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Abstract

This paper presents SeqClusFD, a top-down sequential clustering method for

functional data. The clustering algorithm extracts the splitting information ei-

ther from trajectories, first or second derivatives. Initial partition is based on

gap statistic that provides local information to identify the instant with more

clustering evidence in trajectories or derivatives. Then functional boxplots al-

low reconsidering overall allocation and each observation is finally assigned to the

cluster where it spends most of the time within whiskers. These local and global

searches are repeated recursively until there is no evidence of clustering at any

time on trajectories or first and second derivatives. SeqClusFD simultaneously

estimates the number of groups and provides data allocation. It also provides

valuable information about the most important features that determine cluster

structure. Computational aspects have been analyzed and the new method is

tested on synthetic and real data sets.

Keywords: Hierarchical Clustering, Functional Boxplot, Gap Statistics.

1 Introduction

Functional data analysis (FDA) is a very active area of research nowadays, mainly since it

has become very easy to collect and store data in “continuous time” (see [11]). Although

generally each data is recorded only in a finite number of moments, it is more common

to analyze then as functions rather than as vectors. Instead of points, the observations

in this context are each of the curves. Most existing procedures for functional data

require a large amount of consecutive observations on which smoothing techniques are

applied, see [26]. The classical assumption is that functions belong to a Hilbert space

(for example, square integrable functions on a finite real interval [a, b]) and can be
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represented with a convenient functional basis. Depending on the characteristics of the

functions, the most common basis are Fourier, Haar or wavelets. A finite truncation of

the series facilitates the analysis with conventional multivariate methods applied to a

finite set of retained coefficients.

The aim of cluster analysis, or unsupervised classification, is to assign observations

into subsets, such that similar objects are in the same group and dissimilar ones are in

different groups. This is a complex problem since usually there is no previous information

about the data structure. There is no “one size fits all” method for analyzing any data set

and the nature of the data should determine the procedure to be used. In fact, there are

clustering methods that have outstanding performance in certain configurations of data

and a terrible behavior under different conditions. For instance, it is well known that the

popular k-means is suitable in Rd for round, Gaussian and well separated clusters but

it is not able to find cluster structures with nested groups. Some multivariate clustering

techniques have been successfully adapted to functional data after considering specific

geometrical notions and can be classified in one of the next three categories.

Centroid based clustering methods use optimization algorithms for centroid finding

of each group (as k-means). Several authors studied and adapted these methods to

functional data, see for instance [1], [31], [9], [10], [34], [14], [27], [28] and [16].

Model based clustering methods assume different population model for each group,

typically all from the same distribution family (as Gaussian mixture models). In FDA

there are several procedures following this strategy, such as those proposed in [19],[5]

and [17].

Hierarchical clustering methods are based on the idea of divisive and/or agglom-

erative sequential grouping to provide the best partition on each possible number of

groups. Divisive methods begin allocating all observations into one group and sequen-

tially separate into different groups the observations that are more distant from the rest.

This idea is repeated until there are as many groups as observations. Agglomerative

methods initially assign each observation to a different group and then sequentially join

the closest observations until all observations are in a single group. For functional data

Giraldo et al. [15] developed an algorithm for spatially correlated data and Boullè et

al. [6] introduced a bayesian proposal of nonparametric hierarchical clustering for func-

tional data. At the best of our knowledge, the particular case of hierarchical clustering

based on decision trees with sequential binary partitions, have never been extended to

FDA from multivariate data approaches where several extensions can be found, see for

instance [20],[3] and [12].

In general, in centroid or model based methods the number of clusters is known

while in hierarchical clustering is unknown. Recently, Jacques and Preda [18] described
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thoroughly the state of the art of this field.

As it is well known, not all relevant information on a function is visible in the

trajectory. Derivatives are usually very helpful to highlight differences. Although all

clustering methods for functional data mentioned above can be applied to the set of

trajectories, or the set of first derivatives, second derivatives, and so on, it is interesting

to have a statistical procedure able to extract relevant information from any or all of

these sets. In supervised classification of functional data, Alonso et al. [2] considered

a distance base on using derivatives. Exploration of functions and derivatives is a key

point since group structure must be associated to the trajectories for some groups and

to derivatives in some others. To illustrate this idea, lets analyze a very simple example

with the three groups of 25 functions shown in Figure 1. Functions in groups 1 and 2

are constant but with different levels, while functions in group 3 have constant positive

slope and levels are similar to functions in group 1. Considering original functions, only

two groups are identified by looking in any instant, a cluster that contains lines of groups

1 and 3 and the other with lines from group 2. Switching to apply clustering methods

with first derivative functions, we note that all lines in groups 1 and 2 have zero constant

derivative function, different than derivatives from group 3 that are also constant but

nonzero. Any clustering method applied to derivatives also identify a maximum of two

clusters, one with the lines of groups 1 and 2 and the other with lines from group 3.

