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Abstract This paper presents a review about the usage of eigenvalues restric-
tions for constrained parameter estimation in mixtures of elliptical distribu-
tions according to the likelihood approach. These restrictions serve a twofold
purpose: to avoid convergence to degenerate solutions and to reduce the onset
of non interesting (spurious) maximizers, related to complex likelihood sur-
faces. The paper shows how the constraints may play a key role in the theory
of Euclidean data clustering. The aim here is to provide a reasoned review
of the constraints and their applications, along the contributions of many au-
thors, spanning the literature of the last thirty years.

Keywords Mixture Model · EM algorithm · Eigenvalues · Model-based
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1 Introduction

Finite mixture distributions play a central role in statistical modelling, as they
combine much of the flexibility of non parametric models with nice analytical
properties of parametric models, see e.g. Titterington et al. (1985), Lindsay
(1995), McLachlan and Peel (2000). In the last decades such models have
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attracted the interest of many researchers and found a number of new and
interesting fields of application. For parameter estimation in mixture models
several approaches may be considered, as the ones exposed in McLachlan and
Krishnan (2008a). The maximum likelihood (ML) framework is among the
most commonly used approaches to mixture parameter estimation, and it is the
approach we consider here. In the case of Gaussian mixtures, it is well-known
that the likelihood function increases without bound if one of the mixture
means coincides with a sample observation and if the corresponding variance
tends to zero or, in the multivariate situation, if the variance matrix tends to
a singular matrix.

This paper presents a review about the usage of eigenvalues restrictions for
constrained estimation, that serves a twofold purpose: to avoid convergence to
degenerate solutions and to reduce the onset of non interesting (spurious)
maximizers, related to complex likelihood surfaces. From the seminal paper
of Hathaway (1985), we will see how the constraints may play a key role in
the theory of Euclidean data clustering. The aim here is to provide a reasoned
review of the constraints and their applications, along the contributions of
many authors, spanning the literature of the last thirty years. Applications of
the constraints in robustness, jointly with trimming techniques, requires an
extensive discussion per se, hence it will be the argument of a further paper,
see Garćıa-Escudero et al. (2017). The plan of the paper is the following. Max-
imum likelihood estimation for mixture models is briefly recalled in Section
2, along with conditions assuring the existence and consistency of the esti-
mator, in Section 3 different constrained formulations of maximum-likelihood
estimation are presented, in Section 4 degeneracy of the maximum likelihood
estimation is investigated. The last part of the paper is devoted to the role of
eigenvalues in parsimonious models: Gaussian parsimonious clustering models
are summarized in Section 5 while in Section 6 mixture of factor analyzers are
presented. Finally, conclusions are given in Section 7.

2 Maximum likelihood estimation of parameters in mixture models

LetX be a random vector defined on a heterogeneous populationΩ with values
in a d-dimensional Euclidean space. Here, we consider mixtures of elliptical
distributions, having density function

p(x;ψ) = π1f(x; θ1) + · · ·+ πGf(x; θG) x ∈ R
d (1)

where π1, . . . , πG are the mixing weights and

f(x; θg) = ηg|Σg|−1/2h{(x− µg)′Σ−1
g (x− µg)} (2)

denotes the density of the elliptical distribution (for more details see, e.g., Fang
and Anderson, 1990) where µg ∈ R

d and Σg are positive definite matrices in

R
d×R

d, h is a strictly positive, continuous function on R, symmetrical about 0
and monotonically decreasing on [0,∞), ηg is a positive constant depending on
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the dimension d of the Euclidean space. Moreover, θg = {νg,µg,Σg} belongs
to the same parameter space Θ, i.e. θ1, . . . , θG ∈ Θ. Finally, we denote by K
the number of parameters of ψ.

The most popular case of (1) is given by Gaussian mixtures, i.e., mixtures
with multivariate Gaussian components:

p(x;ψ) = π1φ(x;µ1,Σ1) + · · ·+ πGφ(x;µG,ΣG) , (3)

where φ(x;µg,Σg) is the density function of the multivariate normal distri-
bution with parameters (µg,Σg). Finally, we set ψ = {(πg,µg,Σg), g =
1, . . . , G} ∈ Ψ, where Ψ is the parameter space:

Ψ = {(π1, . . . , πG,µ1, . . . ,µG,Σ1, . . . ,ΣG) ∈ R
G[1+d+(d2+d)/2] :

π1 + · · ·+ πG = 1, πg > 0, |Σg| > 0 for g = 1, . . . , G} . (4)

