
A data driven equivariant approach to constrained Gaussian mixture

modeling

Roberto Rocci∗1, Stefano Antonio Gattone†2, and Roberto Di Mari‡1

1DEF, University of Rome Tor Vergata, Italy

2DiSFPEQ, University G. d’Annunzio, Chieti-Pescara, Italy

Abstract

Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance

matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with

the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact

that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from

zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a

priori information on the covariance structure of the mixture components. The present work introduces a

constrained equivariant approach, where the class conditional covariance matrices are shrunk towards a

pre-specified matrix Ψ. Data-driven choices of the matrix Ψ, when a priori information is not available,

and the optimal amount of shrinkage are investigated. The effectiveness of the proposal is evaluated on

the basis of a simulation study and an empirical example. keywords: model based clustering, Gaussian

mixture models, equivariant estimators.

1 Introduction

Let x be a J-variate random variable following a Gaussian mixture model (GMM) with density

h(x; θ) =

G∑
g=1

pgφ(x;µg,Σg), (1)
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where the pg’s are the mixing proportions, with pg > 0 ∀g and
∑

g pg = 1, and the component φ(x;µg,Σg)

represents the density of a J-variate normal distribution with mean vector µg and covariance matrix Σg; fur-

thermore, let us indicate the set of model parameters with θ =
{
pg,µg,Σg

}
G

= {p1, . . . pG,µ1, . . . ,µG,Σ1, . . . ,ΣG} ∈

RG(1+J+J2), and the parameter space with

Θ =

{
θ ∈ RG(1+J+J2) :

∑
g

pg = 1, pg > 0,Σg � 0, g = 1, . . . , G

}
, (2)

where the symbol � refers to Löwner ordering on symmetric matrices and, in this case, is equivalent to

requiring that Σg be positive definite. The GMM is frequently used to classify a sample of observations.

The idea is to consider the sample as drawn from a heterogeneous population where each sub-population is

described by one component of the mixture. In other terms, each observation is assumed to come from one

of the G different groups characterized by the mixture components. The observations are classified into the

groups by computing the posterior probabilities

p(g|x) =
pgφ(x;µg,Σg)∑
h phφ(x;µh,Σh)

, (3)

and assigning each observation to the group with the largest posterior probability.

The parameters of the GMM are generally unknown and estimated from the data. Given a sample of

i.i.d. observations {xi}n = {x1,x2, . . .xn}, the estimation is usually done by maximizing the likelihood

L (θ; {xi}n) =
n∏
i=1

 G∑
g=1

pgφ(xi;µg,Σg)

 . (4)

The likelihood in Equation (4) is known to be unbounded and it is cursed by the presence of several local

maxima. As a consequence, the EM algorithm may fail to converge, leading to such degenerate solutions.

To face degeneracy, several methods have been proposed by the literature in which constraints or penalties

are added to the log-likelihood. Their main objective is to keep the eigenvalues of the class conditional

covariance matrices bounded away from zero.

This paper considers the sufficient condition formulated by Ingrassia (2004) such that Hathaway’s (1985)

constraints hold: we propose a generalization that enforces the equivariance with respect to linear affine

transformations of the data. The idea is to shrink the class conditional covariance matrices towards a pre-
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specified matrix Ψ. We investigate possible data-driven methods for choosing the matrix Ψ, when a priori

information on the group-specific covariance structure is not available, and we let the data determine the

optimal amount of shrinkage. The equivariance property the method possesses is a key feature for twofold

reasons. First, it means that irrespective of the kind of standardization performed on the data, the final

clustering will be the same - provided that Ψ is transformed accordingly. Second, whatever the scale of the

data is as they come in, there will be no best pre-processing of the data ensuring a better result, as the final

clustering is not affected by changes in scale.

The plan of the paper is the following. Section 2 gives insights on the notion of degeneracy for multivari-

ate GMM, and Section 3 reviews some of the workarounds proposed by the existing literature. In Section

4 we state the property of equivariance of GMM and we show, in Section 5, that the property holds in the

constrained approach of Hathaway (1985), whereas it does not hold in the sufficient condition provided by

Ingrassia (2004). In Section 6 we illustrate how these constraints can be generalized, by introducing the ma-

trix Ψ, to become equivariant under linear affine transformations of the data, provided that Ψ is transformed

accordingly, and how their configuration can be tuned from the data (Section 7). Section 8 summarizes the

algorithm. The proposal is evaluated through a simulation study (Section 9) and an empirical application

(Section 10). Section 11 concludes with a final discussion.

2 The issue of degeneracy in GMM

In the univariate case, the likelihood function increases without bound if some variances tend to zero and the

corresponding component’s mean coincides with a sample observation (Kiefer and Wolfowitz, 1956; Day,

1969). Biernacki and Chrétien (2003) showed that if mixture parameters are close to a degenerate solution,

then the EM is attracted by it and the divergence is extremely fast. Although Kiefer (1978) proved that

maximum likelihood does not fail, as there exists a local maximizer strongly consistent and asymptotically

efficient, several local maximizers can exist for a given sample. That is, some local maximizers are spurious,

i.e. with a high likelihood but of little practical use because highly biased. They are characterized by some

component variances and mixing proportions very small relative to the others (Day, 1969; McLachlan and

Peel, 2000). Detecting the desired solution, among the many available, can therefore be a complicated task.

The same problems hold in the multivariate case (as an example, see Ingrassia and Rocci, 2011, for an

extension of Biernacki and Chrétien, 2003), with additional complications. To notice how unboundedness
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is caused, first of all let us express the density of the i-th observation on the g-th component as follows

φ
(
xi;µg,Σg

)
=

1√
2π
∏J
j=1 λjg

exp

{
−1

2
(xi − µg)

′QgL
−1
g Q′g(xi − µg)

}
, (5)

where Qg is the square J×J matrix whose j−th column is the eigenvector qjg of Σg, and Lg is the diagonal

matrix whose diagonal elements are the corresponding eigenvalues {λjg}J , ordered such that λ1g ≥ · · · ≥

λJg. Equation (5) can be rewritten as

φ
(
xi;µg,Σg

)
=

1√
2π
∏J
j=1 λjg

exp

−1

2
(xi − µg)

′(
J∑
j=1

λ−1
jg qjgq

′
jg)(xi − µg)


=

1√
2π
∏J
j=1 λjg

exp

−1

2

J∑
j=1

λ−1
jg [(xi − µg)

′qjg][q
′
jg(xi − µg)]


=

1√
2π
∏J
j=1 λjg

exp

−1

2

J∑
j=1

λ−1
jg [(xi − µg)

′qjg]
2

 . (6)

As Policiello (1981) argued, the likelihood in Equation (4) can be written as the sum of non negative terms.

