

The points predicting different probabilities are on parallel straight lines
on the biplot; this means that predictions on the logistic biplot are made in
the same way as on the linear biplots, i. e., projecting a row marker ai =
(ai1, ai2) onto a column marker bj = (bj1, bj2). (See Vicente-Villardon et al.
(2006), Demey et al. (2008)).

The model in (2.6) is also a latent trait or item response theory model,
in that ordination axes are considered as latent variables that explain the
association between the observed variables. In this framework we suppose
that individuals respond independently to variables, and that the variables
are independent for given values of the latent traits. With these assumptions
the likelihood function is

(2.9) Prob(xij | (b0,A,B)) =
I
∏

i=1

J
∏

j=1

π
xij

ij (1− πij)
1−xij
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Taking the logarithm of the likelihood function yields
(2.10)

L = log Prob(xij | (b0,A,B)) =
I
∑

i=1

J
∑

j=1

[xij log(πij) + (1− xij) log(1− πij)]

For A fixed, (2.10) can be separated into J parts, one for each variable,

(2.11) L =
J
∑

J=1

Lj =
J
∑

J=1

(

I
∑

i=1

[xij log(πij) + (1 − xij)log(1 − πij)]

)

Maximizing each Lj is equivalent to performing a standard logistic regression
using the j−th column ofX as a response and the columns ofA as regressors.
In the same way the probability function can be separated into several parts,
one for each row of the data matrix, L =

∑I
i=1 Li.

Binary logistic biplots can be calculated using the package MULTBIPLOT
(Vicente-Villardon, 2010).

3. Logistic Biplot for Nominal Data.

3.1. Formulation. Let XI×J be a data matrix containing the values of
J nominal variables, each with Kj (j = 1, . . . , J) categories, for I individ-
uals, and let GI×L be the corresponding indicator matrix with L =

∑

j Kj

columns. The last (or the first) category of each variable will be used as
a baseline. Let πij(k) denote the expected probability that the category k
of variable j be present at individual i. A multinomial logistic latent trait
model with S latent traits, states that the probabilities are obtained as

(3.1) πij(k) =
e
bj(k)0+

S
∑

s=1

bj(k)sais

Kj
∑

l=1
e
bj(l)0+

S
∑

s=1

bj(l)sais

, (k = 1, . . . ,Kj)

Using the last category as a baseline in order to make the model identifiable,
the parameter for that category are restricted to be 0, i.e., bj(Kj)0 = bj(Kj)s =
0, (j = 1, . . . , J ; s = 1, . . . , S).The model can be rewritten as

(3.2) πij(k) =
e
bj(k)0+

S
∑

s=1

bj(k)sais

1 +
Kj−1
∑

l=1
e
bj(l)0+

S
∑

s=1

bj(l)sais

, (k = 1, . . . ,Kj − 1)
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With this restriction we assume that the log-odds of each response (relative
to the last category) follows a linear model

log

(

πij(k)

πij(Kj)

)

= bj(k)0 +
S
∑

s=1

bj(k)sais = bj(k)0 + a′ibj(k),

where ais and bj(k)s (i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . ,Kj−1; s =
1, . . . , S) are the model parameters. In matrix form,

(3.3) O = 1Ib
′
0 +AB′,

where OI×(L−J) is the matrix containing the expected log-odds, defines a
biplot for the odds. Although the biplot for the odds may be useful, it would
be more interpretable in terms of predicted probabilities and categories.
This Biplot will be called “Nominal Logistic Biplot”, and it is related to the
latent nominal models in the same way as classical linear biplots are related
to Factor or Principal Components Analysis or Binary Logistic Biplots are
related to the Item Reponse Theory or Latent Trait Analysis for Binary
data.

The points predicting different probabilities are no longer on parallel
straight lines (see the figure 1 with the response surfaces); this means that
predictions on the logistic biplot are not made in the same way as in the
linear biplots, the surfaces define now prediction regions for each category
as shown in the graph.