Thus, K = (G− 1) +G[1 + d+ (d2 + d)/2].
A more general family is given by mixtures of multivariate t distributions,

with densities in (2) taking the form

f(x; θg) =
Γ (

νg+d
2 )|Σg|−1/2

(πνg)d/2Γ (
νg
2 ){1 + d(x;µg,Σg)/νg}(νg+d)/2 , (5)

with location parameter µg, a positive definite inner product matrix Σg, de-
grees of freedom νg, and where

d(x;µg,Σg) = (x− µg)′Σ−1
g (x− µg) (6)

denotes the Mahalanobis distance between x and µg, with respect to the ma-
trix Σg. t distributions are progressively becoming popular in multivariate
statistics, providing more realistic tails for real-world data with respect to
the alternative Gaussian models. They are a robust alternative able to cope
with moderate outliers, as the Mahalanobis distance in the denominator of
(5) downweight the contribution of data mildly deviating from the assumed
model. For the sake of simplicity, throughout this paper we will generally
consider Gaussian mixtures defined in (3). The extension to mixtures of t dis-
tributions, and to more general mixtures with elliptical components is usually
straightforward.

For a given sample X = {x1, . . . ,xN} of size N drawn from (1), let us
consider the log-likelihood function of ψ,

L(ψ) =
N∑
n=1

log

(
G∑
g=1

πgφ(xn;µg,Σg)

)
(7)

and denote by
ψ̂ = argψ∈Ψ maxL(ψ) (8)

the maximum likelihood estimator (MLE) of ψ.
We can introduce the population counterpart of (7). Let P = P (X) be the

probability measure in R
d induced by the random variable X describing the
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heterogeneous population and let EP () denote the expectation with respect to
P . The aim is to maximize

L∗(ψ) = EP

[
log

(
G∑
g=1

πgφ(·;µg,Σg

)]
(9)

in terms of parameters ψ ∈ Ψ, given in (4). If PN stands for the empirical

measure, PN = (1/N)
∑N
n=1 δ{xn}, where δ{xn} denotes the Dirac function

with probability 1 in xn and 0 elsewhere, we recover the original problem (7)
by replacing P by PN .

The maximum likelihood estimate is usually attained through the EM al-
gorithm, that is an iterative procedure for maximizing a likelihood function,
in the context of partial information, see e.g. Dempster et al. (1977); McLach-
lan and Krishnan (2008b) for details. The algorithm generates a sequence of
estimates {ψ(r)}r – starting from some initial guess ψ(0) – so that the corre-
sponding sequence {L(ψ(r))}r is not decreasing. In particular, for multivariate
Gaussian mixtures, on the (r+1)th iteration the EM algorithm computes the
quantities

τ+ng =
π−
g φ(xn;µ

−
g ,Σ

−
g )∑G

j=1 π
−
j φ(xn;µ

−
j ,Σ

−
j )

where the superscript − denotes the estimate on the previous rth iteration. In
the M-step the parameters µg,Σg are updated according to the following rule

µ+
g =

∑N
n=1 τ

+
ngxn∑N

n=1 τ
+
ng

Σ+
g =

∑N
n=1 τ

+
ng(xn − µ+

g )(xn − µ+
g )

′∑N
n=1 τ

+
ng

Under some regularity assumptions for the likelihood function, in Boyles (1983)
it is proved that the sequence {ψ(r)}r converges to a compact set of local max-
ima of the likelihood function; moreover, this limit set may not be a singleton.

We have already said that, in general, the method of maximum likelihood
in the case of mixtures of elliptical distributions (2) leads to an ill-posed op-
timization problem. The observed data log-likelihood of Gaussian mixtures
L(ψ) is unbounded (Day, 1969), as it can be easily seen by posing µ1 = x1
and σ1 → 0 (or µ1 = x1 and |Σ1| → 0 in the multivariate case). Thus,
the definition of estimate of maximum likelihood as the absolute maximum
of L(ψ) lacks mathematical sense. In particular, the unboundedness of L(ψ)
causes the failure of optimization algorithms, like the EM, and the occurrence
of degenerate components.

Formally, let Ψ be the closure of the parameter space Ψ and consider the
set{

ψ ∈ Ψ : ∃ j0 ∈ {1, . . . , G} and n ∈ N such that µj0 = xn, |Σj0 | = 0
}
.
(10)
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The component corresponding to j0 in (10) will be referred to as a degenerate
component hereinafter, and the corresponding solution provided by the EM
algorithm is a degenerate solution, see Biernacki and Chrétien (2003) and
Ingrassia and Rocci (2011).