Among them, it is possible to isolate the product of the density of the i-th observation on the g-th component

- Equation (6) - and the densities of the other observations on the other components and the corresponding

mixing proportions. If observation i is such that x′iqJg − µ′gqJg = 0, then, as λJg → 0, there would be no

exponential term involving λJg who can attenuate the effect of 1√
2π

∏J
j=1 λjg

→ ∞. In words, the sample

likelihood diverges when in one component the covariance matrix is close to singularity and the projection

of the component’s mean on the eigenvector corresponding to the smallest eigenvalue coincides with the

projection of one of the observations on the same eigenvector.

3 Remedies to degeneracy

The easiest way to handle degeneracy is to initialize the EM algorithm from several starting points until a

local maximum is found (Biernacki and Chrétien, 2003). McLachlan and Peel (2000) proposed monitoring

the local maximizers by inspecting the relative size of the estimated mixing proportions and component

variances. This leads, in practice, to performing maximum likelihood estimation by looking for the correct

local maximum and discarding those that seem to be spurious.
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Further methods exploit constraints on the covariance matrices. This approach is based on the seminal

work of Hathaway (1985), where he studied how to avoid the divergence of the likelihood in the univariate

case by imposing a lower bound, say c, to the ratios of the scale parameters. In this way the variances cannot

be arbitrarily different. Hathaway proved the boundedness of the likelihood and the consistency of the ML

estimator under such constraints. In the multivariate case, the lower bound is imposed on the generalized

eigenvalues of each pair of covariance matrices and the ML estimator results to be equivariant under linear

affine transformations of the data. This implies that, as in the unconstrained case, if the data are linearly

transformed, the estimated posterior probabilities do not change and the clustering remains unaltered (see

Sections 4 and 5).

An important issue is the choice of the constant c, which controls the strength of the constraints. In

the context of univariate mixtures of Gaussians or linear regression models, some authors have shown that

the maximum likelihood constrained estimator is consistent if c decreases to zero at a certain rate as the

sample size increases to infinity (e.g. Tanaka and Takemura (2006), Tan et al. (2007), Xu et al. (2010)).

Nevertheless, finite-sample sensible choice of c is still an open issue.

Hathaway’s constraints are very difficult to apply within iterative procedures like the EM algorithm. To

solve this problem, Ingrassia (2004) proposed to simplify the constraints by putting bounds on the eigen-

values of the covariance matrices. Although putting lower bounds on the group conditional covariance

matrices was already common practice, Ingrassia (2004) found a way to reconcile Hathaway’s contribution

with the common practice: his bounds on the eigenvalues give a sufficient condition such that Hathaway’s

constraints are satisfied. The simplification is such that the constraints can be easily implemented within the

EM algorithm, preserving its monotonicity property (as shown in Ingrassia and Rocci, 2007).

Several authors extended the constrained setup of Ingrassia (2004). Greselin and Ingrassia (2013) ap-

plied this setup to mixtures of factor analyzers. They proposed a tuning procedure for selecting the bounds

for the eigenvalues of the covariance matrices, based on the final likelihood over a set of runs. Ingrassia and

Rocci (2011) modified the constrained algorithm, allowing for stringent constraints which are lifted during

the iterations. Browne et al. (2013) combined the ideas in Ingrassia and Rocci (2007, 2011), constraining

dynamically the smallest eigenvalue, the largest eigenvalue and both the smallest and the largest ones. All

of these proposals share the drawback of not being affine equivariant.

Gallegos and Ritter (2009a; 2009b), and Ritter (2014) applied Hathaway’s constraints to robust cluster-

ing. They proposed to obtain all local maxima of the trimmed likelihood and, for each solution, investigate

5



the value of c such that it fulfills the constraints. The idea is to choose, a posteriori, the solution with the

highest trade-off between scale balance (c) and fit (log-likelihood). This approach can be viewed as a refined

version of what was proposed in McLachlan and Peel (2000). Garcia-Escudero et al. (2008), from the same

strand of literature, introduced the TCLUST algorithm, based on controlling the relative sizes of the eigen-

values of the cluster scatter matrices. The TCLUST algorithm implies solving several complex optimization

problems. Fritz et al. (2013) and Garcia-Escudero et al. (2014) proposed further improvements to the

algorithm in order to make it more efficient. The constraints considered therein are not affine equivariant.

Seo and Kim (2012) pointed out that singular and spurious solutions overfit random localized patterns

composed of few observations in the dataset. Such observations have a strong influence on the formation of

the likelihood-based solutions. Their proposal was to take out such, say, k observations with the highest like-

lihood (likelihood-based k-deleted method), or with the highest value for a score-based statistic (score-based

k-deleted method). In this way the likelihood of the reduced samples is evaluated at each local maximizer

previously found: the root they suggested to select is the one with the highest k-deleted likelihood. Kim and

Seo (2014) show that their score-based method can be fairly well approximated with the computationally

more efficient gradient-based version of the k-deleted method.

The degeneracy problem may also be addressed by adding a penalty to the log-likelihood (penalized ap-

proach). Ciuperca et al. (2003) have shown the consistency of the penalized likelihood estimators proposed

in Ridolfi and Idier (1999, 2000) for univariate GMM. Chen and Tan (2009) extended the consistency result

for the multivariate case. In this framework, the penalty term on the component covariance is added to the

log-likelihood (Snoussi and Djafari, 2001; Chen et al, 2008). This penalty can be interpreted as the log

of the prior distribution in a Maximum-A-Posteriori estimation setup. Yet, the penalized methods are not

affine equivariant, unless the prior’s hyperparameters are suitably transformed. MAP estimation, with an a

priori distribution for the covariance matrices, is what Fraley and Raftery (2007) suggested to use, instead

of Maximum-Likelihood, to circumvent the issues of degeneracy and spurious solutions.

4 Equivariance in the Gaussian Mixture model

The maximum likelihood estimators (MLE) of Equation (1) are equivariant with respect to linear affine trans-

formations of the data. That is, if the data are linearly transformed, the MLE are transformed accordingly.

This property is particularly important in classification because it implies that linear affine transformations

6



of the data do not change the posterior estimates (Kleinberg, 2002; Ritter, 2014).