3.2. Geometry. Suppose we have a two-dimensional representation in
which the row coordinates are defined by the first two columns of A in (3.3),
let’s call L the space generated by those columns. Equations (3.1), (3.2) and
(3.3) define a set of probability response surfaces (one for each category and
each variable) (figure 1) that are no longer sigmoid as in the binary case
(Vicente-Villardon et al. (2006)). This means that the level curves are no
longer straight lines and then, prediction of probabilities is not made by
projection as in the usual linear biplots. Figure 2b shows the level curves
for probability 0.5 and a hypothetical variable with four categories. We will
show that in this case the predicted probabilities, for each variable, define
a set of convex polygons that can be interpreted as “prediction” regions in
the same way as in Gower and Hand (1996). For each variable there are as
many regions as categories and each one is formed by the set points in with
the expected probability for a category is higher than the probability for the
rest of categories. Let Rk denote the region for category j, then it can be
defined as

Rk =
{

ah = (ah1, ah2) ∈ L/πhj(k) ≥ πhj(m),∀m 6= k; k,m = (1, . . . ,Kj)
}
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The prediction regions for a hypothetical variable with four categories are
shown in figure 2c. It is immediate to see that the prediction regions are
closely related to the level curves.

(a) (b)

Figure 1: Response surfaces of the Nominal Logistic model (a,b) , with 4
categories and 2 explanatory variables.

It has to be noted that there are some cases in which some of the categories
are never predicted, those will be termed hidden categories and should
be taken into account to construct the final representation.

3.3. Obtaining “prediction regions”. In the following paragraphs we will
describe a procedure to obtain the prediction regions using methods taken
from the Computational Geometry. The set of convex polygons predicting
each category form a tessellation of the plane. Each cell of the tessellation
is delimited by a set of straight lines that correspond to points that have
equal probabilities for two of the categories of the variable (the edges). We
consider each variable j (j = 1, . . . , J) separately. Each pair of response
surfaces defined by (3.1) intersect in a straight line that, projected onto the
space of predictors, is the set of points in which the probability of both
categories is the same. Those lines are the candidates to be the edges of the
convex polygons defining the prediction regions. That is, we search for the set
of points Ekl in L such that the pair of categories k and l (k, l = 1, . . . ,Kj),
have the same expected probability πij(k) = πij(l) i. e., Ekl is the set of points
verifying:



LOGISTIC BIPLOT FOR NOMINAL DATA 9

(3.4)
e
bj(k)0+

2
∑

s=1

bj(k)sas

Kj
∑

m=1
e
bj(m)0+

2
∑

s=1

bj(m)sas

=
e
bj(l)0+

2
∑

s=1

bj(l)sas

Kj
∑

m=1
e
bj(m)0+

2
∑

s=1

bj(m)sas

Then

bj(k)0 +
2
∑

s=1

bj(k)sas = bj(l)0 +
2
∑

s=1

bj(l)sas

or
(bj(k)1 − bj(l)1)a1 + (bj(k)2 − bj(l)2)a2 = (bj(l)0 − bj(k)0)

The above equation can be written as:

a2 =
(bj(l)0 − bj(k)0)

(bj(k)2 − bj(l)2)
−

(bj(k)1 − bj(l)1)

(bj(k)2 − bj(l)2)
a1,

where a1 and a2 are generic coordinates on the dimensions of L. Each vari-
able j has

(Kj

2

)

of such lines as shown in figure 2b for a hypothetical example
with four categories.

Except for degenerate cases, any two lines with one index in common, Ekl
and Ekm, intersect in a point Pklm. The

(Kj

3

)

of such points are the candidates
to be the vertices of the tessellation. Point Pklm is a vertex of the tessellation
if there is not a t /∈ {k, l,m} such that π(Pklm)t > π(Pklm)r for r ∈ {k, l,m},
where π(Pklm)t is the expected probability of category t at point Pklm, i.e.,
the expected probability for one of the categories involved is the highest.
If a point is a vertex of the tessellation is termed real point, otherwise
is a virtual point. Degenerate cases may have parallel lines but this is
extremely unlikely to occur. The prediction regions Rk are delimited by all
the lines Ekl with index k and its vertices are all the points Pklm with the
index k. A category is hidden when its index is not present in any of the real
points. The region of the hidden category is omitted in the representation.
We now define the meaning of join two points Pklm and Pkln as follows (see
figure 3):

1. Two real points should be joined, if they have two indices in common,
following the line Ekl.

2. Two virtual points are never joined.
3. A virtual point and a real point are joined along the line Ekl, starting

from the real point and away from the virtual point.