Secondly, the likelihood function may present local spurious maxima which
occur as a consequence of a fitted component having a very small variance or
generalized variance (i.e., the determinant of the covariance matrix) compared
to the others, see e.g. Day (1969). Such a component usually corresponds to
a cluster containing few data points either relatively close together or almost
lying in a lower-dimensional subspace, in the case of multivariate data.

In this paper, the focus will be to compare methods to maximize the like-
lihood function in some constrained subset of the parameter space, through
the EM algorithm.

Alternative strategies can be adopted to deal with the two aforementioned
issues, and we will briefly give some references, without entering into details.
One option is to employ stochastic algorithms for global optimization, like
the simulated annealing (see, e.g., van Laarhoven and Aarts, 1988). With this
approach, on the one hand, the procedure converges with uniform distribu-
tion, at a slow rate, to the maximizing points, and on the other, the optimal
tuning of the annealing parameter requires additional effort in time. Overall,
no overwhelming superiority has been demonstrated with respect to the EM
algorithm (Ingrassia, 1992).

A second very practical strategy is to monitor the relative size of the fit-
ted mixing proportions (McLachlan and Peel, 2000). In the same context of
avoiding degeneracy, but with a Bayesian point of view, Ciuperca et al. (2003)
introduced a bounded penalized likelihood, that does not degenerate in any
point of the closure of the parameter space and, therefore, assures the exis-
tence of the penalized maximum likelihood estimator. They also provide statis-
tical asymptotic properties of the penalized MLE, namely strong consistency,
asymptotic efficiency, and rate of convergence.

Fraley and Raftery (2007) proposed a Bayesian regularisation, and sug-
gested replacing the MLE by the maximum a posteriori estimate. They em-
ployed the normal inverse gamma conjugate priors for the conditional mean
and the variance, a uniform prior distribution for the vector of component
proportions, and derived the prior hyperparameters, assumed to be the same
for all components. Their approach has also been implemented in MCLUST
as described in Fraley et al. (2012).

Resuming now our main stream, the following examples show how singu-
larities and spurious maximizers can undermine the estimation:

– Simdata 1: A sample S of size N = 200 has been generated from a three
components mixture of bivariate normal (G = 3 and d = 2) having the
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following parameters:

π = (0.3, 0.4, 0.3)′ µ1 = (0, 3)′ µ2 = (1, 5)′ µ3 = (−3, 8)′

Σ1 =

(
1 0
0 2

)
Σ2 =

(
1 −1
−1 2

)
Σ3 =

(
2 1
1 2

)
.

Figure 1 shows the sample data (panel a) and two obtained classifications,

the first derived from the MLE ψ̂ (panel b), and the second from a local
maximum ψ∗ (panel c). Further, panel d) plots the log-likelihood along

thesegment joining ψ̂ with ψ∗, to reveal a local mode w.r.t. the absolute
maximum in the log-likelihood surface.
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Fig. 1 Simdata 1: a) original data; b) classification based on the MLE ψ̂; c) classification
based on a local maximum ψ∗; d) plot of the log-likelihood function along the direction

ψ̂ − ψ∗, where we have L(ψ̂) = −1172.37 and L(ψ∗) = −1261.90.
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– Simdata 2: A second example is provided by considering a smaller subset
(of size 100) drawn from the same set of parameters we considered before.
Figure 2 shows the original data in panel a), a first classification based on

the MLE ψ̂ in panel b), a second classification based on a local maximum
ψ∗ in panel c), and finally a third classification based on a spurious max-
imizer (in panel d), where one component is overfitted to a set composed
by 4 data points).
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Fig. 2 Simdata 2: a) original data; b) classification based on the MLE ψ̂; c) classification
based on a local maximum ψ∗; d) classification based on a spurious solution.

Issues related to spurious maximizers have been investigated in detail in
Section 3 of McLachlan and Peel (2000) where it is pointed out that “these so-
lutions often have a high likelihood, but are of little practical use or real world
interpretation”. Many times, they may even have a higher likelihood than the
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one for the “true” mixture parameters. McLachlan and Peel (2000) offers a 11
pages analysis, applied to different synthetic and benchmark datasets, to show
how the issue arises. In particular, the well-known Iris data set is analyzed to
evaluate whether the “virginica” species should be split into two subspecies
or not. To provide hints for distinguishing spurious from useful solutions, 15
possible local maxima were considered, together with different quantities sum-
marizing clusters as the size of the smallest cluster, the determinants of the
scatter matrices, the value of the smallest eigenvalue, and the intercomponent
mean distances.