In summary, by applying clustering methods to trajectories, functions are separated by

level and when applied to derivatives are separated by shape. We will only be able to

succeed in identifying the three groups if we run a sequential clustering scheme taking

into account trajectories and derivatives.

0 0.5 1
0

1

2

Figure 1: Light solid lines are in group 1; dark solid lines are in group 2; and dashed

lines are in group 3.

The aim of this paper is to introduce SeqClusFD, a new hierarchical clustering

method designed only for FDA. The idea is to develop a divisive top-down clustering

based on sequential exploration of the functions and their derivatives. This means that
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we consider local level and global shape properties that are available in functions, and

not in finite dimensional data. Output from the algorithm includes number of groups,

allocations and some guidelines for cluster interpretation.

The remainder of this paper is organized as follows. In Section 2, SeqClusFD method

is presented and some details on practical implementation are analyzed. In Section 3, a

simulation study with synthetic data is performed. In Section 4, well known real data are

analyzed and a further study is conducted, including result interpretation. Conclusions

are given in last Section.

2 Divisive top-down SeqClusFD method

We observe X1(t), . . . , Xn(t) functions grouped into an unknown number k of popu-

lations, C1, . . . , Ck. We assume all the functions are smooth and defined in the same

compact real interval [a, b]. Each data X(t) is a realization of a stochastic process defined

on the probability space (Ω,F, P ), hence X(t) is a random variable for each t ∈ [a, b].

Two facts are motivating the need of a new sequential procedure for cluster identi-

fication that takes into account the shape of the curves. The first is that functions that

belong to different groups must differ by at least one of the following characteristics:

trajectories, velocities or accelerations. The second is that it may happen that some

groups differ by the shapes of the trajectories and some others by the shapes on any

of their derivatives. We use the notation X l
1(t), . . . , X

l
n(t), where l = 0, 1, 2 means the

order of derivation. For the sake of simplicity, if l = 0 we omit the superscript.

Hence, our idea is to start with a single group and, on each splitting stage, sequen-

tially apply the following local and global clustering steps. We stop the divisions when

there is no evidence of new cluster structure inside any group.

Local clustering step:

Considering the sets {X1(t), . . . , Xn(t)}, {X1
1 (t), . . . , X1

n(t)} and {X2
1 (t), . . . , X2

n(t)}
separately, we find the instant t ∈ T in which the cluster structure is more evident in

any of the three sets. Local clustering evidence is assessed by computing for each set

and instant the gap statistic (GS) introduced by Tibshirani et al. [33] to estimate the

number of clusters in a data set with any cluster method. The idea is to compare the

change in the within cluster dispersion when one additional group is considered with

the expected change under an appropriate reference distribution.

In our case X l
1(t), . . . , X

l
n(t) is a sample of one dimensional observations and for a
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k-cluster structure C1, . . . , Ck, the within cluster dispersions are estimated by

Dr =
∑

i,i′∈Cr

dii′ , r = 1, . . . , k

where dii′ is the euclidean distance between two observations of the same cluster. The

gain of considering k + 1 groups instead of k is

Lk,k+1 = ln(Wk)− ln(Wk+1), (2.1)

where Wk =
∑k

r=1Dr/2nr is the total sum of pairwise distances within C1, . . . , Ck and

nr is the cardinal of Cr.

As large Lk,k+1 indicates evidence of k + 1 groups, this value is compared with that

obtained from a sample generated from an appropriate reference distribution. Tibshirani

et al. [33] proved that, for the one-dimensional case, the reference distribution should

be uniform. Hence we generate b = 1, . . . , B random samples of size n from the uniform

distribution on the interval [minXi,maxXi]. For each sample we compute ln(Wk,b) and

ln(Wk+1,b). We denote the empirical version of (2.1) by L∗(k, k + 1) = E∗(ln(Wk,b)) −
E∗(ln(Wk+1,b)), where E∗(ln(Wkb)) and E∗(ln(Wk+1,b)) are empirical means. Empirical

standard deviation of ln(Wk,b) is denoted by s∗(k).