10

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

(a)

34

13

23

134

14

24
12

123

234

124

(b)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

(c)

Figure 2: Geometry for a two-dimensional solution and a hypothetical vari-
able with four categories: Level curves of the response surfaces for p = 0.5
(a), lines of equal probability for each pair of categories and their intersec-
tion points (candidates for edges and vertices of the tessellation) (b) and
tessellation of the plane defined by the prediction regions (c).

 

Figure 3: Definition of join for constructing the tessellation. Black •: real
point; Red ⊙: virtual point

Now it is easy to adapt the algorithm described in Gower and Hand (1996)
to construct the tessellation generated by the probability responses:

1. Compute the coordinates of all
(Kj

3

)

points Pklm.
2. Decide if the point is real or virtual.
3. Join all pairs of points sharing two suffices, interpreting “join” as de-

scribed before.
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The procedure is different from that in Gower and Hand (1996) in two
aspects: They start from a set of points Ck, k = (1, . . . ,Kj) that they call
“category points” arising from a Multiple Correspondence Analysis with
some modifications, and then construct the tessellation from those points
using distances; we don’t have the category points and use probabilities
rather than distances. The tessellation based on distances is called a Voronoi
Diagram and is quite a popular tool in a discipline called “Computational
Geometry”; in this diagram the space is divided into a set of polygons or
regions Rk in such a way that points in the region are closest to Ck than
to any other point. The main advantage of doing so is that it provides a
simple interpretation of the representation of row and column markers of
the data matrix, the predicted category for each point is the corresponding
to its closest “category point”. Representing points rather than “regions”
produces a much cleaner and easier way to interpret the graph. We have the
regions but not the points and, although from a formal point of view our
problem is solved, and we have a simultaneous representation of individuals
and variables, it would be more convenient to have also a set of “category
points” to interpret the biplot in terms of distances. Let’s call this set of
points Cj(k), j = (1, . . . , J), k = (1, . . . ,Kj). This would be a fundamental
contribution of our research becase the interpretation of distances among
row and column points is simple and it is not an intrinsic property of most
multivariate techniques as MCA, except Unfolding that is designed for a
completely different purpose. Three problems arise:

1. Is our tessellation a Voronoi diagram?.
2. If not, is there any way to approximate it by its closest Voronoi tes-

sellation?.
3. Given a Voronoi tessellation, is it possible to obtain a set of generators

for it?.

In the next section we describe a procedure to obtain the generators given
a tessellation.

3.4. Obtaining generators of the tessellation. The problem of testing if
any convex tessellation consists of Voronoi polygons and if so, obtain a
set of centers or generators of the Voronoi diagram, has been studied for
example by Hartvigsen (1992) and Evans and Jones (1987). The first paper
establishes a set of equations of slope and distance that a tesselation must
hold to be Voronoi in such a way that solving a linear system it is possible
to obtain the set of centers(figure 4). Let’s see it in more detail.

First consider the following result (we will omit the index j of the vari-
able for simplicity): A tessellation of K polygons or convex regions Rk, k =
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1, . . . ,K is a Voronoi diagram with centres Ck = (xk, yk), k = (1, . . . ,K) iff
Rk = {(x, y) : (x−xk)

2+(y− yk)
2 ≤ (x−xl)

2+(y− yl)
2,∀l 6= k}, i.e., each

polygon of the tessellation is the set of points that are nearer to its center
than to any center of other polygon.

