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Abstract We propose a Bayesian semiparametric regression model to represent 
mixed-type multiple outcomes concerning patients affected by Acute Myocardial 
Infarction. Our approach is motivated by data coming from the ST-Elevation 
Myocar-dial Infarction (STEMI) Archive, a multi-center observational prospective 
clinical study planned as part of the Strategic Program of Lombardy, Italy. We 
specifically consider a joint model for a variable measuring treatment time and in-
hospital and 60-day survival indicators. One of our main motivations is to 
understand how the various hospitals differ in terms of the variety of information 
collected as part of the study. To do so we postulate a semiparametric random effects 
model that incorpo-rates dependence on a location indicator that is used to explicitly 
differentiate among hospitals in or outside the city of Milano. The model is based on 
the two parameter Poisson-Dirichlet prior, also known as the Pitman-Yor process 
prior. We discuss the resulting posterior inference, including sensitivity analysis, and a 
comparison with the particular sub-model arising when a Dirichlet process prior is assumed.
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1 Introduction

Studies with multiple outcomes that are used to properly characterize an effect of 
interest are becoming increasingly more common nowadays. In the particular case of 
clinical studies, multiple outcomes are often used to characterize the patient’s status 
or the performances of health care service with respect to patients’ management (see, 
for example, Normand 2008; Parekh et al. 2011; AHRQ 2015).

We are concerned with the analysis of data collected in a clinical registry named 
STEMI Archive (see Lombardia 2009; Ieva 2013), which is a result of a wider 
compre-hensive project, namely The Strategic Program “Exploitation, integration 
and study of current and future health databases in Lombardy for Acute Myocardial 
Infarction” (for additional information, visit http://ima.metid.polimi.it). This project 
is funded by the Italian Ministry of Health. Its main goal is to enhance the 
integration of different sources of health information (clinical registries and 
administrative databases) so as to automate and streamline clinicians’ work flow, and 
that all the data collected can be generally used. We specifically consider outcomes 
of patients with ST segment elevation myocardial infarction (STEMI) diagnosis 
admitted to a hospital. STEMI is caused by an occlusion of a coronary artery which 
causes an ischemia that, if untreated, can damage heart cells and make them die 
(infarction). It is fundamental for the patient’s recovery to do a reperfusion therapy 
(i.e. restoration of the blood flow to the ischemic tissue) as quickly as possible, since 
its benefits decrease highly non-linearly with treatment delay. All patients in the 
study were treated with Percuta-neous Transluminal Coronary Angioplasty (PTCA). 
Data were recorded in a registry collecting clinical outcomes, process and time 
indicators measuring the way the health care structures manage the patients, and 
personal information on patients with STEMI diagnosis admitted to hospitals of 
Lombardy. These data were combined with informa-tion coming from the standard 
administrative database, so as to obtain out of hospital mortality (i.e., mortality for 
any reason). It is important to point out that the STEMI Archive is not linked to the 
Emergency Room (ER) database, so we are discarding the deaths occurred in the 
ER. This fact could limit the validity of our findings to this particular subpopulation. 
However, there is a specific reason for selecting the ana-lyzed population: the 
STEMI Archive was primarily designed to assess the impact of hospital response 
times and organization on in-hospital survival after treatment. This implies that the 
cohort of interest is the one undergoing angioplasty, and then surviving once 
entering the ER. Data in the survey are grouped by hospital of admission. This 
automatically induces a policy issue about the effect that such grouping may have on
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patients’ outcome, which is the main motivation for this work. In fact, the problem 
of profiling hospitals according to their effects on patients’ outcomes is crucial 
within the context of healthcare planning. Proper methods for addressing such a 
problem are of great interest to healthcare policymakers.

We propose a Bayesian nonparametric hierarchical model that includes a cluster 
analysis, aimed at identifying profiles or hospital behaviors that may affect the out-
come at patient level. In particular, we introduce a multivariate multiple regression 
model, where the response has three mixed-type components. The components are, 
respectively: (1) the door to balloon time (DB), i.e. the time between the admission 
to the hospital and the PTCA; (2) the in-hospital survival; and (3) the survival after 
60 days from admission. The first response (continuous) is essential in quantifying 
the efficiency of health providers, since it plays a key role in the success of the ther-
apy; the second is the basic treatment success indicator, while the third concerns a 
60-days period, during which the treatment effectiveness, in terms of survival and
quality of life, can be truly evaluated. Note that the last two responses are binary, so
that, as a whole, the multivariate response is of mixed type. It is worth noting that
the information on patients’ survival after 60 days is obtained from the linkage
between STEMI archive and a further administrative database concerning patient-
specific vital statistics such as date of birth and death for general causes. The linkage
between the different data sources was carried out by Lombardia Informatica S.p.A,
the agency managing regional datawarehouses. We do not have direct access to the
data sources so as to construct different outcomes of potential interest. Moreover we
work with a singly imputed data set and we could not identify data preprocessing
tools used by the Lombardia Informatica S.p.A. agency, in particular the technique
used to impute the missing data. The modeling of multiple outcomes from data
collected in STEMI Archive was previously discussed in Ieva et al. (2014), under a
semiparametric fre-quentist bivariate probit model. Their aim was to analyze the
relationship among in-hospital mortality and a treatment effectiveness outcome in
the presence of con-founders, that is, variables that are associated with both
covariates and response. This is a problem that poses serious limitations to covariate
adjustment since the use of classical techniques may yield biased and inconsistent
estimates. In this context, Ieva et al. (2014) proposed the use of a semiparametric
recursive bivariate probit model, as an effective way to estimate the effect that a
binary regressor has on a binary outcome in the presence of nonlinear confounder
response relationships. In contrast, we focus on a joint model for the grouped
outcomes. As discussed below, our aim is to find relevant groups of hospitals in
terms of patient-specific characteristics, which may assist in further planning and
policy making.

In recent years, there has been a considerable interest on developing models that 
overcome the challenges posed by the modeling of outcomes of mixed types. 
Sammel et al. (1997) discuss a model for mixed discrete and continuous outcomes 
where the multiple outcomes correlate through subject-specific latent variables. The 
observed outcomes are thus manifestations of unobserved latent variables. Condi-
tionally on these, the outcome components are assumed independently distributed 
according to the exponential family, whose parameters are allowed to be a function 
of the latent variables as well as other component-specific covariates. Dunson and 
Herring (2005) proposed a Bayesian latent variable model for clustered mixed out-



comes that allows nonlinear relationships between covariates and latent variables, 
and that uses multiple latent variables for different types of outcome as well as 
covariate-dependent modifications of these relationships. In contrast, a single linear 
combination of the covariates is used to predict multiple outcomes simultaneously in 
the Bayesian multivariate model by Weiss et al. (2011), where correlations among 
outcomes are modeled by latent variables. Bello et al. (2012) present a hierarchical 
Bayesian extension of bivariate generalized linear models whereby functions of the 
variance-covariance matrices are specified as different linear combinations of fixed 
and random effects.