The equivariance property can be shown in the following way. Let us define a linear affine transformation

x∗ = Ax + b, where A is non singular. It is well known that

φ(x;µ,Σ) = |A|φ(Ax + b; Aµ + b,AΣA′)

= |A|φ(x∗;µ∗,Σ∗) (7)

where µ∗ = Aµ + b and Σ∗ = AΣA′. This implies that, denoting the likelihood of the original data with

F and the likelihood of the transformed data with F∗, we have, with obvious notation

F = L
({
pg,µg,Σg

}
G

; {xi}n
)

=

n∏
i=1

G∑
g=1

pgφ(xi;µg,Σg)

=

n∏
i=1

G∑
g=1

pg|A|φ(x∗i ;µ
∗
g,Σ

∗
g) = |A|nL

({
pg,µ

∗
g,Σ

∗
g

}
G

; {x∗i }n
)

= |A|nF∗. (8)

It follows that there exists a one to one correspondence among the local maxima of F and F∗. In particular,

if
{
p̂g, µ̂g, Σ̂g

}
G

is a local maximizer for F , then
{
p̂g,Aµ̂g + b,AΣ̂gA

′
}
G

will be a local maximizer for

F∗. Analogously, if
{
p̂∗g, µ̂

∗
g, Σ̂

∗
g

}
G

is a local maximizer forF∗, then
{
p̂∗g,A

−1(µ̂∗g − b),A−1Σ̂
∗
g(A

′)−1
}
G

will be a local maximizer for F . It is interesting to note that every pair of local maximizers produces the

same estimates of the posterior probabilities, that is

p̂(g|xi) =
p̂gφ(xi; µ̂g, Σ̂g)∑
h p̂hφ(xi; µ̂h, Σ̂h)

=
p̂g|A|φ(x∗i ; µ̂

∗
g, Σ̂

∗
g)∑

h p̂h|A|φ(x∗i ; µ̂
∗
h, Σ̂

∗
h)

= p̂∗(g|x∗i ).

The above equality proves that the classification obtained via the GMM model is invariant under the

group of linear affine transformations on the data {xi}n. This property is crucial when dealing with practical

applications as it implies that the clustering does not depend on the choice of a particular method of data

standardization - which could instead affect the inference.
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5 Constraints on covariance eigenvalues

Hathaway (1985) proposed to impose the following restrictions on the covariance matrices

λj(ΣgΣ
−1
h ) ≥ c, j = 1, . . . , J ; g, h = 1 . . . G (9)

where λj(A) is the j-th eigenvalue of A and 0 < c ≤ 1. This prevents the likelihood from diverging and

reduces the number of spurious maximizers. However, the method is difficult to implement and a correct

choice of c is not simple in practice. A value of c close to 1 could exclude the correct solution, whereas a

value too close to 0 is likely to increase the chance of converging to a spurious maximizer.

Ingrassia (2004) simplified Hathaway’s constraints as

√
c ≤ λj(Σg) ≤

1√
c
, j = 1, . . . , J ; g = 1 . . . G. (10)

It is easy to show that (10) implies Hathaway’s constraints (9) while the reverse is not necessarily true

(Ingrassia, 2004). This ensures a bounded likelihood, and a reduction in the number of spurious maximizers.

The constraints are easy to implement, as shown in Rocci and Ingrassia (2007); however, choosing an

optimal c is still an issue.

It is important to check if the above constrained approaches offer equivariant estimators under linear

affine transformations. The property can be shown to hold for Hathaway’s approach as follows.

Let {xi}n = {x1,x2, . . .xn} be a sample of i.i.d. observations. The estimates are computed as the

solution of the optimization problem


max

{pg ,µg ,Σg}G
L
({
pg,µg,Σg

}
G

; {xi}n
)

s.t. λj(ΣgΣ
−1
h ) ≥ c, j = 1, . . . , J ; g, h = 1 . . . G.

(11)

Given the transformation x∗ = Ax + b, the maximand in Equation (11) can be rewritten (see Section 4) as

L
({
pg,µg,Σg

}
G

; {xi}n
)

= |A|nL
({
pg,µ

∗
g,Σ

∗
g

}
G

; {x∗i }n
)
,

where µ∗ = Aµ + b and Σ∗ = AΣA′.
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Noting that

λj(ΣgΣ
−1
h ) = λj(A

−1AΣgA
′(A′)−1Σ−1

h )

= λj(AΣgA
′(A′)−1Σ−1

h A−1)

= λj(Σ
∗
g(Σ

∗
h)−1),

we can equivalently write the optimization problem in Equation (11) as


max

{pg ,µ∗g ,Σ∗g}G
L
({
pg,µ

∗
g,Σ

∗
g

}
G

; {x∗i }n
)

s.t. λj(Σ
∗
g(Σ

∗
h)−1) ≥ c, j = 1, . . . , J ; g, h = 1 . . . G.

(12)

It follows that if
{
p̂g, µ̂g, Σ̂g

}
G

is a maximizer for (11), then
{
p̂g,Aµ̂g + b,AΣ̂gA

′
}
G

=
{
p̂g, µ̂

∗
g, Σ̂

∗
g

}
G

is a maximizer for (12) and vice-versa, and the two maximization problems are equivalent. As in the uncon-

strained case, every pair of local maximizers produces the same estimates of the posterior probabilities. This

property does not hold for the constraints given in (10). That is, if
{

Σ̂g

}
G

is a constrained local maximizer

for F subject to (10),
{

AΣ̂gA
′
}
G

does not necessarily satisfy (10). As an example, let us suppose that

smax(A) <
√
c, where smax(A) is the largest singular value of A. In this case, for a given g,

λj(AΣ̂gA
′) ≤ λmax(AΣ̂gA

′) ≤ smax(A)2λmax(Σ̂g)

≤ smax(A)2 1√
c
< c

1√
c

=
√
c.

We conclude that AΣ̂gA
′ does not satisfy the constraints in (10) because λj(AΣ̂gA

′) <
√
c, and then it

cannot be a constrained local maximizer for F∗.

Constrains in (10) are such that there is no one to one correspondence between the set of local maxi-

mizers of F and F∗. Thus, the method suffers the disadvantage that the clustering depends on the choice

of matrix A. To fix this, data standardization is not the best way to go for two main reasons. First, the

standardization requires a choice for the matrix A and, second, there is no single best approach to data

standardization (Milligan and Cooper, 1988; Doherty et al, 2007).

It is now clear that affine equivariance is not just a desirable property. It is one of the basic requirements

of any clustering method, which should not be sensitive to the changes in the units of measurement of the
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data. In the next section, our goal will be that of deriving a new set of constraints that are affine equivariant.

With an affine equivariant clustering method, researchers and practitioners shall not be concerned anymore

with choosing what method to adopt to standardize their data.

6 Equivariant constraints

Our proposal is to generalize the constraints (10) by

√
c ≤ λj(ΣgΨ

−1) ≤ 1√
c
, j = 1, . . . , J ; g = 1 . . . G (13)

where Ψ is a symmetric positive definite matrix representing our prior information about the covariance

structure. Clearly, (13) is equal to (10) when Ψ = I.

It can be shown that the above constraints imply Hathaway’s constraints. It is known that (Anderson and

Gupta, 1963)

λmin(AB−1) ≥ λmin(AC−1)λmin(CB−1), (14)

where A is a positive semi-definite matrix and B and C are positive definite matrices. Now, if (13) holds,

then

λmin(ΣgΣ
−1
h ) ≥ λmin(ΣgΨ

−1)λmin(ΨΣ−1
h ) =

λmin(ΣgΨ
−1)

λmax(ΣhΨ
−1)
≥
√
c

1√
c

= c. (15)

Thus, (13) implies (9).