If we consider two adjacent polygons, Rl y Rm, whose common edge is
Elm with equation y = six+bi, and contain the vertices (up, vp) and (uq, vq),
let Cl = (xl, yl) and Cm = (xm, ym) the Voronoi centers of the regions (our
“category points”). The equations of slope and distance are:

(3.5)
(yl − ym)

(xl − xm)
=

−1

si

(3.6) − sixl + yl − bi = −sixm + ym − bi

where si =
(vp−vq)
(up−uq)

and bi = siup − vp.

Figure 4: Centers Cl = (xl, yl) and Cm = (xm, ym) are equidistant from the
edge they share Elm (3.5) and both lie on the line perpendicular to Elm (3.6)

Those equations with, for example k edges and n polygons form a linear
system with 2k equations and 2n unknowns, that can be solved by least
squares. In matrix form the system is

Bx = 0

Ax = b,

with x = [x1, y1, . . . , xn, yn]
′, b = −2[b1, . . . , bk]

′. Matrices A y B are sparse
but that is not a problem because the number of categories is usually small.
Calculations to obtain a solution are based on three algorithms that can
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produce different centers in the case that the polygons of the tessellation
are not Voronoi. The three methods are:

Algorithm 1: Minimize the conditions of distance and slope, that is,

search for Min

∥

∥

∥

∥

∥

[

A
B

]

x−

[

b
0

]∥

∥

∥

∥

∥

2

, with ‖.‖2 the euclidean norm.

Algorithm 2: Minimize ‖Bx‖2 , subject to Ax = b.
Algorithm 3: Minimize ‖Ax− b‖2 , subject to Bx = 0.
In practice, the main problem with the linear systems is the instability of

the algorithms due to the ill conditioning of the matrices. Schoenberg et al.
(2003) treats the problem and propose some alternatives to improve the sta-
bility of the final solution. Evans and Jones (1987) also proposes a measure
of the goodness of fit, i. e., a measure of how near is the tessellation from
a true Voronoi diagram. For the hypothetical example in figure 1 we show
the result of inverting a tessellation obtained from the logistic response in
figure 5, for this case the tessellation is very close to a Voronoi diagram.

−5 −4 −3 −2 −1 0 1 2
0.3

0.35

0.4

0.45

0.5

(a)

−4 −3 −2 −1 0 1 2

−4

−3

−2

−1

0

1

2

1

2

3

4

(b)

Figure 5: Frontal view of the intersections among the 4 response curves
obtained from the Nominal Logistic Regression (a) and the generated tes-
sellation with the result of the algorithm for inversion (b) with the category
points.

3.5. Paramater estimation. Although the nominal case doesn’t share the
geometrical properties with the binary case, the alternated algorithm de-
scribed in Vicente-Villardon et al. (2006), can be easily extended replacing
the binary logistic regressions by multinomial logistic regressions. The prob-
lem with this approach is that the parameters for the individuals can not
be estimated when the individual has 0 or 1 in all the variables for the
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binary case, or all the responses are at the baseline category for the nomi-
nal case. In this paper we use a procedure that is similar to the alternated
regressions method, except that the interpolation step is “eliminated” by
considering the row parameters as incidental. The technique assumes that
the scores for individuals are random effects sampled from some larger distri-
bution. The estimation procedure is an EM-algorithm that uses the Gauss-
Hermite quadrature to approximate the integrals, considering the individual
scores as missing data. More details of similar procedures can be found in
Bock and Aitkin (1981) or Chalmers (2012).

The likelihood function is

M (G|b0,A,B) =
I
∏

i=1

J
∏

j=1

Kj
∏

k=1

π
gij(k)
ij(k) ,

where gij(k) = 1 if individual i chooses category k of item j and gij(k) = 0
otherwise. The log-likelihood is

(3.7) L (G|b0,A,B) =
I
∑

i=1

J
∑

j=1

Kj
∑

k=1

gij(k) log
(

πij(k)
)

If the parameters A for individuals where known, the log-likelihood could
be separated into J parts, one for each variable

(3.8) L (G|b0,B) =
J
∑

j=1

Lj(G|bj0,Bj) =
J
∑

j=1





I
∑

i=1

Kj
∑

k=1

gij(k) log
(

πij(k)
)