A somewhat different approach for bivariate outcomes of mixed type arises by 
factorizing the joint distribution of outcomes and introducing latent variables to model 
the correlation among the multiple outcomes. The main idea of this method is to 
write the likelihood as the product of the marginal distribution of one outcome and 
the conditional distribution of the second given the previous one. In particular Cox 
and Wermuth (1992) discuss two factorization models for a continuous and a binary 
outcome as functions of covariates. In Catalano and Ryan (1992) and Fitzmaurice and 
Laird (1995) the factorization approach is extended to clustered data.

Our approach is based on factorizations. In particular, we factorize the patient-
specific likelihood factor for the three responses as the product of (1) the marginal 
likelihood of the continuous response (DB time); (2) the distribution of the in-
hospital survival given DB time; and of (3) the 60-days survival, given the previous 
two. All these conditional distributions lie within the class of univariate generalized 
linear mixed models, with random-effects given by hospital intercepts. Covariates 
corre-sponding to the other regression parameters include those related to hospital 
admission, patient’s clinical status at hospital admission, and patient’s general health 
status. A full description of available covariates is given in Sect. 2. Of course, other 
factor-izations could be adopted, but we find this one easy to define and explain. To 
deal with differences across hospitals, we adopt a nonparametric random effects 
approach, with a random distribution function that is allowed to vary with an 
indicator that explicitly differentiates among hospitals in or outside the city of 
Milano. We adopt an ANOVA-Dependent Pitman-Yor process prior for hospital 
effects, that is, a family of distributions of dependent random probability measures 
with (marginal) almost surely discrete trajectories that generalize the Dirichlet 
process (DP). Such priors induce a random partition of the hospital labels. As we 
discuss later, the Pitman-Yor process (PY) process includes two parameters that 
allow for increased flexibility in the prior clustering structure compared to the DP. 
This is particularly useful to achieve one of our main goals, that is, to estimate a 
latent clustering among hospitals from the dataset, identifying groups of care 
providers affecting outcomes at patient level in a similar way. In this context, a 
cluster analysis of the hospitals is straightforward, based on posterior estimates of 
the induced random partition parameter itself. Besides marginal posterior inference 
on all relevant parameters, we discuss predictive inference for new hospitals, and 
hospitals clustering. Moreover, some competitor models are considered and 
compared to our proposal through predictive goodness-of-fit tools.

The rest of this paper is organized as follows. Section 2 gives a complete data 
description and states the main inference questions that drive the analysis. Section 3 
describes the adopted model in detail, and posterior inference, implementation details



and comparison among different models are discussed in Sect. 4. Final comments are 
given in Sect. 5.

2 Motivation and data description

We consider a dataset coming from the integration of a clinical registry named STEMI 
Archive (see Lombardia 2009; Ieva 2013), with data from the administrative health 
database. Our focus is on data from patients in any of the hospitals in Lombardy, and 
the analysis of their time to treatment, their in-hospital and 60-days survival outcomes. 
Our goals are (1) to understand the effect of other factors on the selected outcome vari-
ables; (2) to compare marginal posterior distributions of the different nonparametric 
components; (3) to compare hospital performances by means of a cluster analysis; and 
(4) to make predictions for new hospitals entering the study (e.g., hospitals outside
the region, but in districts gravitating towards Lombardy).

A similar problem, with a related dataset, was already considered in Guglielmi et 
al.(2014). However, there are differences in the two statistical problems tackled, and 
in the two datasets analyzed. The specific focus in Guglielmi et al. (2014) was on 
building a model for predicting only the in-hospital survival after STEMI at patients’ 
level, and to provide model-based clustering of the providers. These goals were 
achieved via a univariate regression model having patient’s in-hospital survival as 
the response. On the other hand, it is known that one of the crucial factors 
influencing in-hospital survival for STEMI patients is treatment time (see, for 
example, De Luca et al. 2004; Antoniucci et al. 2002), which was considered as a 
fixed covariate in the latter paper. Here we also focus on the relationship among in-
hospital survival and treatment time, but also aim at uncovering determinants (both 
logistic and environmental) jointly affecting times to treatment and the two survival 
outcomes. What strongly motivates the new dataset we analyze here is the statistical 
interest in survival beyond discharge time, which would be of great help to deepen 
our understanding of the disease progression and health recovery of STEMI patients.

The dataset at hand includes information about n = 697 patients treated with 
PTCA during the 6-month time period (January–June 2011) in J = 33 hospitals of 
Lombardy, 12 of these located in Milan. The number of patients per hospital ranges 
from a minimum of 5 to a maximum of 60, with mean 21. The available information 
about each patient are then the hospital of admission, the mode of admission (a binary 
variable indicating whether the patient was delivered by rescue units of 118, which 
is the Italian toll-free emergency number), demographic features such as age and 
gender, the severity of infarction, risk factors (such as diabetes, smoking and high 
cholesterol), times to treatment or intervention, and process indicators within the pre-
and in-hospital phase. We resume all the information content of the dataset through 
the following list:

– DB (Y1): the time between the admission to the hospital (Door) and primary
angioplasty (Balloon);

– ALIVEIN (Y2): the in-hospital survival;
– ALIVE60 (Y3): the survival after 60 days from admission.



These three variables represent the outcome.Observe that the dataset is strongly unbal-
anced: 96.84% of patients are alive after the discharge and 98.37% of these are alive
after 60 days. The sample mean and standard deviation of DB in the log-scale are
4.452 and 0.551.