The likelihood estimate ψ must be one of the roots of the equation

∂L(ψ)
∂ψ

= 0 . (11)

In a quite general framework (i.e. not restricted to mixture distributions),
Cramér (1946) showed that a unique consistent root exists for the equation (11)
in the univariate case under certain conditions. The proof has been extended to
the multivariate case by Chanda (1954), with a corrected version of Theorem 2
there provided by Tarone and Gruenhage (1975, 1979). See also Kiefer (1978)
and Redner and Walker (1984).

Theorem 1 (Redner and Walker, 1984) Let p(x;ψ) be a probability den-
sity function depending on some parameter ψ and assume we are provided
with a sample {x1, . . . ,xN} drawn from p(x;ψ). Let ψ0 be the true value of
the parameter ψ and exists at some point in the parameter space Ψ. Then,
given the existence of, and certain boundedness conditions on, derivatives of
the mixture density p(x;ψ), of orders up to 3, there exists a unique consis-
tent estimator ψN corresponding to a solution of the likelihood equation (11).
Further,

√
N(ψN −ψ0) is asymptotically normally distributed with mean zero

and covariance I−1(ψ0), where I(ψ0) is the Fisher information matrix.

In the following, by maximum likelihood estimate (MLE), we shall mean

such a point of Ψ and it will be denoted by ψ̂.

3 Constrained formulations of maximum-likelihood estimation

The MLE ψ̂ is usually computed by means of suitable optimization proce-
dures which generate a sequence of estimates {ψ(r)}r – starting from some
initial guess ψ(0) – so that the corresponding sequence {L(ψ(r))}r is not de-
creasing. To this end, the EM algorithm is usually implemented for parameter
estimation in mixture modeling, see e.g. McLachlan and Krishnan (2008b).

However, the convergence towards ψ̂ is not guaranteed because of the nu-
merical issues associated to the maximization of the log-likelihood function
L(ψ), described above. In particular, i) singularities may cause the failure of
the algorithm; ii) spurious maximizers may appear along the estimation, and
provide a mathematical solution lacking statistical meaning. Further, the final
estimate depends on the initial guess ψ(0) (Boyles, 1983).
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3.1 Hathaway’s approach

The idea of a constrained estimation became popular due to Hathaway (1985),
in the framework of Gaussian mixtures. In the univariate case, the Gaussian
mixture has density

p(x;ψ) = π1φ(x;µ1, σ
2
1) + · · ·+ πGφ(x;µG, σ

2
G) , (12)

where ψ ∈ Ψ and Ψ is the parameter space

Ψ = {(π1, . . . , πG, µ1, . . . , µG, σ1, . . . , σG) ∈ R
3G :

π1 + · · ·+ πG = 1, πg > 0, σg > 0 for g = 1, . . . , G}. (13)

For some c > 0, let Ψc be the subset of Ψ such that σ2
g ≥ cσ2

j for g �= j, i.e.,
such that

min
g �=j

σ2
g

σ2
j

≥ c > 0 . (14)

Hathaway (1985) pointed out that the first mention of constraints like (14)
is found in Dennis (1981) who, in turn, gives credit to Beale and Thompson
(oral communication). For this reason, Gallegos and Ritter (2009) called them
the Hathaway-Dennis-Beale-Thompson (HDBT) constraints.

The following result states that the constraint (14) yields an optimization
problem having a global solution in a constrained parameter space with no
singularities and at least with a smaller number of local maxima.

Theorem 2 (Hathaway, 1985) Let X = {x1, . . . , xN} be a sample drawn
with law (12) containing at least G + 1 distinct points. Then for c ∈ (0, 1]
there exists a constrained global maximizer of L(ψ) over the set Ψc defined by
(14).

Moreover, also strong consistency of the constrained estimator has been
proven in Hathaway (1985), by applying existing maximum-likelihood theory
due to Kiefer and Wolfowitz (1956). From a practical point of view, Hath-
away (1996) provides an algorithm for building a consistent estimator under
a slightly different kind of constraints:

σ2
g

σ2
g+1

≥ c for all g = 1, . . . , G− 1 and
σ2
G

σ2
1

≥ c > 0 .

Strong consistency is shown in Hathaway (1985) for the univariate case
by applying existing maximum-likelihood theory due to Kiefer and Wolfowitz
(1956), see Theorems 3.1 and 3.2.