The gap statistic for the set X l
1(t), . . . , X

l
n(t) is the minimum k that satisfies

L∗(k, k + 1) + nsd

√
1 + 1/Bs∗(k + 1) ≥ L(k, k + 1), (2.2)

where nsd is the number of standard deviations to be fixed. In [33], the authors suggest

nsd = 1, but stronger rules could be considered.

We use the greatest gap statistic to decided the instant, feature (trajectory, first or

second derivative) and number of groups for sample splitting. Then for the local ten-

tatively classification we apply the one-dimensional k-means allocation on these instant

to all the curves of this feature.

Global revision clustering step:

The previous functional data classification is only based on local information, then

we need a global criteria to integrate the information from all the complete curves and

correct possible local effects.

Reallocation of misleading data is done by identifying potential outliers using the

functional boxplot (FB) introduced by Sun and Genton [30]. For each set of the proper

feature curves inside the same cluster identified in the local clustering step we compute

a FB. Construction is based on ordering functions from the center outward using band-

depth definition of López-Pintado and Romo [21]. The appearance is determined by

deepest curve (median), envelope of 50% central functions (box borders) and maximum
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non-outlying envelope (whiskers). In analogy with classical boxplots, 1.5 times the 50%

central region is typically considered the whiskers for the non-outlying envelope. In [21]

the authors suggest that this value can be adjusted on practice.

We consider potential outlier to any curve that is outside the whiskers band at least

for one instant. For these curves we compute the proportion of time that are inside each

FB. In the final cluster allocation, they are moved to the group where they spend most

of the time inside whiskers.

2.1 SeqClusFD algorithm

STEP 0.

- Define a grid on the interval [a, b]: a = t0 < · · · < tN = b.

- Evaluate trajectories, first and second derivatives in the grid: X l
i(tj) for i =

1, . . . , n, l = 0, 1, 2 and j = 0, . . . , N − l.

- Start by considering a single group.

STEP 1. Local clustering.

- Calculate gap statistics k̃(Aj,l) in combination with k-means clustering for all

possible data sets Aj,l = {X l
1(tj), . . . , X

l
n(tj)}, where l = 0, 1, 2 and j = 0, . . . , N−

l, .

- Estimate the number of groups in the functional data set by k̂ = maxj,l k̃(Aj,l).

- Set up Ĉ1, . . . , Ĉk̂ with the complete proper feature functions associated to the k-

means clusters of Aĵ,l̂ = argmaxj,l k̃(Aj,l). In case of ties, choose Aĵ,l̂ that provides

more evidence of k̂ clusters, this means that has larger value of Lk̂,k̂+1(j, l).

STEP 2. Global cluster revision.

- Compute k̂ functional boxplots with the curves inside Ĉ1, . . . , Ĉk̂. Consider 3 times

point wise interquartil range for maximum length of whiskers, which is the usual

rule in one dimensional boxplot to identify extreme outliers. For r = 1, . . . , k̂,

call (LBr(t), UBr(t)) to the lower and upper extreme outlier whisker bands of

functional boxplots.
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- Identify potential outliers as functions outside (LBr(t), UBr(t)), at least for one

instant, for r = 1, . . . , k̂.

- Reallocate each potential outlier into the cluster Ĉ1, . . . , Ĉk̂ where spends more

time inside (LBr(t), UBr(t)), for r = 1, . . . , k̂.

STEP 3.

If one group is divided, repeat step 1 and 2 for this group to find possible partitions.

Stop division when gap statistic in step 1 determines that there is only one group for

every instant t0 < · · · < tN and feature of the data set (trajectories or derivatives).

2.2 Practical implementation

Considering again the example shown in Figure 1, we find that SeqClusFD separates

in the first step the third group using derivative functions. In second step, SeqClusFD

separates the first two groups considering the trajectories. In addition, SeqClusFD

determines that there are no further groups. Then, three groups are found and there

are not misclassified observations. Ieva et al [16], perform a k means clustering procedure

for functional data, but instead of using the classical L2 norm they work in the Sobolev

H1 space with the ordinary norm, this means that they consider simultaneously the

information of the function and the derivative. If we use that approach in this example,

and estimate the number of clusters either by the Gap Statistics or by Calinski-Harabasz

approach, which are among the best well known procedures to estimate the number of

clusters, neither of them detect the correct number of clusters.