,

where bj0 and Bj are the submatrices of parameters for the jth variable.
Maximizing the log-likelihood is equivalent to maximizing each part, i.e.,
obtaining the parameters for each variable separately. Maximizing each Lj

is equivalent to performing a multinomial logistic regression using the jth
column of X as response and the columns of A as predictors. We do not
describe logistic regression here because it is as a very well known proce-
dure. It is also well-known that when the individuals for different categories
are separated (or quasi-separated) on the space spanned by the explanatory
variables, the maximum likelihood estimators does not exist (or are unsta-
ble). Because we are seen the biplot as a procedure to classify the set of
individuals and searching for the variables responsible for it, accounting for
as much of the information as possible, it is probable that, for some vari-
ables, the individual are separated and then the procedure does not work
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just because the solution is good. The problem of the existence of the esti-
mators in logistic regression can be seen in Albert and Anderson (1984), a
solution for the binary case, based on the Firth’s method (Firth, 1993) is
proposed by Heinze and Schemper (2002). The extension to nominal logistic
model was made by Bull et al. (2002). All the procedures were initially de-
veloped to remove the bias but work well to avoid the problem of separation.
Here we have chosen a simpler solution based on ridge estimators for logistic
regression (Le Cessie and Van Houwelingen, 1992).

Rather than maximizing Lj(G|bj0,Bj) we maximize

(3.9) Lj(G|bj0,Bj)− λ (‖bj0‖+ ‖Bj‖)

We don’t describe here the procedure in great detail because that is also
a standard procedure. Changing the values of λ we obtain slightly different
solutions not affected by the separation problem.

In the same way, if parameters for variables were known, the log-likelihood
could be separated into I parts, one for each individual.

L (G|A) =
I
∑

i=1

Li(G| ai) =
I
∑

i=1





J
∑

j=1

Kj
∑

k=1

gij(k) log
(

πij(k)
)





To maximize each part we could use Newton-Raphson with a penalization
as before. Rather than that we will use expected a posteriori estimators for
the individual markers. For each individual (or response pattern) gi, the
likelihood is

Mℓ (gi|b0,ai,B) =
J
∏

j=1

Kj
∏

k=1

π
gij(k)
ij(k)

Assuming a distributional form g(a) (multivariate normal, for example) the
marginal distribution becomes

Pl (b0,B|g) =

∫

∞

−∞

. . .

∫

∞

−∞

Mℓ (gi|b0,ai,B)g(a)da,

the observed likelihood is

M (b0,B|G) =
I
∏

i=1

[∫

∞

−∞

. . .

∫

∞

−∞

Mℓ (gi|b0,ai,B)g(a)da

]

We approximate the integral by S-dimensional Gauss-Hermite quadrature

P̃l =
Q
∑

qS=1

. . .
Q
∑

q1=1

Mℓ (gℓ|b0,Y,B) g(yq1) . . . g(yqS)
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The multivariate S-dimensional quadrature, Y, has been obtained as the
product of S unidimensional quadratures (y1, . . . , yQ) with Q nodes each.
Then the marginal expected a posteriori score for individual i at dimension
s, ais, is

E(as/gℓ) =

∑Q
q=1 yqMℓ (gℓ|b0,Y,B) g(yq)

P̃l

4. A real case. Table 1, taken from Gower and Hand (1996), shows
the observations of four variables observed on twenty farms from the Dutch
island of Terschelling. This table is reported in Jongman et al. (1987) and it
is part of a much larger survey. It is concerned with environmental factors
and different forms of farm management. We have chosen this data because
it has been previously analysed in literature and can serve as a comparison
with the methods proposed here.