The available covariates are listed here:

– ACCESS: 0 if the patient came to hospital by any rescue unit, 1 otherwise (by
own means). The sample mean is 0.597;

– ECG: time of the first electrocardiogram (minutes). The sample mean is 9.671
(std. dev. 18.296);

– WE: 1 if the admission was on holiday, weekend or between 6pm–8am, 0 other-
wise. The sample mean is 0.469;

– AGE: age of the patient (years). The sample mean is 64.651 (std. dev. 13.122);
– MALE: gender of the patient; 1 when male, 0 female. The sample mean is 0.776;
– RISK: 1 if patient had at least four among the following risk factors: diabetes,
smoking, hypertension, cholesterol, vasculopathy, 0 otherwise. The sample mean
is 0.006;

– KILLIP: 1 if the infarction was severe (Killip class 3 or 4), 0 otherwise (Killip
class 1 or 2). The sample mean is 0.060;

– EF: ejection fraction at admission to hospital, i.e. the volumetric fraction of blood
pumped out of the ventricle with each heart beat (%). The sample mean is 47.858
(std. dev. 9.663);

– COMP: 1 if there were complications after the primary angioplasty, 0 otherwise.
The sample mean is 0.386;

– CKD: 1 if the patient had chronic kidney disease, 0 otherwise. The sample mean
is 0.080;

– preMI: 1 if there is a history of previous infarction, 0 otherwise. The sample mean
is 0.113;

– STres: 1 if the treatment was not effective, 0 otherwise; this covariate is quantified
by physicians as equal to 0 if there was a reduction of at least 70% in the ST-
elevation within one hour after the angioplasty. The sample mean is 0.198;

– HOSPITAL: hospital of admission of the patient;
– MILAN: 1 if the hospital is located in Milano, 0 otherwise; the sample mean is
0.445.

We note that treatment times (DB and ECG) are computed with respect to time of
admission at the hospital. From the analysis viewpoint, hospital is the natural grouping 
factor here, since patients are delivered to hospitals by 118 rescue units. We have 
considered in the analysis only hospitals provided with intensive unit care and coronary 
unit. Covariate MILAN is all the information we have on the hospitals at this point. 
However, note that Guglielmi et al. (2014) did include hospital exposure, i.e. the 
number of patients who were treated with primary angioplasty per year, as a hospital 
covariate. This explanatory variable was not included in the original clinical database, 
so it was retrieved from a different administrative database. We remark that according 
to Section 3.1 in Guglielmi et al. (2014), this exposure variable has no effect on the 
in-hospital survival, which was the response for that case. Of course, since we have
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Fig. 1 Boxplotsof the DB time (in the log scale) stratified by hospitals. The red line is the global median 
of all DB times (color figure online)

no extra knowledge on hospitals, we should assume an exchangeable prior for their 
effects, a common procedure that generally reflects lack of additional information.

It is important to stress here that in previous analyses on similar datasets, such as 
those reported in Ieva and Paganoni (2010), Grieco et al. (2012) and Guglielmi et al.
(2014), the OD (Onset-to-Door time, i.e. the time from onset to admission to hospital) 
was considered in the dataset as a part of OB (Onset to Balloon time, that is the sum of 
the OD plus the DB, the Door to Balloon time, i.e. the total ischemic time from onset 
to angioplasty). Unfortunately, this information revealed to be very poor and 
misleading. In fact, OD times are usually subjectively recorded, since the patients tend 
to declare onset times based on their perception of the onset, i.e. strongly biased by the 
fact they are scared by the events, or not sufficiently prompt to recognize them. 
Moreover, as a confirmation, we checked that, at least for patients with no missing OD 
time, including this covariate in the regression did not improve the fit.

In Fig. 1 we report boxplots of the DB time (in logarithmic scale) stratified by 
hospitals. The large variability and overdispersion due to the grouped nature of the 
data suggests that it is reasonable to assume a random effect on the grouping factor.

Figure 2 shows the difference between in-hospital and 60-days survival rates per 
hospital. Observe that for most cases, the in-hospital and 60-days survivals are very 
similar. The two hospitals where this difference is the largest are 8 and 22.

3 A multi-response Bayesian semiparametric model
with Pitman-Yor process prior

To achieve the goals described in Sect. 2, we propose a trivariate regression model 
of mixed types, according to the three outcome variables described before. We use a 
Bayesian semiparametric approach with a discrete random probability measure prior.
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Fig. 2 Difference between sample survival proportions (at discharge and after 60 days) per hospital

This choice is also due to the flexibility they provide in modeling data, as well as the 
implied robustness against incorrect model specifications. See Müller and Quintana 
(2004) and Müller and Mitra (2013) for a thorough discussion on Bayesian Nonpara-
metrics. Moreover, the discrete random measure model that we adopt as a prior for 
the hospital random-effects allows us to infer on a partition of hospital labels. The 
prior we set here is the Pitman-Yor process (Pitman and Yor 1997), which includes 
the (regular) DP chosen in Guglielmi et al. (2014) as a special case. Model details 
will be given below and in the next section.

In particular, we consider a generalized linear model for the response of patient i 
treated in hospital j , Y j i  := (Y j i1, Y j i2, Y j i3) = (log(DB j i  ), ALIVEIN j i  , 
ALIVE60 j i  ), with i = 1, . . . , n j , j = 1, . . . ,  J . Since patients are admitted to 
hospitals, and one of the aims is to compare the hospitals themselves, it is natural 
and straightforward to consider generalized linear models with random intercepts to 
account for hospital variability. As usual, we assume that observations, given 
parame-ters and covariates, are independent. To facilitate model specification, we 
consider a conditional specification of the joint sampling model, conditional on 
parameters and covariates, as

L(Y j i1|par, cov) × L(Y j i2|Y j i1, par, cov) × L(Y j i3|Y j i2, Y j i1, par, cov). (1)

Our assumptions in this case are the following: L(Y j i1|par, cov) is a Gaussian linear 
regression, L(Y j i2|Y j i1, par, cov) and L(Y j i3|Y j i2, Y j i1, par, cov) are logistic regres-
sion models.

Before detailing the covariates at the three levels, we point out that we have carried 
out an extensive exploratory analysis which gave rise to a careful choice of covariates. 
First we consulted with our experts (cardiologists and health managers from different 
hospitals in Lombardy) to gain a better understanding of the covariates to include in 
a parametric regression model where Y j i  is the response, as in (1). We conducted a 
parametric variable selection procedure to determine which covariates to include in



our model. The binary indicator MILAN was included among the covariates to be 
potentially selected, unlike the hospital label. We adopted two priors for selecting the 
variables, i.e. the Normal Mixture of Inverse Gamma (NMIG) distributions and the 
SSVS spike-and-slab prior in Rockova et al. (2012); see notation and details of the 
priors there. In particular, under both priors, we fixed the variance of the spike and 
of the slab components equal to 0.001 and 10, respectively; here we report the selec-
tion considering all the covariates selected by the four models with highest posterior 
probabilities under the NMIG prior. The other prior gave consistent results.

Let x j i� denote the covariate vector for the sampling model at level � = 1, 2, 3 
for patient i in hospital j . Our variable selection analysis determined the following 
subsets of covariates per level:

x j i1 := (ACCESS j i ,ECG j i ,WE j i ,CKD j i )

x j i2 := (EF j i ,COMP j i , Y ji1,KILLIP j i )
x j i3 := (EF j i ,MALE j i ,STres j i ,KILLIP j i ).