Furthermore, it can be shown that (13) is invariant under linear and affine transformations provided

that Ψ is transformed accordingly, i.e. it is replaced by Ψ∗ = AΨA′. If
{

Σ̂g

}
G

is a constrained local

maximizer for F subject to (13), then
{

Σ̂
∗
g = AΣ̂gA

′
}
G

is a local maximizer for F∗ subject to (13) for

g = 1 . . . G. We have that

λj(Σ̂gΨ
−1) = λj(Σ̂gA

′(A′)−1Ψ−1A−1A)

= λj(AΣ̂gA
′(A′)−1Ψ−1A−1)

= λj(Σ̂
∗
g(Ψ

∗)−1).

In words, if a linear affine transformation is performed on the data, Ψ must be changed accordingly. This
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scheme of transforming Ψ ensures the equivariance of the method. By contrast, holding Ψ fixed breaks the

equivariance property.

The constraints (13) have the effect of shrinking the covariance matrices to Ψ, and the level of shrinkage

is given by the value of c. Note that for c = 1, Σ̂g = Ψ, whereas for c → 0, Σ̂g equals the unconstrained

ML estimate. Furthermore we can show that the Stein’s discrepancy - known as Stein’s loss (James and

Stein, 1961) - between the matrices Σ̂g and Ψ goes to zero as c approaches one. The Stein’s discrepancy

between the matrices Σ̂g and Ψ is

L(Σ̂g,Ψ) = tr(Σ̂gΨ
−1)− log |Σ̂gΨ

−1| − J ≥ 0. (16)

Let us rewrite Equation (16) as follows.

L(Σ̂g,Ψ) =
J∑
j=1

λj(Σ̂gΨ
−1)−

J∑
j=1

log(λj(Σ̂gΨ
−1))− J (17)

Using the constraints in (13), we can derive the following majorizing function

L(Σ̂g,Ψ) ≤ J√
c
− J log(

√
c)− J, (18)

which is decreasing in c. This can be shown by noting that the first derivative of the right-hand side of (18)

with respect to c is equal to − J
2c
√
c
− J

2c , and is negative when 0 < c ≤ 1. This implies that the function is

decreasing when c increases within the interval (0, 1].

Intuitively, the constraints (13) provide with a way to obtain a model in between a too restrictive model,

the homoscedastic, and an ill-conditioned model, the heteroscedastic.

7 Data-driven choice of Ψ and c

Issues arise when a priori information about the structure of the class conditional covariance matrices is not

available. In that case, Ψ and c have to be selected from the data. From the previous discussion, for a given

c, every Σ̂g cannot be too far from Ψ in terms of Stein’s discrepancy. Thus Ψ can be seen as the barycenter

of the cloud of the Σ̂g’s: the average conditional covariance matrix. Therefore, the most natural choice is

to estimate such average as the within covariance matrix of the homoscedastic Gaussian model. How close
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the final clustering will be to the homoscedastic model will depend on the value of the tuning constant: for

values of c close to 0, the resulting clustering will be close to that of the heteroscedastic mixture model,

whereas c→ 1 implies a clustering close to that of the homoscedastic mixture model.

Other possible choices of Ψ, which guarantee the equivariance of the constraints, are available: the

sample covariance matrix, which is computationally faster and is frequently used as hyperparameter in

Bayesian Gaussian mixtures (for instance, see Fraley and Raftery, 2007), or the within covariance matrix

of a homoscedastic mixture of Student-t. To motivate this, let us recall that a random vector conditionally

distributed as a multivariate Gaussian, given Wishart inverse covariance matrix, has a multivariate Student-t

distribution (Dawid, 1981; Dickey, 1967). Using similar arguments as in Peel and McLachlan (2000), if

x|Σ1, . . . ,ΣG is a GMM, and Σ−1
1 , . . . ,Σ−1

G are i.i.d. Wishart random variables, the marginal distribution

of x is a homoscedastic mixture of Student-t’s.

The choice of c is crucial. A value of c too large could exclude the right solution, whereas a too small

value of c is likely to increase the chance to converge to spurious local maxima: such solutions overfit

random localized pattern composed of few data points being almost co-planar (Ritter, 2014; Seo and Kim,

2012). Hence, selecting c jointly with the mixture parameters by maximizing the likelihood on the entire

sample would trivially yield a scale balance approaching zero.

A practical alternative would be to split the data into a training set, where model parameters are es-

timated, and a test set, where the log-likelihood is evaluated for a given value of c. The optimal tuning

parameter c would then be selected such that the test set log-likelihood is maximized.

The use of the test set log-likelihood as a model selection tool is advocated by Smyth (1996; 2000), in

the context of estimating the number of mixture components. The motivation behind its use is that it can

be showed to be an unbiased estimator (within a constant) of the Kullback-Leibler divergence between the

truth and the model under consideration (Smyth, 2000). This means that, even under a misspecified model,

the procedure renders a c such that the Kullback-Leibler divergence is minimized.

In spite of the usual unavailability of large independent test sets, a valid alternative is to use the cross-

validated log-likelihood in order to estimate the test set log-likelihood. This consists in repeatedly partition-

ing the data into training and test sets and, for a given c, estimate the mixture parameters on the training

sets. The model fit is then measured summing the log-likelihoods of the test sets evaluated at the parameters

computed on the training sets, obtaining the so-called cross-validated log-likelihood. The constant c is cho-

sen such that the cross-validated log-likelihood is maximized. This can be viewed as a function of c only
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(Smyth, 1996), and would solve the issue of overfitting as training and test sets are independent (Arlot and

Celisse, 2010).

In details, let us partition K times the full data set {xi; i ∈ N}n into two parts, a training set xS =

{xi; i ∈ S}nS
, and a test set xS̄ =

{
xi; i ∈ S̄

}
nS̄

with S∪ S̄ = N and nS +nS̄ = n. For the k-th partition,

let θ̂(c, Sk) be the constrained maximum likelihood estimator based on the training set xSk
. Furthermore, let

lS̄k
[θ̂(c, Sk)] be the log-likelihood function evaluated at the test set xS̄k

. The cross-validated log-likelihood

is defined as the sum of the contributions of each test set to the log-likelihood

CV(c) =
K∑
k=1

lS̄k
[θ̂(c, Sk)]. (19)

The best c is chosen as the maximizer of CV(c).

Further details on the choice of the number of random partitions K and of the sizes of training and test

sets are given in Section 9.

8 Algorithm

The objective is to maximize (4) under the constraints (13). Thanks to the equivariance property of the

constraints, we can act any linear affine transformation to the data. This is useful since it will suffice to

transform the data so to have Ψ = IJ and the existing algorithm of Ingrassia and Rocci (2007) can be

applied on the transformed data.

The transformation is x∗ = L−
1
2 Q

′
x, where Ψ = QLQ′ is the singular value decomposition of Ψ.

This leads to Ψ∗ = L−
1
2 Q′ΨQL−

1
2 = IJ .