In more realistic problems computation of the first two derivatives is not a simple

task. Typically, functional data are characterized by a high amount of consecutive

observations defined in an interval of finite length, but frequency may defer from one

individual to another and observations are not necessarily equidistant. When measures

do not have sampling errors, function values can be interpolated and then derivatives

are computed by differentiating. Otherwise it is necessary to use smoothing techniques

in order to transform observations into functions that can be evaluated for any time t.

Different smoothing techniques should be considered since each data set has different

properties, as for instance functions could be monotone, or periodic or non-negative.

Ramsay et al., [25] discuss the main options that are consider in FDA, most of them

implemented in Matlab and R routines that can be downloaded from http://www.

functionaldata.org.

For every tj and feature of the trajectories, uniform distribution boundaries for the

bootstrap samples, that are necessary for gap statistic computations, will probably be
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different. Three bootstrap procedures should be executed for each tj. Then the thinner

the grid t0 < · · · < tN defined in step 0 of SeqClusFD algorithm more computationally

expensive is step 1. To speed up SeqClusFD we suggest pointwise rescaling to the

interval [0, 1] for observations in subsets Aj,l = {X l
1(tj), . . . , X

l
n(tj)} (l = 0, 1, 2 and

j = 0, . . . , N − l) as follows,

Y l
i (tj) =

X l
i(tj)−min{Aj,l}

max{Aj,l} −min{Aj,l}
, for i = 1, . . . , n.

Now all bootstrap samples should be generated according to a uniform distribution on

the interval [0, 1]. This means that bootstrap procedure can be done only once for each

visit of the algorithm to step 1. However, when step 1 is repeated it is because a group is

divided and then sample size is different. We can not avoid bootstrap should be redone

on different visits.

3 Simulation Study

To show the performance of SeqClusFD we conducted a simulation study using different

artificial data sets that have been previously proposed in the literature for clustering of

functional data. In all cases we report the number of times that SeqClusFD selects the

correct number of groups. For these successful examples, the correct classification rate

(CCR) is estimated.

As SeqClusFD is based on gap statistics and functional boxplot, before executing

the algorithm it is necessary to fix the value of some parameters related to these tools.

For gap statistic we follow suggestions in the original paper, except for nsd = 3 on

equation (2.2) since we are applying a stricter rule for identifying clusters with strong

evidence at a certain time period. More that 500 bootstrap samples are not necessary.

For functional boxplot we follow the classical rule to identify severe outliers, considering

the maximum length of the whiskers as three times the interquantil range.

To reduce computational effort in the local clustering step we limit the maximum

number of clusters to five. It is important to remark that, even though this parameter

fixes an upper bound for the number of clusters on each partitioning step, there is not an

upper bound for the general procedure. In the global cluster revision step, A minimum

of 10 functions are required to compute a boxplot. The minimum cluster size to continue

with splitting is also fixed on 10 functions

We propose the same values for all the simulations and real data examples.
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Figure 2: Examples of data set of functions simulated with models A, B and C.

3.1 Sampling errors associated with the entire curve

Sangalli et al. [27] introduced three models for curve generation. We follow their models

for data generation with the idea of exploring the SeqClusFD performance in clusters

structures with different amplitudes and curve registration problems.

Model A: Two clusters with n/2 functions generated as follows,

Xi(t) = (1 + ε1i) sin (ε3i + ε4it) +

(1 + ε2i) sin

(
(ε3i + ε4it)

2

2π

)
(3.3)

for i = 1, . . . , n/2,

Xi(t) = (1 + ε1i) sin (ε3i + ε4it)−

(1 + ε2i) sin

(
(ε3i + ε4it)

2

2π

)
(3.4)

for i = n/2 + 1, . . . , n.

Model B: Two clusters with n/2 functions generated in the first group following (3.3)

and in the second group as follows,

Xi(t) = (1 + ε1i) sin

(
ε3i + ε4i

(
−1

3
+

3

4
t

))
−

(1 + ε2i) sin

((
ε3i + ε4i

(
−1

3
+ 3

4
t
))2

2π

)
(3.5)

for i = n/2 + 1, . . . , n.