Note that with a slight abuse of notation, Y j i1 was also added to the set of covariates 
x j i2.

It is interesting to note that at the first level, all the covariates (x j i1) related to logistic 
and organizational issues are retained: the way a patient is delivered to the emergency 
room, the time at which the first ECG is received, and the arrival time (recall this is 
coded as on/off hours), which are clearly related to the efficiency and promptness of the 
treatment received. Finally, the presence/absence of chronic kidney disease (CKD) is 
also meaningful, because this condition may influence the time to intervention. Indeed, 
it is likely that more complex procedures will be required before undergoing surgery, 
since the radiocontrast agent may harm kidneys. On the other hand, in-hospital survival 
in STEMI patients undergoing angioplasty in this dataset will be modeled as depending 
on the initial patient’s heart condition (EF), treatment time DB, severity of infarction 
(as indicated by KILLIP) and the presence of complications after PTCA (COMP). 
Finally, our model for mid-term survival (here ALIVE60) includes the initial heart 
condition (EF), the severity of infarction (KILLIP), whether the treatment had been 
effective (STres) and the patient’s gender (MALE). Note that the patient’s age was 
never selected, even under different variances of the prior, or under the SSVS spike-
and-slab prior. However, gender is usually highly correlated to age in STEMI patients 
(Trappolini et al. 2001; Vakili et al. 2001).

Observe that Y1, i.e. the treatment time that mainly depends on the organizational 
issue of hospitals, is selected as significant in predicting the in-hospital survival. As 
we will later see from the posterior summaries, an elevated DB time decreases in-
hospital survival. However the DB is not affecting the mid-term survival. This finding 
may seem counterintuitive and even disappointing, but it is not really surprising in 
the real life context. Despite the fact that DB is determinant on the effectiveness 
of in-hospital practices, there are many other factors that may affect the patient’s 
quality of life and survival once discharged. Among these factors, we mention, for 
example, compliance to the prescribed therapy, comorbidities affecting the patient, 
her/his reaction to the disease, and the assistance received at home. All these factors



are determinant and not always measurable, so it is perfectly coherent that the hospital 
impact, here measured by the efficiency in delivering patients to the coronary unit, 
decreases as the time from discharge increases. Finally, it is worth mentioning that 
the selection included the binary indicator MILAN for explaining the first and the 
third responses, but as a modeling choice we decided to include this information in 
the non-parametric component; see details below.

We introduce the model now. Recall that i = 1, . . . , n j indexes patients treated in 
hospital j , for  j = 1, . . . ,  J . We assume that the conditional distributions in (1) are:

Y ji1|μ j i , σ j ∼ N (μ j i , σ
2
j ), μ j i = β1

T x j i1 + b1φ j j (2)

Y ji2|p ji , Y ji1 ∼ Be(p ji ), logit(p ji ) = β2
T x j i2 + b2φ j j (3)

Y ji3|q ji , Y ji1, Y ji2 ∼
{
Be(q ji ) if Y ji2 = 1

δ0 if Y ji2 = 0
, logit(q ji ) = β3

T x j i3 + b3φ j j .

(4)

Here, as usual, δ0 denotes the degenerate distribution at 0.
Observe that in (2)–(4), parameters b1φ j j , b

2
φ j j , b

3
φ j j , σ j refer to hospital-specific 

random effects; the former three are random intercepts, while the latter is the standard 
deviation of the first response. Notation φ j is a dummy variable indicating if the 
hospital is in Milano, or outside the city. In fact, the management of emergencies is 
pretty different inside or outside the city, due to the different concentration of providers 
on the territory and to the related accessibility. These are expected to affect times to 
intervention and consequently, patients’ outcomes. On the other hand, Milano can be 
considered as a hub that is more attractive to patients, which may explain the wider 
spectrum of recorded cases in the city. Therefore, it seems reasonable to establish an
explicit difference in the random effects, according to whether the hospital is in (b1

1) 
or outside of (b0

1) Milano. In fact, a feature of our model is that we allow the entire 
shape of the random effects distributions to change according to this geographical 
characteristic. This is exactly the reason why we consider a dependent nonparametric 
prior specification; see details below.

Consequently, our inference will mainly focus on parameter

θ =
(
β1,β2,β3, (b10 j , b

1
1 j , b

2
0 j , b

2
1 j , b

3
0 j , b

3
1 j , σ j , j = 1, . . . , J )

)
,

where J is the number of hospitals in the dataset. We assume a priori independence
of all components of θ and:

β1 ∼ N4(0, 100I4), β2 ∼ N4(0, 100I4), β3 ∼ N4(0, 100I4), (5)

and for j = 1 . . . , J ,

σ j
iid∼ U (0, 10), (6)

(b10 j , b
1
1 j , b

2
0 j , b

2
1 j , b

3
0 j , b

3
1 j )|P

iid∼ P, P ∼ PY (a, b, P0). (7)



By P ∼ PY  (a, b, P0) we mean that P is a draw from the Pitman-Yor process 
(Pitman and Yor 1997), sometimes known as the two-parameter Poisson-Dirichlet 
process, with parameters 0 ≤ a < 1 and b > −a, and where P0 is a probability 
measure on R6. When a = 0, the DP case is recovered. Note that the nonparametric 
specification (7) together with the sampling model (2)–(4) results in a generalization 
of the ANOVA-DDP prior in De Iorio et al. (2004).

For ease of computation it is useful to introduce the stick-breaking representation 
for P (Pitman 1995):

P =
∞∑
i=1

Viδτ i , where {Vi } ⊥ {τ i }, (8)

the τ ′
i s are iid according to P0 and {Vi } are stick-breaking weights, i.e.

V1= Z1, Vj = Z j
j−1∏
i=1

(1 − Zi ) j≥2, Zi
ind∼ Beta(1 − a, b + ia), i = 1, 2, . . . .

(9)

2
1

2
2

2
3

2
4

2
5

2
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It is well-known that a random sample from a distribution F that is assigned a dis-
crete random prior probability measure such as (7) induces a random partition ρ of 
corresponding labels. In this case, the partition is induced on the hospitals labels 
{1, 2, . . . ,  J } by (7). Thus, hospitals would be grouped by identifying those with 
iden-tical random intercept, according to (2)–(4). In this way, we will be allowed to 
carry out model-based clustering by computing a summary estimate of the posterior 
distri-bution of the random partition ρ. The induced partition structure is more 
general than that coming from the particular DP case.