For sake of completeness, we recall briefly the updates of the algorithm proposed by Ingrassia and Rocci

(2007).

Update uig, pg, µg

As in the case of a normal mixture, the updates are

uig =
pgφ(xi;µg,Σg)∑G
h=1 φ(xi;µh,Σh)

; (20)
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pg =
1

n

n∑
i=1

uig; (21)

µg =

∑
i uigxi∑
i uig

. (22)

Update Σg

Compute

Sg =
1∑
i uig

∑
i

uig(xi − µg)(xi − µg)′, (23)

and set

λqg = min

(
1√
c
,max

(√
c, lqg

))
, (24)

where Lg = diag (l1g, . . . lJg) is the diagonal matrix of the eigenvalues in non decreasing order of Sg, and

Sg = QgLgQ
′
g its singular value decomposition. Letting Λg = diag (λ1g, . . . λjg), the update of Σg is

given by

Σg = QgΛgQ
′
g. (25)

9 Simulation study

9.1 Design

In this section we perform a simulation experiment in order to compare the performance of the proposed

methods with respect to some existing approaches in the literature. In particular we consider the following

seven algorithms:

1. Unconstrained

(a) homoscedastic normal (homN), within covariance matrix Σ;

(b) heteroscedastic normal (hetN), 0.0000001 ≤ λj(Σg) ≤ 10000000 to prevent degeneracy and

numerical instability;

(c) homoscedastic Student t (homt), scale matrix Ξ, β = 4 (McLachlan and Peel, 1998).

2. Constrained

(a) sample covariance (conS), Ψ = S;
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(b) normal (conN), Ψ = Σ;

(c) Student t (cont), Ψ = βΞ
(β−2) .

For each sample, we randomly split the data K = 25 times into a training set xS , and a test set xS̄ .

Choosing how many times to partition the full data set is a trade-off between variability of the estimates and

computational burden. As Smyth (2000) argues in the context of model selection for probabilistic clustering

using cross-validation, the larger the value of K, the less the variability in the log-likelihood estimates. In

practice - the Author argues - values of K between 20 and 50 appear adequate for most applications.

The choice of the size of the test set must be such that the training set has all components represented. If

one component is not represented in the test set, but the parameters are correctly estimated using the training

set, the test set log-likelihood will correctly display the fit of the model. By contrast, if one component is not

represented in the training set, although estimation of the other components parameters can be correct, the fit

displayed by the test set log-likelihood will be poor. Van der Laan, Dudoit, and Keles (2004) found, in their

simulation study, that the likelihood-based cross-validation procedure is performing equally well with any

choice of the relative size of the test set between 0.1 and 0.5. As argued in Kearns (1996), the importance of

choosing an optimal size for the training set increases as the target function becomes more complex relative

to the sample size. Bearing this in mind, we choose to consider a training set of size nS = n − n
10 , and a

test set xS̄ of size nS̄ = n
10 .

Then the cross-validation scheme, as described in Section 7, is applied and the optimal c is chosen

by using a line search with six function evaluations. The sample data have been generated from G-class

mixtures of heteroscedastic J-variate normal distributions with:

• n = 50, 100, 200;

• J = 5, 8;

• prior membership probabilities p = (0.2, 0.3, 0.5)′, (0.1, 0.4, 0.5)′, (0.1, 0.1, 0.2, 0.3, 0.3)′.

This yields a total of 2× 3× 3 simulation conditions.

For each simulation condition, we generate 250 data sets, each with different means and covariance

matrices, where:

• component means µjg ∼ N(0, 1.52), independent;
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• eigenvalues of the covariance matrices λjg ∼ U(0, g
sep), independent with sep = 2;

• eigenvectors of the covariance matrices generated by orthonormalizing matrices generated indepen-

dently from a standard normal distribution.

It is well known that the EM for GMM is sensitive to the initial position, especially in the multivariate

context (among others, McLachlan and Peel, 2000). We choose to adopt the standard multiple random starts

strategy. That is, for each data set, 10 random initial partitions are generated: these are used as starting values

for the M-step of all the seven algorithms under analysis. For conN, conS, and cont, a constrained algorithm

with arbitrary lower and upper bounds of respectively 0.5 and 2 is run in order to exclude degenerate (and

some spurious) solutions, and the estimated clustering is used to initialize the cross-validation scheme. The

alternative option of directly generating 10 different starts for each training set - within the cross-validation

scheme - would have added little in terms of accuracy of the final estimates.

Concerning the root selection criterion, for the unconstrained algorithm, we select the roots yielding the

highest likelihood, whereas for the constrained algorithms we select the roots based on the cross-validated

likelihood.

The performance of the different techniques has been analyzed in terms of:

• MAD (Mean absolute deviation):
∑G

g=1

∑n
i=1 |p(g|xi)− p̂(g|xi)|;

• ARand (Adjusted Rand index; Hubert and Arabie, 1985);

• computational time needed to analyze a single data set;

• the value of the calibrated constant c (for the constrained approach only).

The MAD is computed evaluating the above expression for all possible permutations of the estimated classes.

The final MAD reported refers to the permutation which yields the lowest difference, and measures inaccu-

racy of estimated fuzzy classification - whereas ARand measures accuracy of estimated crisp classification.

In addition, we tested the robustness of the results with respect to changes in 1) the cross-validation

settings, and 2) the level of class separation. In order to test robustness with respect to cross-validation

settings, we considered a subset of the above simulation conditions as follows. 250 samples, of 50, 100, and

200 observations, were generated from a 3-group 8-variate heteroscedastic Gaussian mixture model, with

prior class membership probabilities of 0.1, 0.4, and 0.5.
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The same setting was used in order to count how many different local maxima each algorithm converged

to over the 10 random initializations considered. This serves the purpose of providing some information on

the likelihood surface.

Class separation has been manipulated by controlling the dispersion of the group conditional covariance

matrices’ eigenvalues (through the above sep value): higher dispersion levels correspond to overlap between

the classes. Considering the above full simulation as corresponding to fixed moderate separation (sep = 2),

this final setup compares results for low, moderate, and high separation levels - respectively sep = 1,

sep = 2, and sep = 3. The subset of simulation conditions considered is as follows. 250 samples, of 50

observations each, were generated from a 3-group and 5-group heteroscedastic Gaussian mixture model,

with prior class membership probabilities of respectively 0.2, 0.3, and 0.5; 0.1, 0.4, and 0.5; 0.1, 0.1, 0.2,

0.3, and 0.3. Table 1 summarizes the conditions explored in all testing setups.