Model C: Three clusters with n/3 functions generated in the first group following (3.3),

in the second group following (3.4) and in the third group following (3.5).
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Table 1: Distribution of the Number of Groups found by SeqClusFD and Mean CCR.

Number of clusters Model A Model B Model C

2 88 99.5 0

3 12 0.05 75.5

4 0 0 23.5

5 0 0 1

Mean CCR 99.67 99.96 99.45

We simulate 200 data sets of size n = 90 for each model. All errors ε1i, . . . , ε4i are

independent and normally distributed with mean 0 and standard deviation 0.05. Figure

2 shows three examples of 90 curves generated according with models A, B and C.

Table 1 reports for each model, percentage of data sets in which SeqClusFD finds

the number of clusters indicated on first column. In bottom line are displayed the mean

of correct classification rates (CCR) calculated only with data in which the number of

clusters is correctly identified. In almost all cases it find the correct number of clusters.

The result is poorer in the model C, which is also the most challenging problem, with

a 75.5% of successful identifications. When the number of clusters is not identified

correctly, generally it is determined that there is an additional cluster. We observed

that in these cases one of the original cluster is divided into two and the other clusters

are identified without error. Table 1 also shows the mean of correct classification rates

(CCR), calculated only with data sets in which the number of clusters is correctly

identified. It is clear that SeqClusFD has an outstanding performance in these cases.

Finally, we compare our procedure with other clustering techniques available in R

for functional data, namely, funclust ([17]), funHDDC ([7]) and kmeans.fd which is a

k–means procedure for functional included in the R package fda.usc ([13]). In all the

cases the number of clusters must be given beforehand. Table 2 exhibits the mean CCR

for the three procedures proposed. It is clear that SeqClusFD outperforms the three

clustering strategies since it has higher CCR for all the models considered.

3.2 Sampling errors associated to each instant

We simulate 200 data sets with four clusters that are generated with a similar model

to that introduced by Serban and Wasserman [29]. Each cluster contains 150 functions
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Table 2: Mean CCR for funclust, kmeans.fd and funHDDC.

Model A Model B Model C

funclust 75.62 73.57 48.48

kmeans.fd 67 76.77 68.45

funHDDC 85.81 47.39 37.86

0 0.5 1
(b) 

0 0.5 1
(c) 

0 0.5 1
(d)

0 10.5
(a) 

Figure 3: (a) Simulated data set with sampling errors associated to each instant; (b)

smoothed data set; (c) first derivatives and (d) second derivatives.

that are generated as follows

Xij(t) = fj(t) + εi(t),

for t ∈ [0, 1], i = 1, . . . , 150 and j = 1, . . . , 4,

where

f1(t) = min

(
2− 5t

2
,

(
2− 5t

2

2

sin

(
5πt

2

)))
,

f2(t) = −f1(t), f3(t) = cos(2πt) and f4(t) = −f4(t).

In [29] the authors consider independent errors, while we consider correlated errors

from a Gaussian process. For all the functions ε(t) has normal distribution with mean

0.4, standard deviation 0.9 and covariance structure given by,

ρ (s, t) = 0.3 exp

(
−(s− t)2

0.3

)
, for s, t ∈ [0, 1] .

Figures 3(a) and 3(b) show one of the generated data set and the corresponding

smoothed data set with B-splines, respectively. Each color represents one theoretical

cluster. In Figures 3(c) and 3(d) are displayed the firsts two derivatives. To prevent
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Table 3: Mean CCR for funclust, kmeans.fd, funHDDC and SeqClusFD.

Clustering Procedure Mean CCR

funclust 40.05

kmeans.fd 60.12

funHDDC 63.21

SeqClusFD 99.85

boundary effects we reflect one third of the observations at the beginning and at the end

of each measurement. We also challenged our method with other clustering procedures

for functional data: funclust, funHDDC and kmeans.fd, in these case the number of

clusters was given as an input. Table 3 exhibits the mean CCR for the 200. It is

important to highlight that SeqClusFD always identifies four groups and that has a much

more higher mean correct classification rate than the rest of the procedures, achieving

perfect classification in most of the replicates.