Next, we assume for the locations τ i ∈ R3 the parametrization usually adopted for 
the ANOVA-DDP prior, i.e.

τ i = τ 0i + τ 1i ηi ,

where ηi is 1 if the patient i was admitted to an hospital in Milano, and 0 otherwise. On 
the whole, the location parameters are identified by (τ01i , τ11i , τ02i , τ12i , τ03i , τ13i ), 
and we assume they are iid from the base probability measure P0 on R6 given by the 
product measure of six independent Gaussian distributions with random means and 
variances:

P0 = N (m1, λ  )×N (m2, λ  )×N (m3, λ  )×N (m4, λ  )×N (m5, λ  ) × N (m6, λ  )
(m1, . . . ,m6, λ1, . . . , λ6) ∼ πm × πλ. (10)

The prior clustering is controlled by hyperparameters a and b in (7). For fixed a, 
the number of clusters is stochastically increasing with b. This can be seen as a “rich 
gets richer” property of the PY that is also shared by the DP. In fact, when considering 
a sample of size n from a PY process with k (≤n) distinct values in the sample, the 
probability that the next observation coincides with the j-th sampled distinct value is 
equal to (n j − a)/(b + n), where n j is the number of observations equal to the j-th



sampled distinct value. Therefore, it is clear that the increase in number of clusters is 
attenuated by a, which can be thought of as a discount parameter. See, for instance, 
Müller and Mitra (2013). Therefore, the prior distribution of K J , the number of 
clusters among hospitals, depends on those parameters; later on in the paper, we 
determine (a, b) by matching the first two moments of K J with prior information. 
The model specification is completed by assuming

mi
ind∼ N (mi0, σ 2

i0), λi
iid∼ U(0, λ0) i = 1, . . . , 6, (11)

but other weakly informative choices could be considered as well.
Before discussing specific results, we point out that we tried extensive posterior 

simulation experiments under several types of priors for the PY parameters a and b. 
These experiments found a number of posterior simulation problems, such as poor 
mixing of certain parameters, but also, none of the models we tried produced a better 
fitting to the data than what we will describe in Sect. 4.

4 Posterior inference

4.1 Model details

It is quite common in practice to consider a truncated version of the stick-breaking 
representation (8)–(9) so as to work with a finite mixture model (see Ishwaran and 
Zarepour 2002). This is achieved by considering a number of components, say H , 
and setting ZH = 1 in  (9). Posterior inference can then be implemented through a 
standard Gibbs sampler algorithm, which we coded in JAGS (Plummer 2003) with 
the aid of R (R Development Core Team 2012). In what follows, we always use the 
first 50,000 iterations as burn-in, and saving every 75-th iteration after that, to 
complete a Monte Carlo posterior sample of size 5000. Standard convergence 
diagnostics criteria such as those available in the R package CODA (Plummer et al. 
2006) were applied to all parameters, indicating that convergence had been achieved.

To fit the model, we selected hyperparameter values that reflect lack of prior infor-
mation, in other words, a vague yet proper prior distribution. Specifically, we chose

mi0 = 0, σ 2
i0 = 25, i = 1, . . . , 6, λ0 = 5.

The prior for the Pitman-Yor process was specified as follows. We fixed a = 0.3 and 
b = 0.5 so that the prior mean and variance of K J are equal to 5.285 and 6.113, 
respectively.

4.2 Posterior summaries

Table 1 reports the 95 % posterior credible intervals, as well as the posterior 
marginal probability on the negative reals, for the fixed-effects parameters at all the 
three levels. From the reported inference, it is clear that patients who were not 
delivered by the



Ta
bl
e
1

Po
st
er
io
r
95

%
cr
ed
ib
ili
ty

in
te
rv
al
s
fo
r
th
e
fix

ed
-e
ff
ec
ts
pa
ra
m
et
er
s;
p−

is
th
e
po
st
er
io
r
pr
ob
ab
ili
ty

th
at
th
e
pa
ra
m
et
er

is
ne
ga
tiv

e

L
ev
el
1

L
ev
el
2

L
ev
el
3

Pa
ra
m
et
er

2.
5
%

97
.5
%

p−
Pa
ra
m
et
er

2.
5
%

97
.5
%

p−
Pa
ra
m
et
er

2.
5
%

97
.5
%

p−

A
C
C
E
SS

−0
.0
15

0.
13

3
0.
05

9
E
F

0.
69

2
1.
73

2
0

E
F

0.
70

8
1.
57

8
0

E
C
G

0.
10

6
0.
16

1
0

C
O
M
P

−5
.5
43

−1
.2
29

1
M
A
L
E

−1
.1
20

0.
85

1
0.
60

4

W
E

0.
01

2
0.
14

1
0.
01

3
Y 1

−1
.2
88

0.
58

8
0.
76

4
ST

re
s

−1
.5
20

0.
28

4
0.
91

2

C
K
D

0.
03

2
0.
31

8
0.
00

7
K
IL
L
IP

−2
.3
82

0.
15

1
0.
96

3
K
IL
L
IP

−2
.4
91

−0
.3
01

0.
99

4



hospital

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Fig. 3 Posterior CI of b1j , the random effect parameters at the first likelihood level. Hospitals located in
Milano are depicted in dashed (blue) lines, those outside Milano in solid (red) lines, and  bullets represent the 
corresponding posterior medians. The last two intervals show predictions (medians are marked by crosses) 
for random intercepts corresponding to two hypothetical new hospitals, located in (red) and outside (blue) 
Milano. For reference, the horizontal line represents the mean of all displayed means (color figure online)

118 service and/or arrived at weekends or nights are penalized in terms of DB time. 
Furthermore, as expected, an increase of ECG time yields an increase of DB, testifying 
the importance of executing promptly ECG to the patients when infarction diagnoses 
are suspected. The presence of CKD is also significant: as we said before, this makes 
sense since complications may arise when treating a patient whose kidneys do not 
work properly.

For the in-hospital survival probability (level 2), patients with a more severe infarc-
tion (KILLIP equal to one) are penalized. The presence of complications after primary 
angioplasty is a negative prognostic factor too. In addition, an elevated DB time (Y1) 
decreases significantly the survival probability. On the other hand, the ejection fraction 
at admission (EF) has a positive effect on in-hospital survival.

Similarly, EF and KILLIP have positive and negative effect, respectively, on mid-
term survival, while the non efficacy of the PTCA, quantified by the STres, plays a 
negative role as expected. Even if it is clear that gender (i.e. the male indicator) has a 
negative effect, this is rather moderate.