Full simulation Cross-val settings Class-sep N. local max

J = 5, p = (0.2, 0.3, 0.5)′, n = 50 X × X ×
J = 5, p = (0.2, 0.3, 0.5)′, n = 100 X × × ×
J = 5, p = (0.2, 0.3, 0.5)′, n = 200 X × × ×
J = 5, p = (0.1, 0.4, 0.5)′, n = 50 X × X ×
J = 5, p = (0.1, 0.4, 0.5)′, n = 100 X × × ×
J = 5, p = (0.1, 0.4, 0.5)′, n = 200 X × × ×
J = 5, p = (0.1, 0.1, 0.2, 0.3, 0.3)′, n = 50 X × X ×
J = 5, p = (0.1, 0.1, 0.2, 0.3, 0.3)′, n = 100 X × × ×
J = 5, p = (0.1, 0.1, 0.2, 0.3, 0.3)′, n = 200 X × × ×
J = 8, p = (0.2, 0.3, 0.5)′, n = 50 X × X ×
J = 8, p = (0.2, 0.3, 0.5)′, n = 100 X × × ×
J = 8, p = (0.2, 0.3, 0.5)′, n = 200 X × × ×
J = 8, p = (0.1, 0.4, 0.5)′, n = 50 X X X X
J = 8, p = (0.1, 0.4, 0.5)′, n = 100 X X × X
J = 8, p = (0.1, 0.4, 0.5)′, n = 200 X X × X
J = 8, p = (0.1, 0.1, 0.2, 0.3, 0.3)′, n = 50 X × X ×
J = 8, p = (0.1, 0.1, 0.2, 0.3, 0.3)′, n = 100 X × × ×
J = 8, p = (0.1, 0.1, 0.2, 0.3, 0.3)′, n = 200 X × × ×

Table 1: Cross-table of simulation condition and simulation type.

9.2 Simulation results

Tables 2 and 3 present the results obtained with, respectively, J = 5 and J = 8.

Among the unconstrained approaches, as expected, for small samples (n = 50), the heteroscedastic
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normal (hetN) performs poorly, while the homoscedastic Student-t (homt) works nicely. However, the

constrained approach (cont) is able to cope with such a small sample size and to improve the performance of

the unconstrained approach. The heteroscedastic performs poorly, especially with higher model complexity

in terms of number of components and variables relative to the sample size. A similar pattern is, indeed,

observed for n = 100 when J = 5 with G = 5 and when J = 8. As the sample size gets larger (n =

200), the homoscedastic models are the worst, while the unconstrained heteroscedastic increases in quality

of classification. Interestingly, even for a large sample size, conS, conN and cont yield higher or equal

quality estimation compared to the unconstrained approach. However, on average, cont seems to be the

best, especially for small sample sizes. When G = 3, the gains observed by the constrained approaches,

in terms of cluster recovery, are more pronounced in presence of a component with a small weight (p =

(0.1, 0.4, 0.5)′). In general we observe that, whereas increasing the sample size improves the performance

of all methods, an increasing number of components lowers the quality of the clustering results.

The results point out that hetN and conS suffer higher values of J. This is not surprising, as a growing

number of variables causes, all else equal, parameter proliferation and a consequent loss in the accuracy of

the estimation of the class conditional covariance matrices. Although parameter proliferation is limited with

conS, this is constructed based on the choice of the sample covariance matrix as target, which is also very

sensible to an increasing J (holding n fixed). In addition, the sample covariance matrix is the sum of the

within and the between variance: as such it does not seem to be the best choice for Ψ. On the other hand,

homN, homt, conN and cont process the increase in J from 5 to 8 as additional information that, all else

equal, improves the quality of the estimation (see Table 3, and Figures 1, 2, and 3. This is typically the case

in finite mixtures with discrete variables (among others, Vermunt, 2010; Di Mari, Oberski, and Vermunt,

2016).

Overall the results show that the constant c decreases in all constrained approaches as the sample size

increases, coherently with the results of Xu et al. (2010) in the univariate case.

In terms of computational time, even if the sample covariance matrix is faster to compute, simulation

results show that conS converges slower than conN and cont.

18



homN hetN homt conS conN cont

p=(0.2,0.3,0.5)’ n=50 MAD 0.11 0.25 0.11 0.16 0.11 0.09
ARand 0.78 0.52 0.79 0.68 0.79 0.82
time 0.10 0.08 0.09 1.17 0.67 0.73
c 0.32 0.93 0.79

n=100 MAD 0.08 0.07 0.06 0.06 0.06 0.05
ARand 0.84 0.86 0.87 0.87 0.88 0.91
time 0.19 0.14 0.14 1.22 0.81 0.85
c 0.12 0.77 0.53

n=200 MAD 0.06 0.02 0.05 0.02 0.02 0.02
ARand 0.88 0.96 0.90 0.96 0.96 0.96
time 0.42 0.21 0.21 1.59 1.11 1.16
c 0.07 0.39 0.28

p=(0.1,0.4,0.5)’ n=50 MAD 0.12 0.23 0.17 0.19 0.12 0.12
ARand 0.77 0.54 0.72 0.65 0.78 0.79
time 0.11 0.08 0.10 1.2 0.70 0.77
c 0.34 0.93 0.78

n=100 MAD 0.09 0.09 0.15 0.09 0.07 0.06
ARand 0.82 0.83 0.76 0.83 0.86 0.89
time 0.19 0.15 0.17 1.28 0.84 0.91
c 0.14 0.79 0.52

n=200 MAD 0.07 0.03 0.11 0.03 0.03 0.03
ARand 0.87 0.95 0.82 0.93 0.94 0.94
time 0.47 0.25 0.35 1.78 1.28 1.38
c 0.07 0.45 0.31

p=(0.1,0.1,0.2,0.3,0.3)’ n=50 MAD 0.27 0.46 0.28 0.31 0.27 0.26
ARand 0.58 0.29 0.57 0.52 0.58 0.58
time 0.12 0.09 0.15 1.49 0.99 1.05
c 0.42 0.95 0.92

n=100 MAD 0.23 0.35 0.21 0.26 0.21 0.19
ARand 0.65 0.48 0.68 0.60 0.67 0.70
time 0.26 0.24 0.28 2.03 1.49 1.64
c 0.27 0.90 0.66

n=200 MAD 0.21 0.17 0.18 0.16 0.13 0.14
ARand 0.68 0.73 0.72 0.74 0.79 0.78
time 0.71 0.62 0.65 3.87 2.75 2.8
c 0.13 0.53 0.40