4 Real Data Examples

4.1 Berkeley Growth Study data

The Berkeley Growth Study is one of the best known long-term development research

ever conducted, and the height growth data set introduced by Tuddenham and Snyder

[35] is a reference to illustrate different methods for FDA. In particular, the heights of

54 girls and 39 boys measured between 1 and 18 years in 31 unequally spaced moments

(see Figure 4a) are considered one of the most challenging data sets for clustering pur-

poses. More measurements were taken when growth was more rapid, as childhood and

adolescence, and least in the early years, when growth was more stable. As a conse-

quence of that, for the computation of the first two derivatives, we need to transform

observations into functions that can be evaluated for any time. We consider a monotonic

cubic regression spline smoothing as suggested by Ramsay et al. [25].

Our first objective is to test the effectiveness of SeqClusFD in determining the num-

ber of groups in this data set without regard the gender information. Second, we use

the output of SeqClusFD for classifying children. The information from step 1 gives us

the key for understanding how the groups differ.

Using the same parameters as in simulation study for step 1 and 2 of SeqClusFD,

final output identifies two clusters. The algorithm finds in the local step the highest

12



2 4 6 8 10 12 14 16 18
Age

(a) Growth trajectories

2 4 6 8 10 12 14 16 18
Age

(b) Growth derivatives

Figure 4: Heights of 54 girls (green curves) and 39 boys (orange curves) measured

between 1 and 18 years. Misclassified curves by SeqClusFD are highlighted with thicker

lines.

evidence of clustering in the first derivative (growth speed) at the age of 14, which is

coincident with the end of puberty in girls but not in boys yet. In the final classification

of the data, one cluster is coincident with boys and the other with girls. Only 10

curves are misclassified and are highlighted with thicker lines in Figures 4a and 4b.

Misclassifications correspond to a boy with early puberty and 9 girls with late maturity.

The correct classification rate is CCR = 89.25%.

This data set has been used recently by Jacques and Preda [17] to compare several

clustering methods for functional data. All analyzed methods make use of the informa-

tion that the number of clusters is two, which could suggest that a priori SeqClusFD

is less competitive. However the CCR for alternative methods are not always superior:

funclust-CCR = 69.89% (Jacques and Preda, [17]); FunHDDC-CCR = 96.77% (Bou-

veyon and Jacques, [7]); fclust-CCR = 69.89% (James and Sugar, [19]); and kCFC-CCR

= 93.55% (Chiou and Li, [9]). SeqClusFD is closer to the most successful (FunHDDC

and KCFC) than to funclust and fclust. In addition, the output of SeqClusFD also in-

cludes an estimate of the number of groups and provides assistance for the interpretation

of the clusters.

Sangalli et al. [28] also analyzed this data set. Although they find more evidence

for the existence of a single cluster, they analyze the case of two clusters and the best

CCR obtained is 88.17%.
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4.2 EGC200 data

The 200 electrocardiograms of ECG200 data set can be found in the UCR Time Series

Classification and Clustering website [8]. Data set has two groups, with 133 and 67

electrocardiograms each one, all of them recorded at 96 equally spaced instants. Left side

of Figure 5 shows electrocardiograms (f) and their first (f ′) and second (f ′′) derivatives

for the two clusters (orange and blue curves). These data has been analyzed by Jacques

and Preda [17], among others, using the same clustering procedures than in the previous

example, except kCFC. The results are: funclust-CCR = 84%; FunHDDC-CCR = 75%;

and fclust-CCR = 74.5%.

Tree structure in central part of Figure 5 shows the results on the three iterations

needed by SeqClusFD to complete the clustering procedure. We use the same parameters

as in simulation study for step 1 and 2. In the first iteration, SeqClusFD algorithm

detects two groups using the information provided by the electrocardiograms at t = 43.

When the algorithm visits again step 1 for the first group, gap statistic determines that

there is only one cluster and SeqClusFD stops division. The majority of the curves in

this cluster are blue, 35, and 19 curves are orange. In the second iteration, the other

group is divided in two clusters at t = 41 with the information of the first derivatives.

One cluster is a terminal node with 99 orange curves and only 7 blue that could be

considered as misclassifications. In the third iteration, the remaining observations are

separated in two groups at t = 24 considering the information of the second derivatives.

The green curves are a terminal cluster with 21 blue curves and 15 oranges. Finally, last

four curves can not be separated because of the small size of the group (under 10). When

exploring which are these curves we find that they can be considered as outliers. Some

authors, see for instance [17], eliminate these electrocardiograms from the beginning of

the analysis.