In Figs. 3 and 4 we provide posterior 95 % CIs of the hospital random intercepts; 
in all these figures, as before, the hospitals are ordered from left to right by increas-
ing number of patients available in the sample. The last two intervals in each panel 
represent predictions for random intercepts corresponding to two hypothetical new 
hospitals, located in (continuous red) and outside (dashed blue) Milano. It is clear 
that there is a hospital effect in the first DB times (see the variability of the estimates 
in Fig. 3). In particular, hospitals located in Milano show a lower variability than 
those located outside. On the other hand, there is much more homogeneity in the 
random
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Fig. 4 Posterior 95% CIs of the random intercepts b2 (top) and b3 (bottom): hospitals located in Milano
are depicted in dashed (blue) lines, those outside Milano in solid (red) lines, and bullets are the posterior
medians. The last two intervals represent new random intercepts for a hospital in and outside Milano, with
crosses representing posterior medians (color figure online)

intercepts at the second and third level. This behavior can be explained because all
the coronary units treat patients according to general standards, which yields rather
uniform hospital performances in terms of in-hospital survival.

We have also computed posterior predictive estimates of the different nonparamet-

components of P =
ric component of the∑mixing measure. Figure 5 displays posterior estimates of the

H
i=1 Viδτ i . In particular, the first row shows the first (left) and

second (right) predicted components (level one in the likelihood, i.e. the posterior of
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Fig. 5 Posterior predictive 95 % CIs of the components of P . See the text for an explanation. Dashed (blue) 
lines correspond to quantiles, the solid central is the mean (the Bayesian estimates). The last 50 iterations 
are superimposed (in red). The left (right) column displays trajectories of the three random components 
related to hospitals outside (in) Milano (color figure online)

∑H ∑H

1 Vi δτ01i and of 1 Vi δτ01i +τ11i ), and similarly for the third and fourth (level two in the 
likelihood) and fifth and sixth (third level in the likelihood) components. Dashed

(blue) lines correspond to 0.025 and 0.925 quantiles, while the solid central lines rep-
resent the respective means (i.e. the Bayesian estimates). The last 50 iterations are
superimposed (in red). The picture shows a difference in the variability of the sampled
trajectories, at least at the second and third level.

The results in Fig. 5 are in agreement with the information conveyed by the marginal
posterior distributions of m2, m4 and m6 (not reported here), which represent the 
average difference in the random effect parameters between hospitals in or out of
Milano. In fact, the marginal posterior distribution of m2 is concentrated around 0



(posterior mean and variance are −0.152 and 0.153, respectively), denoting that on 
average there is no Milano effect on the log DB response. The marginal posterior 
distributions of m4 and m6 are much more spread out.

4.3 Posterior inference on clustering

As pointed out earlier, the discrete trajectories of the nonparametric prior assumption 
imply a clustering of the hospitals. We found that the posterior mean and variance of 
K J , the number of groups among hospitals, are 5.602 and 3.795, respectively, with a 
posterior mode of 4 (but 5 has a posterior probability very close to that of 4). Figure 6 
displays the whole estimated posterior distribution.

The Bayesian cluster estimate was here computed as the random partition of the 
hospital labels {1, 2, . . . , 33} that minimizes the posterior expectation of Binder’s 
loss function, as proposed in Lau and Green (2007); this function assigns cost w 
when two elements are wrongly clustered together and cost u when two elements are 
erroneously assigned to different clusters. For equal misclassification costs w and u, 
we obtained 9 clusters in total, but only 4 with sizes larger that 1. Table 2 reports the 
four non-singleton groups in the cluster estimate. We underline that this estimate 
agrees with the least squares estimate of Dahl (2006).
We have computed sample means of responses and covariates per hospital clusters in 
Table 2, averaging over all patients of all hospitals in each group. Table 3 reports those 
values. Cluster APY  (the most populated) could be characterized as grouping patients

Fig. 6 Posterior distribution of
the number of groups among the
hospitals
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Table 2 Hospital clusters with sizes larger than 1 from the proposed model under the Pitman-Yor process
prior when a = 0.3 and b = 0.5

Cluster APY {1, 3, 4, 6, 8, 11, 13, 15, 17, 18, 19, 20, 25, 27, 28, 30, 31, 33}

Cluster BPY {12, 16, 24, 29}

Cluster CPY {9, 22, 26}

Cluster DPY {5, 7, 10}



Table 3 Responses and covariate summaries by clusters in Table 2, for a = 0.3, b = 0.5

Groups APY BPY CPY DPY

No. hospitals 18 4 3 3

No. patients 398 106 72 29

Y1 (DB) 115.455 87.953 83.514 80.966

Y2 (ALIVEIN) 0.955 1.000 0.986 0.966

Y3 (ALIVE60) 0.940 1.000 0.944 0.966

MILANO 0.475 0.387 0.000 0.276

ACCESS 0.555 0.642 0.597 0.414

ECG 10.487 10.708 6.764 8.448

WE 0.440 0.481 0.417 0.448

CKD 0.090 0.028 0.111 0.103

EF 47.621 49.519 49.208 47.310

COMP 0.465 0.236 0.333 0.586

KILLIP 0.083 0.000 0.056 0.000

AGE 64.500 65.104 64.931 68.276

MALE 0.802 0.708 0.819 0.724

STres 0.176 0.226 0.250 0.069

with the highest DB times and the lowest survival rates. This suggests that the hospitals 
in this group may have procedures that could be improved to achieve a better perfor-
mance. Note also that the KILLIP rate in cluster APY is the highest among the groups, 
and higher than the sample grand mean (0.06). In contrast, clusters BPY and DPY group 
hospitals with patients having less severe infarction. In addition, clusters BPY and DPY 
differ in the associated complications exhibited by patients and in the way patients 
accessed the hospitals. Finally, cluster CPY contains only hospitals outside Milano and 
the corresponding patients have on average the lowest ECG values in the sample.

4.4 Predictive goodness-of-fit

We consider now predictive checks for the proposed model. We first computed the 
log pseudo-marginal likelihood (LPML) statistic (Geisser and Eddy 1979) for this 
model; see also Gelfand and Dey (1994). This corresponds to the product, of the 
conditional predictive density of the responses, expressed in log-scale, i.e.