Table 2: Average results over 250 simulated data sets of five-variate (J = 5) GMM estimation, with three
and five components. Initialization from ten random starts.
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homN hetN homt conS conN cont

p=(0.2,0.3,0.5)’ n=50 MAD 0.13 0.39 0.05 0.25 0.13 0.04
ARand 0.74 0.27 0.91 0.50 0.75 0.91
time 0.08 0.06 0.09 1.51 0.66 0.70
c 0.58 0.94 0.84

n=100 MAD 0.03 0.12 0.02 0.07 0.02 0.01
ARand 0.95 0.75 0.96 0.84 0.96 0.97
time 0.17 0.14 0.13 1.51 0.81 0.85
c 0.20 0.94 0.60

n=200 MAD 0.01 0.00 0.01 0.00 0.00 0.00
ARand 0.97 0.99 0.98 0.99 0.99 0.99
time 0.41 0.21 0.24 1.71 1.14 1.18
c 0.07 0.50 0.34

p=(0.1,0.4,0.5)’ n=50 MAD 0.15 0.37 0.14 0.27 0.14 0.10
ARand 0.72 0.28 0.77 0.49 0.73 0.83
time 0.09 0.06 0.11 1.66 0.72 0.76
c 0.61 0.95 0.81

n=100 MAD 0.05 0.12 0.09 0.10 0.04 0.03
ARand 0.90 0.77 0.86 0.81 0.93 0.94
time 0.18 0.15 0.17 1.62 0.88 0.95
c 0.24 0.89 0.58

n=200 MAD 0.02 0.02 0.05 0.02 0.01 0.01
ARand 0.96 0.97 0.92 0.97 0.98 0.98
time 0.44 0.26 0.35 1.77 1.27 1.34
c 0.08 0.56 0.36

p=(0.1,0.1,0.2,0.3,0.3)’ n=50 MAD 0.22 0.52 0.19 0.33 0.21 0.18
ARand 0.65 0.19 0.70 0.49 0.66 0.72
time 0.09 0.05 0.16 1.98 1.05 1.10
c 0.60 0.95 0.93

n=100 MAD 0.13 0.40 0.10 0.25 0.13 0.10
ARand 0.80 0.38 0.84 0.61 0.80 0.84
time 0.22 0.18 0.26 2.11 1.49 1.63
c 0.37 0.93 0.69

n=200 MAD 0.09 0.18 0.07 0.10 0.05 0.06
ARand 0.86 0.74 0.90 0.84 0.91 0.91
time 0.57 0.58 0.52 3.46 2.44 2.40
c 0.18 0.68 0.46

Table 3: Average results over 250 simulated data sets of eight-variate (J = 8) GMM estimation, with three
and five components. Initialization from ten random starts.
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Figure 1: Boxplot of the ARand values observed in 250 simulated data sets, n = 50, n = 100, and n = 200,
p = (0.2, 0.3, 0.5)′, and J = 8.
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Figure 2: Boxplot of the ARand values observed in 250 simulated data sets, n = 50, n = 100, and n = 200,
p = (0.1, 0.4, 0.5)′, and J = 8.
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Figure 3: Boxplot of the ARand values observed in 250 simulated data sets, n = 50, n = 100, and n = 200,
p = (0.1, 0.1, 0.2, 0.3, 0.3)′, and J = 8.

23



Table 4 displays the means and the medians of the number of local maxima the methods under compar-

ison found in the reduced simulation setup (see Table 1). We observe that conN and cont, on average, yield

the lowest number of local maxima in all the three sample size conditions. Increasing the sample size yields

a more stable behavior also for the other methods.

homN hetN homt conS conN cont
n=50 mean 9.64 9.99 7.01 9.86 5.31 4.99

median 10 10 7 10 5 5

n=100 mean 7.08 9.94 4.71 8.50 3.96 4.64
median 7 10 5 9 4 4

n=200 mean 3.82 7.04 3.16 3.78 3.37 3.59
median 4 7 3 3 3 3

Table 4: Mean and median number of local maxima, over 250 simulated data sets of eight-variate (J = 8)
GMM estimation, G = 3 and p = (0.1, 0.4, 0.5)′. Initialization from ten random starts.

In Table 5 we display results for different cross-validation settings. Perhaps surprisingly, this points

out that the results are not sensitive to the choice of the cross-validations settings in terms of classification.

Concerning computational time, this is maximal for nS̄ = n/2 and K = n, whereas it is minimal for

nS̄ = n/10 and K = n/10. Interestingly however, we observe a systematic decrease in c for lower levels of

nS̄ : this could be due to the fact that accuracy in parameter estimation, with a larger training set, is higher.

Hence, the prior information incorporated in the target matrix becomes less important - and the optimal c

relatively smaller.
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K = n/10 K = n/5 K = n

nS̄ = n/2 conS conN cont conS conN cont conS conN cont

MAD 0.10 0.04 0.03 0.10 0.04 0.03 0.10 0.04 0.03
ARand 0.80 0.93 0.94 0.81 0.93 0.94 0.81 0.93 0.94
time 0.94 0.45 0.52 1.29 0.68 0.73 4.04 2.39 2.49
c 0.25 0.89 0.58 0.25 0.89 0.58 0.25 0.90 0.58

K = n/10 K = n/5 K = n

nS̄ = n/5 conS conN cont conS conN cont conS conN cont

MAD 0.10 0.03 0.04 0.09 0.03 0.04 0.09 0.03 0.03
ARand 0.81 0.94 0.93 0.82 0.94 0.93 0.83 0.95 0.94
time 0.87 0.44 0.48 1.11 0.65 0.69 3.15 2.33 2.39
c 0.10 0.69 0.47 0.10 0.70 0.47 0.10 0.70 0.47

K = n/10 K = n/5 K = n

nS̄ = n/10 conS conN cont conS conN cont conS conN cont

MAD 0.10 0.03 0.04 0.09 0.03 0.04 0.09 0.03 0.03
ARand 0.80 0.94 0.93 0.82 0.95 0.94 0.82 0.95 0.94
time 0.82 0.43 0.48 1.01 0.63 0.67 2.84 2.32 2.34
c 0.09 0.63 0.43 0.09 0.63 0.43 0.09 0.63 0.43

Table 5: Average results over 250 simulated data sets, each of sample size 100, of eight-variate (J =
8) GMM constrained estimation, G = 3 and p = (0.1, 0.4, 0.5)′, for different cross-validation settings.
Initialization from ten random starts.

Table 6 gives results on three different levels of class separation, for three and five components with

small sample size (n = 50). Both the unconstrained and the constrained methods have a relatively stronger

effect on performance when class separation increases from sep = 1 to sep = 2 than when it increases from

sep = 2 to sep = 3. Among all the approaches considered, whatever the class separation, cont yields on

average the most accurate clustering.
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sep = 1 homN hetN homt conS conN cont

p = (0.2, 0.3, 0.5)′

MAD 0.22 0.40 0.13 0.32 0.22 0.13
Arand 0.57 0.23 0.73 0.42 0.57 0.74
time 0.09 0.06 0.11 1.75 0.72 0.79
c 0.66 0.95 0.84

p = (0.1, 0.4, 0.5)′

MAD 0.23 0.41 0.22 0.33 0.23 0.20
Arand 0.55 0.22 0.62 0.41 0.55 0.64
time 0.09 0.06 0.12 1.83 0.76 0.84
c 0.67 0.95 0.81

p = (0.1, 0.1, 0.2, 0.3, 0.3)′

MAD 0.38 0.55 0.34 0.43 0.37 0.34
Arand 0.40 0.15 0.45 0.34 0.41 0.46
time 0.11 0.05 0.19 2.37 1.13 1.22
c 0.69 0.95 0.94