Table 1

Data on four variables observed at 20 farms on the island of Terschelling

Farm
number

Moisture
class

Grassland
management

type

Grassland
use

Manure
class

1 1 SF 2 4
2 1 BF 2 2
3 2 SF 2 4
4 2 SF 2 4
5 1 HF 1 2
6 1 HF 2 2
7 1 HF 3 3
8 5 HF 3 3
9 4 HF 1 1
10 2 BF 1 1
11 1 BF 3 1
12 4 SF 2 2
13 5 SF 2 3
14 5 NM 3 0
15 5 NM 2 0
16 5 SF 3 3
17 2 NM 1 0
18 1 NM 1 0
19 5 NM 1 0
20 5 NM 1 0

The variables are:

• Moisture class, with 5 levels, although level 3 does not occur in the
data. Levels are labelled M1, M2, M4 and M5.
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• Grassland management type, with 4 levels (standard farming (SF),
biological farming (BF), hobby farming (HF) and nature conservation
management(NM))

• Grassland use, with three levels: (production(U1), intermediate(U2)
and grazing(U3))

• Manure class, with 5 levels labelled C0, C1, C2, C3 and C4. The vari-
able is probably ordinal because the levels assume an increasing level
of manure but will be treated as categorical here.

The prediction regions obtained from the proposed algorithm together
with the category points associated to them, are shown in figure 6.

Table 2

Predictions for the categorical variables for table 1 given by a two-dimensional
approximation. T denotes the true value given in table 1, and MCA, Mirt, OP are the

predictions using the row coordinates estimated by MCA, Mirt and Alternated
Method(AM).

Farm
Moisture Management Grassland Manuring

T MCA Mirt AM T MCA Mirt AM T MCA Mirt AM T MCA Mirt AM

1 1 2* 2* 2* 1 1 1 1 2 2 2 2 4 4 4 4
2 1 1 5* 1 2 3* 3* 1* 2 2 1* 2 2 2 0* 2
3 2 2 2 2 1 1 1 1 2 2 2 2 4 4 4 4
4 2 2 2 2 1 1 1 1 2 2 2 2 4 4 4 4
5 1 1 5* 1 3 3 3 3 1 3* 1 1 2 1* 0* 2
6 1 1 5* 1 3 3 3 3 2 2 1* 2 2 2 0* 2
7 1 1 1 1 3 3 3 3 3 1* 3 3 3 1* 3 3
8 5 1* 1* 5 3 3 3 3 3 1* 3 3 3 3 3 3
9 4 1* 1* 1* 3 3 1* 3 1 3* 2* 1 1 1 3* 1

10 2 1* 5* 1* 2 3* 4* 1* 1 1 1 1 1 1 0* 1
11 1 1 5* 1 2 3* 3* 3* 3 3 3 3 1 1 2* 3*
12 3 1* 5* 1* 1 1 3* 1 2 2 3* 2 2 2 3* 2
13 5 2* 1* 5 1 1 1 4* 2 2 2 1* 3 4* 3 0*
14 5 5 5 5 4 4 4 4 3 1* 1* 3 0 0 0 0
15 5 5 5 5 4 4 4 4 2 1* 1* 2 0 0 0 0
16 5 5 1* 5 1 1 1 4* 3 2* 3 3 3 3 3 3
17 2 5* 5* 5* 4 4 4 4 1 1 1 1 0 0 0 0
18 1 5* 5* 5* 4 4 4 4 1 1 1 1 0 0 0 0
19 5 5 5 5 4 4 4 4 1 1 1 1 0 0 0 0
20 5 5 5 5 4 4 4 4 1 1 1 1 0 0 0 0

Errors 0 8 13 6 0 3 5 5 0 7 6 1 0 3 7 2

The four graphs could be superimposed although the resulting image
would be almost unreadable (figure 7) even with only four variables; with
more variables the interpretation would be very complicated. The proposed
procedure for obtaining a set of category points for each variable allows for a
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Figure 6: The prediction regions for each of the four variables, as given by
MLB.

much simpler and easy to interpret representation. The final result is shown
in figure 8. We can see that farms having a “nature management” (NM) are
at the areas with higher moisture (M5), zero fertilizer (CO) and hay pro-
duction (U1). Farms with “scientific management” (SF) are at the region
with moisture M1 and M2, high values of fertilizer (C4) and intermediate
grassland use (U2). Hobby farms (HF) are associated to dry places (M1),
low use of fertilizer (C1) and a tendency toward U3. Farms of type BF are
hidden on the prediction model because the probability of that category is
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Figure 7: Four tesselations superimposed.