LPML =
n∑
i=1

log(CPOi ),

where CPOi , the conditional predictive ordinate for the i th patient, represents the
conditional density (evaluated at yji), of Y ji, given all the other observations. We also 
computed the mean squared error MSE of the prediction errors, i.e. the mean of SEi 
over hospitals, given by



Table 4 Predictive goodness-of-fitmeasures when the prior of the random effects is the Pitman-Yor process
with parameters a = 0.3, b = 0.5, or a = 0, b = 0.5 (i.e. the Dirichlet process with parameter b = 1.53),
or parametric

Random effects prior PY (a = 0.3, b = 0.5) PY (a = 0, b = 1.53) Parametric

LPML −594.40 −593.037 −596.053

MSE 0.282 0.282 0.280

W AIC1 −581.847 −581.082 −582.096

W AIC2 −589.613 −588.974 −591.105

SEi = (Y j i1 − μ̂ j i  )2 + (Y j i2 − p̂ j i  )2 + (Y j i3 − q̂ j i  )2,

where the hat denotes the posterior expectation of the corresponding parameters. 
Fol-lowing Gelman et al. (2014), we also considered the Watanabe-Akaike 
information criterion (WAIC), computed as the log pointwise predictive density, 
incorporating bias corrections. Specifically, we computed

W AIC1 = lppd  − pW AIC1 and W AIC2 = lppd  − pW AIC2 ,

where lppd  is the log pointwise predictive density, i.e. the product (in the log scale) of 
the conditional densities (evaluated at y j i  ), of Y j i  , given all the data, and then adding
the two alternative corrections pW AIC1 and pW AIC2 for effective number of parameters 
to adjust for overfitting. The bias correction pW AIC1 is similar to the bias correction 
in the definition of the DIC, while pW AIC2 is the sum of the posterior variances of the 
conditional density of the data. For further details, see Section 3 of Gelman et al.
(2014). The computed predictive goodness-of-fit measures are in Table 4.

4.5 Comparison with competitor models

When introducing the proposed model (2)–(7), we aimed at justifying all the choices 
we made. However it is natural to wonder whether simpler models could give similar 
inference. While we are pretty satisfied about the conditional distribution of data, 
given parameters (see (2)–(4)), we acknowledge that other simpler priors could be 
considered here. We examine some alternatives next.

First, let us consider the same prior as before, but now setting a = 0, which reduces 
nonparametric prior to a Dirichlet process (DP). In this case we fixed b = 1.53 to 
match the prior mean under the Pitman-Yor process prior component. In particular we 
now have E(K j ) = 5.302 and Var(K J ) = 3.130. The estimated fixed effects under 
the DP prior are very similar to those in Table 1 (data not shown).

We have also computed the posterior predictive estimates of the different 
nonpara-metric components in the mixing measure. Comparing Figs. 5 and 7 we find 
that the means are almost identical, but the quantile curves in the DP case are a bit 
more separated from the mean, suggesting a slightly increased posterior uncertainty 
in the corresponding posterior distributions.
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Fig. 7 Posterior predictive 95 % CIs of the components of P when a = 0, b = 1.53. Dashed (blue) lines 
correspond to quantiles, the solid central is the mean (the Bayesian estimates). The last 50 iterations are 
superimposed (in red). The left (right) column displays trajectories of the three random components 
related to hospitals outside (inside) Milano (color figure online)

The cluster estimate we obtained in this case contains 8 groups, but only 5 have 
sizes larger that 1. Table 5 describes the largest groups in the cluster estimate. Again, 
this results agrees with what is obtained when using the least squares method of Dahl 
(2006). The partitions are now a bit different, with the big cluster containing less points 
than the PY case.

Table 6 reports sample means of responses and covariates per hospital clusters, 
averaging over the entire set of patients in all hospitals forming each group in Table 5. 
The largest cluster here is similar to that in Table 3, but with two less members. 
However the other groups cannot be as clearly interpreted in terms of responses as 
in the case of the proposed PY process model. For instance, the mean values of DB 
are ordered in Table 3, unlike in Table 6. Under the previous case, the hospitals with



Table 5 Hospital clusters with size larger than 1 from the proposed model under the Pitman-Yor process
prior when a = 0 and b = 1.53; this corresponds to assuming a Dirichlet process prior with parameter
b = 1.53

Cluster ADP {1, 3, 6, 8, 11, 13, 15, 18, 19, 20, 25, 27, 28, 30, 31, 33}

Cluster BDP {4, 7, 17, 21, 29}

Cluster CDP {9, 14, 16, 24}

Cluster DDP {10, 23, 26}

Cluster EDP {5, 22}

Table 6 Responses and covariates summaries by clusters in Table 5, when a = 0, b = 1.53; this corre-
sponds to a Dirichlet process prior for the random effect parameters

Groups ADP BDP CDP DDP EDP

No. hospitals 16 5 4 3 2

No. patients 375 99 73 72 37

DB 115.648 101.374 86.521 74.625 85.351

ALIVEIN 0.952 0.980 1.000 0.958 1.000

ALIVE60 0.936 0.980 1.000 0.958 0.919

MILANO 0.504 0.081 0.753 0.000 0.000

ACCESS 0.544 0.697 0.534 0.583 0.595

ECG 9.899 13.818 12.356 5.556 5.108

WE 0.445 0.434 0.466 0.514 0.486

CKD 0.093 0.091 0.027 0.056 0.189

EF 47.211 49.869 51.068 47.181 48.946

COMP 0.469 0.313 0.329 0.417 0.108

KILLIP 0.083 0.061 0.014 0.056 0.000

AGE 64.485 66.293 64.178 63.181 66.541

MALE 0.795 0.687 0.753 0.819 0.865

STres 0.176 0.232 0.288 0.208 0.270

highest averages of both in-hospital and 60-days survival were in the second largest
cluster. In contrast, here the best hospitals in terms of in-hospital survival are split in
the third and fifth largest clusters, while those with highest average 60-days survival
are in the largest third and second groups.

We remark here that, according to Table 4, the DP prior is slightly superior. The
differences in values between the several criteria reported there are minimal though,
and we still prefer the Pitman-Yor model because of a clearer interpretation of the
selected partition, as discussed earlier.

We also considered a non-dependent version of the proposed Pitman-Yor model,
which eliminates the in/out of Milano indicator in the random effects. Specifically, we
change b�

φ j j to b
�
j for � = 1, 2, 3 and j = 1, . . . , J in (2)–(4). Doing so we obtained

predictive check values comparable to those already reported in Table 4, but miss the
subtle yet relevant differences in the predictive curves (left versus right panels) in
Figs. 5 or 7.



Another natural comparison involves a model with a parametric prior for random
effects. Under this alternative model, the likelihood is the same as in (2)–(4), but now
the random effects are assumed to be i.i.d. draws from the baseline distribution (10).
Fitting this model produced fixed effects estimates quite similar to those in Table 1.
Regarding random effects, the CIs for the b1 parameters are similar to those in Fig. 3,
but differences arise for the b2 and b3 terms (data not shown). The predictive check
measures for this model are also presented in Table 4. Note that, except for the mean
squared error (MSE), the non-parametric alternatives produce better fits to the data.
In this case, we lose the multimodality of the marginal prior of the random effect
parameters, and this has an impact on the inference.