sep = 2
p = (0.2, 0.3, 0.5)′

MAD 0.13 0.39 0.05 0.25 0.13 0.04
Arand 0.74 0.27 0.91 0.50 0.75 0.91
time 0.08 0.06 0.09 1.51 0.66 0.70
c 0.58 0.94 0.84

p = (0.1, 0.4, 0.5)′

MAD 0.15 0.37 0.14 0.27 0.14 0.10
Arand 0.72 0.28 0.77 0.49 0.73 0.83
time 0.09 0.06 0.11 1.66 0.72 0.76
c 0.61 0.95 0.81

p = (0.1, 0.1, 0.2, 0.3, 0.3)′

MAD 0.22 0.52 0.19 0.33 0.21 0.18
Arand 0.65 0.19 0.70 0.49 0.66 0.72
time 0.09 0.05 0.16 1.98 1.05 1.10
c 0.60 0.95 0.93

sep = 3
p = (0.2, 0.3, 0.5)′

MAD 0.10 0.37 0.03 0.22 0.09 0.03
Arand 0.81 0.31 0.94 0.56 0.81 0.95
time 0.08 0.06 0.09 1.45 0.66 0.67
c 0.55 0.94 0.83

p = (0.1, 0.4, 0.5)′

MAD 0.12 0.36 0.13 0.24 0.11 0.06
Arand 0.77 0.29 0.79 0.54 0.78 0.89
time 0.09 0.06 0.11 1.61 0.72 0.74
c 0.58 0.94 0.80

p = (0.1, 0.1, 0.2, 0.3, 0.3)′

MAD 0.15 0.49 0.14 0.28 0.14 0.12
Arand 0.77 0.23 0.79 0.55 0.78 0.81
time 0.09 0.05 0.15 1.81 1.04 1.08
c 0.55 0.95 0.93

Table 6: Average results over 250 simulated data sets, each of sample size 50, of eight-variate (J = 8) GMM
estimation, three and five components, for different class separation levels. Initialization from ten random
starts.
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10 Empirical application: the wine data set

In the present Section we evaluate the seven algorithms on the basis of a data set available at http://www.

ics.uci.edu/˜mlearn/MLRepository.html. These data are the results of a chemical analysis of

three types of wine - Barolo, Grignolino and Barbera - grown in the same region in Italy. The analysis

determined the quantities of 13 constituents found in each of the three types of wines: alcohol, malic acid,

ash, alcalinity of ash, magnesium, total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, color

intensity, hue, OD280/OD315 of diluted wines, and proline.

All of the six algorithms have been initialized from the same 50 random starts, assuming G = 3. The

selected solutions are the ones with the highest likelihood. The cross-validation scheme is the same used in

the simulation study. Results are shown in Table 7.

homN hetN homt conS conN cont

ARand 0.92 0.39 0.87 0.54 0.92 0.93
time 2.22 1.89 1.68 23.34 11.32 10.71
c 0.45 0.89 0.57

Table 7: Comparison of the 6 algorithms in terms of ARand, computational time and optimal c.

The homoscedasticity assumption seems to fit well the data. The constrained approach conN equals

homN in terms of ARand, whereas cont yields an ARand of 0.93, compared to 0.87 of homt. Confirming

the results obtained in the simulation study, cont seems to be the most accurate approach among the ones

considered in this work.

Interestingly, however, all of the constrained approaches improve upon the unconstrained heteroscedas-

tic approach.

11 Discussion

In this paper we have proposed affine equivariant constraints for the class conditional covariance matrices

of multivariate GMM in order to circumvent the well-known issue of degenerate and spurious solutions in

ML estimation. Our approach generalizes the sufficient condition for Hathaway (1985)’s constraints to hold

as formulated by Ingrassia (2004). Previous constrained approaches lacked affine equivariance and suffered

27

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


the choice of an optimal finite-sample scale balance (c). The setup we propose is such that the class specific

covariance matrices are shrunk towards a pre-specified matrix Ψ. We have been able to show that this yields

a clustering method which is equivariant with respect to linear affine transformations of the data, provided

that Ψ is changed accordingly.

A natural choice for the shrinkage target matrix, whenever a priori information on the covariance struc-

ture of the components is not available, seems to be the covariance matrix of a homoscedastic mixture of

normals. For a given choice of the target matrix, we let the data decide, through the constant c, how close

to the target the final clustering will be. The tuning constant c is chosen by cross-validation. We have also

shown that, given a matrix Ψ, our constrained ML estimate can be computed by applying the algorithm of

Ingrassia and Rocci (2007) to the data appropriately linearly transformed. This allows us to interpret our

proposal as a way to decide how to standardize the data before applying Ingrassia (2004)’s constraints.

The validity of the proposal has been assessed through a simulation study and an empirical example. All

constrained approaches yield more accurate estimates than the unconstrained ones. More specifically, cont

has been shown to be the best among the constrained approaches this work has been concerned with. This is

not surprising, since a random vector conditionally distributed as a Gaussian mixture, given random inverse

Wishart covariance matrices, has a marginal homoscedastic mixture of Student t’s distribution.

Given an affine transformation of the data, the equivariance property of the method is guaranteed if

also Ψ is adapted accordingly. This requires that the methods used to estimate Ψ from the data be also

equivariant. This is the case for the sample covariance matrix and the homoscedastic model, for which 7 and

8 apply. For a homoscedastic mixture of Student t’s, this can also be shown expressing each marginal as a

combination of a multivariate Gaussian and Gamma random variables. Then affine equivariance results by

applying 7 (Roth, 2013). All in all, different choices of Ψ can as well be considered, according to the data

specificity: however, in order for the method to preserve equivariance, also the method used to estimate Ψ

from the data has to be equivariant.

The equivariant method developed in Gallegos and Ritter (2009a; 2009b) and extended in Ritter (2014)

requires to obtain all local maxima of the trimmed likelihood. Our method has the virtue of being easily

implementable with a minimal extra computational effort, as we have shown in the simulation study and in

the empirical example.

There are cases where the clustering model might assume a specific structure on the relationship between

the variables, like local independence (within-cluster diagonal matrices). Such a model is not affine equiv-
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ariant because some (non diagonal) affine transformations on the data might destroy the local independence.

In cases like these, the affine equivariance property of the constraints is not required. Yet our approach

can be applied using a diagonal matrix as target. This would prevent the likelihood from degenerating,

still improving upon the unconstrained algorithm thanks to the cross-validation strategy we have proposed.

Clearly, when all variables in a data set are measured in a common scale, non equivariant constraints are a

competitive choice.

An additional issue, pointed out by both the simulation study and the empirical example, is the com-

putational time cross-validation requires to select an optimal c. Whether different cross-validation schemes

can speed up the constrained routines can be a topic for future research.
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