never higher than the rest.
In order to compare the proposed method with MCA as in Gower and Hand

(1996), and some alternatives for estimation described here, we have esti-
mated the model parameters using our modification of the EM algorithm
and the mirt package (Chalmers, 2012) with an additional multinomial lo-
gistic regression. The prediction regions obtained for our method produce
14 incorrect classifications against the 21 obtained by MCA and the 31 by
mirt (see table 2). The table shows also true and predicted categories for
all the data matrix. There are no hidden categories for variable “Manuring”
but for “Moisture” and “Management”, categories M4 and BF, respectively,
are hidden. The last value is present in farmers 2, 10 and 11 and none of the
methods is able to predict it correctly.

If we analyse the combined prediction regions for all the variables with EM
parameter estimation, we can observe in figure 7 that there are 28 separate
convex regions. Except region containing farms 13, 18, 19 and 20, most of the
regions are small and have less points inside, emphasizing the richness of the
technique for interpreting data. In the study described by Gower and Hand
(1996), there were 16 different regions for MCA but only three were clearly
populated, so we obtain a finer classification of the farms.
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Figure 8: Two-dimensional BLM of the categorical variables shown in Ta-
ble 1.

5. Conclusions and discussion. In the preceding sections we have
proposed a biplot method for nominal data in which the individual are rep-
resented as points in a low-dimensional subspace and the variables are repre-
sented as “prediction regions” or “category points” for the categories of each
variable. Prediction regions are convex polygons that divide the representa-
tion space into as many regions as categories of the variable, except if there
is some hidden category, and then define a tessellation of the space that,
conveniently approximated by a Voronoi diagram, provides a set of genera-
tors that can be considered as category points. The proposed representation
is interpreted in terms of distances in the sense that the category predicted
for each individual is defined by the closest category points. Although not
described here in detail, linear biplots for the log odds of each category with
the baseline.

A simple adaptation of an EM-algorithm is proposed for estimation of
model parameters. The usual alternated EM algorithm is modified to in-
clude penalized ridge estimation of the logistic model parameters in order
to avoid the problems produced by the separation that makes the estima-
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tors undefined. Other penalized methods are the lasso for logistic regression
(Meier et al., 1984), the Firth method (Firth, 1993) applied to multinomial
models by Bull et al. (2002). The estimators obtained from the package mirt
(Chalmers, 2012) can also be used as a start point to construct the biplot,
using the factor scores but with an additional step to refit the nominal lo-
gistic model for the variable parameters. This is so because mirt is designed
for Item response theory, the scores are always calculated with an additional
rotation but the parameters seems not to be rotated consequently. In some
examples we have tried the numerical values are strange probably due to
the fact that mirt does not take into account the separation problem. Both,
our alternated method and mirt perform better when the number of indi-
viduals are much higher than the number of variables but there are many
practical problems in which this is not so, for example, trying to classify a
set of individuals with the genotypes resulting from thousands of single nu-
cleotide polymorphisms (Demey et al., 2008). For those cases it is probably
more efficient to estimate the individual markers by principal coordinates
of the matrix G of indicators defined previously and then fitting the nom-
inal models on the coordinates. This is not a maximum likelihood solution
but it is a good approximation when the other methods are unstable. The
main advantage of using maximum likelihood is that it is possible to per-
form hypothesis testing to compare different models, for example to select
the number of dimensions to retain. The proposed method share the char-
acteristics of “formal” models as item response theory or latent traits and
“descriptive” models as MCA, could even be considered also as a graphical
representation of the formal model. It has to be noted that the performance
of the algorithm for approximation and inversion of the tessellation crucially
depends on the goodness of fit of the nominal regression. Only variables with
a reasonable fit should be represented on the graph.

6. Software Note. An R package containing the procedures described
by this paper has been developed by the authors (Hernandez and Vicente-Villardon,
2013).
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