As a final comparison, we considered also finite mixture models, for which the
stick-breaking representation (8)–(9) is replaced by a simple vector of weights π =
(π1, . . . , πH ) and a Dirichlet prior on π with joint prior density p(π) ∝ 1 on the
H -dimensional simplex. The finite mixture weights π are no longer stochastically
ordered as the stick-breaking weights. An immediate concern of this approach is
how to choose H . One option is to put a prior on H and consider reversible jumps
technology. We considered the pragmatic approach consisting in fitting the resulting
model for H = 1, . . . , 10, computing predictive checks for each case, and choosing
the best value. Doing so with the same measures presented in Table 4, we found
that H = 9 gave the best results, with MSE = 0.281 and LPML = −593.19,
W AC1 = −580.42 andW AC2 = −588.76. These numbers are quite similar to those
in Table 4 so that we do not find big differences in these models. A further comparison
involved a cross-validation study. At this stage, the following procedure was repeated
100 times: we randomly divided the data into two parts, training (of size 356) and
testing (of size 341), with the restriction that data from all hospitals was in each subset.
Specifically, we split the data from each hospital into two equal parts using one part for
the training subset, and the other for testing (if the total number of data points was odd,
we rounded the training part up). Next, we fitted threemodels to the training subset: the
finite mixture model with H = 9 components, and our proposed PY model with each
of (a, b) = (0, 1.53) and (a, b) = (0.3, 0.5); andfinally,we predicted all the responses
in the testing subset. At every repetition, we computed the MSE for both, training and
testing. The average of theseMSEs are given in Table 7. As we can see the numbers are
again quite similar, with finite mixtures giving a slightly better fit and a slightly worse
prediction than the proposed PY. In summary, our model and finite mixtures perform
very similar for these data, but our proposal automatically takes care of the number
of components to be considered, saving the additional computational complexity and
cost of implementing reversible jumps. See further comments in next Section.

Table 7 Cross-validation study results

MSE Finite mixture H = 9 PY (0,1.53) PY (0.3,0.5)

Training 0.27132 0.27481 0.27598

Testing 0.34533 0.34530 0.34449

We display the average mean squared errors (MSE) for training and testing subsets over 100 randomly split
subsets, and for each of finite mixtures and proposed model with the indicated parameters



5 Conclusions

We have presented a framework for semiparametric Bayesian modeling of mixed-
type multiple outcomes for Acute Myocardial Infarction patients admitted to 
hospitals in Lombardy; we considered patients with STEMI diagnosis and treated 
with PTCA. Specifically, we have proposed a Bayesian nonparametric hierarchical 
model for clus-ter analysis, aimed at identifying hospital behavior that may affect the 
outcome at patient level. We have considered a conditional specification of the joint 
model for three responses: the door to balloon time (DB), the in-hospital survival 
and the sur-vival after 60 days from admission. The information on survival is 
available as binary outcomes. A different study based on survival times or in general 
time-to-event data might be of interest, and could possibly lead to different results. 
Nevertheless the analysis of the binary outcome of in-hospital and mid-term survival 
was one of the main study targets, as requested by clinicians. In fact, performance 
assessment in clin-ical practice is usually based on binary survival data, which is 
probably the reason why we have been asked to focus on these outcomes. Each 
conditional specification is a generalized linear model with random intercepts to 
account for hospital variability. We postulated a nonparametric prior for the random 
effects that incorporates dependence on a location indicator, which is used to 
explicitly differentiate among hospitals in or outside the city of Milano. The random 
effects are a sample from the Pitman-Yor process, more flexible than, yet 
encompassing the Dirichlet process prior. We have provided Bayesian estimates of 
the random effect parameters, predictive inference for the nonparametric 
components of the prior, and cluster estimates for the grouping of the hospitals as 
well.

In our data analysis we have considered a number of competitor models, either 
purely parametric, or with a nonparametric component. Though all the models 
provide similar results in terms of the fixed effects estimates, the most flexible model 
(where the random effects are modeled from the Pitman-Yor process) seems the one 
able to better explain the underlying clustering structure. JAGS code to fit the 
proposed model is available from authors upon request.

A referee asked why the Bayesian nonparametric (BNP) approach is needed in 
this case, suggesting instead maximum likelihood techniques in finite mixtures. One 
fundamental reason to prefer the BNP approach is the wide support it provides for 
the unknown dependent random effects distribution. See Barrientos et al. (2012). Of 
course, alternative approaches are plausible, but we stick to the Bayesian context to 
model the prior information we have (e.g. exchangeability of the hospitals), and to 
get richer inference (e.g. whole distribution of “parameters”, instead of estimates). 
Flexibility in models, beyond simple standard parametric distributions, can be added 
in a number of various principled ways. Nonparametric mixture models (or their 
truncated versions, as in our model) is one of these ways. Finite mixture models, 
such as mixtures of experts (e.g., see McLachlan and Peel 2000) is yet another one. 
There is already experience in comparing such approaches for some specific models, 
and we have presented some in the previous Section. See further discussion about such 
comparisons in, for instance, Richardson and Green (1997) and in Müller et al.(2011). 
Part of the flexibility of the nonparametric approach lies in the fact the number of 
imputed mixture terms is random. For mixture models a similar setting requires



reversible jump methodology, which may not be easy to implement, even when fixing
a maximal number of components. The computational cost of the resulting model
is comparable to that of the nonparametric one, the most consuming part being the
updating of configurations. See, for instance, the recent paper Malsiner-Walli et al.
(2016), where sparse finite mixture models have been proposed as an alternative to
infinite mixtures in the context of (Bayesian) model-based clustering. It is apparent
that the computational effort there is as heavy as in BNP infinite mixture models. We
argue that the BNP approach is more natural, since the number of components in the 
mixture has a prior which is spread out on the number of “items” we have considered.

Finally, we value a comment by one of the referees on more general random para-
meter priors that could have been used here. Specifically the comment suggested to 
allow the effect of covariates vary with clusters of hospitals. This is certainly a very
sensible option. One possibility here is to adopt the PPMx prior of Müller et al. (2011), 
where clusters are encouraged to group individuals that are homogeneous with regard 
to covariate values. In other words, individuals are more likely to co-cluster if their
covariate values are closer. Adopting this method and comparing to the current analysis 
is part of future work.
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