Right side of Figure 5 shows the final three cluster allocation in f , f ′ and f ′′. The

four outliers appear in dark green. Even though this data set only contains two clusters

and we have found three, seen in the results that the group found in second iteration

can be considered the same as the original cluster of orange curves, with 7 curves that

are misclassified. Assuming that the original cluster of blue electrocardiograms is the

union of the other two (blue and green), the CCR is 79.08%. For this calculation we

have excluded the four outliers in order to compare SeqClusFD results with those of

Jacques and Preda [17].

The result of SeqClusFD classification is very good in comparison with the other

methods. Although SeqClusFD–CCR is not the highest CCR, note that the other

methods start from an advantageous position by assuming the number of clusters is

known. SeqClusFD is only overcome by funclust.
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UCR Time Series Classification and Clustering website: http://www.cs.ucr.edu/~eamonn/time_series_data/ 

200 electrocardiograms with two groups:  
133 (orange) and 67 (blue) curves. 

t = 43 

t = 41 

t = 24 

19 orange 

7 blue 

15 orange 

Figure 5: On the left side, electrocardiograms (f), first (f ′) and second (f ′′) derivatives

for the two clusters (blue and orange) of ECG200 data set. On the central part, results

of the three iterations executed by SeqClusFD. On the right side, final classification

with SeqClusFD.

4.3 Italy Power Demand data

Italy Power Demand data set can also be found in the UCR Time Series Classification

and Clustering website [8]. Data set contains two clusters: cluster 1 with 513 curves

of power demand (see Figure 6(a)); and cluster 2 with 516 curves (see Figure 6(b)).

Note that inside each cluster there are two different pattern of consumers. All curves

were measured at 24 equally spaced moments along a day. To increase the grid size on

step 0 of SeqClusFD algorithm, data are smoothed with six equally spaced knot splines

(choosing more knots lead to similar results). To prevent boundary effects we reflect one

third of the records at the beginning and end of each record. SeqClusFD is executed

with the same parameters as in previous examples.

SeqclusFD finds 4 clusters in the two iterations shown in the tree of Figure 7, identi-

fying the original clusters and the two different pattern of consumers within them. The

partitions are always based on information provided by first derivatives, at t = 7 in the

first iteration and t = 23 and t = 9 in the second. The final classification is shown on

the right side of Figure 7. Orange curves are cluster 1, while green curves are cluster 2.

The darker green and orange curves are misclassified power demand curves. Collapsing

the four clusters in only two we can calculate CCR, which is 93.49%.
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Figure 6: Power demand curves along a day in Italy: (a) 513 curves in cluster 1; and

(b) 516 curves in cluster 2.

 

 

Figure 7: Results of the two iterations executed by SeqClusFD to classify curves of

power demand in Italy. First derivatives are shown in all iterations.

5 Conclusion

We introduce SeqClusFD, a hierarchical clustering algorithm for functional data that

simultaneously determines the number of groups and the clustering conformation. As

we are interested in cluster structures that takes into account the shape of the curves,
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we also consider the speed and acceleration functions linked to the original curves. It is

a sequential procedure, that successively runs two steps, it searches the instant of time,

along the functions and its derivatives, with most clustering ability, according to the

gap statistics criterion and one dimensional k-means algorithm. Once this initial groups

are conformed it builds up a functional boxplot for each group, with the objective

of reallocating possibly misclassified data. Moreover, it provides helpful information

towards the grouping structure.

Although the SeqClusFD is based on the one dimensional gap statistic, alternative

methods to estimate the number of groups could be considered. Similarly, the functional

boxplot could be adapted to consider different depth definitions for functional data.

Several proposals can be found in [24].

The algorithm could be easily extended to the multivariate case, where each data is a

vector of functions (see [4]). In the local step, any clustering method could be considered.

On the global revision step, the boxplot could be designed using band depth proposed by

Lopez-Pintado et al. [22] for multivariate functional data. The efficiency of the method

should decrease with the dimensionality.

Finally, the output of the algorithm exhibits number of groups and clustering alloca-

tion. In addition, it gives information about the key moments t ∈ [a, b] and features, i.e.

X(t), X1(t) or X2(t). This yields to a better understanding of the clustering structure.

This topic is closely related to the variable selection problem that has been widely stud-

ied recently in the supervised classification framework, see for instance Tian and James

[32] and Martin-Barragan et al. [23]. However, this problem has not been analyzed for

unsupervised classification problems, at the best of our knowledge.
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