Consider now the multivariate Gaussian mixture

p(x;ψ) = π1φ(x;µ1,Σ1) + · · ·+ πG(x;µG,ΣG) (15)

where ψ ∈ Ψ with

Ψ = {(π1, . . . , πG,µ1, . . . ,µG,Σ1, . . . ,ΣG) ∈ R
G[1+d+(d2+d)/2] :

π1 + · · ·+ πG = 1, πg > 0, |Σg| > 0 for g = 1, . . . , G}. (16)



10 Luis-Angel Garćıa-Escudero et al.

To generalize results in the multivariate case, Hathaway (1985) states only the
following sentence in the concluding remarks: “For a mixture of G d-variate
normals, constraining all characteristic roots of ΣgΣ

−1
j (1 ≤ g �= j ≤ G) to

be greater than or equal to some minimum value c > 0 (satisfied by the true
parameter) lead to a constrained (global) maximum-likelihood formulation”.
Being just a brief statement, this sentence motivated research summarized in
Section 3.3.

3.2 Constraints on the determinants of the covariance matrices

The natural multivariate generalization of (14) appears to be a constraint on
the ratio of the component generalized variances, i.e. of the determinants of
the covariance matrices, which are required not to be too disparate:

min
g �=j

|Σg|
|Σj | = min

g �=j
|ΣgΣ

−1
j | ≥ c , (17)

for some c > 0. The maximization of the loglikelihood function (7) under the
constraint (17) is discussed in McLachlan and Peel (2000, Section 3.9.1).

Recalling that the volume is proportional to the square root of the deter-
minant, we see that this type of constraint limits the relative volumes of the
aforementioned equidensity ellipsoids, but not the cluster shapes. The use of
this constraint is particularly advisable when affine equivariance is required.
Constraints (17) have been implemented in the R package tclust, see Fritz
et al. (2012).

Finally, we recall that in the framework of the trimming approach to robust
modeling, Gallegos (2002) implicitly assumed the stronger condition |Σ1| =
|Σ2| = · · · = |ΣG|.

3.3 Constraints on the eigenvalues of the covariance matrices

As we recalled in Section 3.1, Hathaway (1985) proposed the constraint

min
g �=j

λ(ΣgΣ
−1
j ) ≥ c > 0 , (18)

stating that it leads to a constrained (global) maximum-likelihood formulation,
without any further development. The constant c in (18) is still referred to as
the HDBT constant.

It is worth to note that, while this bound can be easily checked, as far as
we know, it cannot be directly implemented in optimization procedures like
the EM algorithm, where the estimates are iteratively updated. To this end,
different approaches have been pursued.

The next proposition allows to reformulate (18) in terms of stronger (and
algorithmically feasible) constraints on the eigenvalues of each covariance ma-
trix Σg.
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Proposition 3 (Ingrassia, 2004) Let A,B two d×d symmetric and positive
definite matrices. Then we have:

λmax(AB−1) ≤ λmax(A)

λmin(B)
(19)

λmin(AB−1) ≥ λmin(A)

λmax(B)
(20)

where λmin(M) and λmax(M) are respectively the smallest and the largest
eigenvalue of the matrix M.

The proof is based on the properties of the spectral norm ‖A‖2 of a matrix
A. Denote by λig = λi(Σg) the ith eigenvalue of the gth covariance matrix.
For given a, b > 0, such that a/b ≥ c, where c satisfies the relation (18), assume
that the eigenvalues of the covariance matrices Σg satisfy the constraints:

a ≤ λi(Σg) ≤ b i = 1, . . . , d g = 1, . . . , G. (21)

Then for any pair of covariance matrices Σg,Σj , the inequality (20) yields:

λmin(ΣgΣ
−1
j ) ≥ λmin(Σg)

λmax(Σj)
≥ a

b
≥ c > 0 , 1 ≤ g �= j ≤ G,

assuring that
λ∗min

λ∗max

≥ c (22)

where

λ∗min = min
g=1,...,G

min
i=1,...,d

λi(Σg) (23)

λ∗max = max
g=1,...,G

max
i=1,...,d

λi(Σg). (24)

Finally, according to (21), we introduce the following constrained parame-
ter space

Ψa,b =
{
(π1, . . . , πG,µ1, . . . ,µG,Σ1, . . . ,ΣG) ∈ R

G[1+d+(d2+d)/2] :

G∑
g=1

πg = 1, πg > 0, a ≤ λig ≤ b, g = 1, . . . , G , i = 1, . . . , d

}
. (25)

To establish the existence of the ML, we remark that we have to discard
the case of components with arbitrarily small variances. However, maxima may
be forced by various types of scale constraint. A popular argument is based
on the compactness of the parameter space. Indeed, its combination with the
continuity of the likelihood function guarantees the existence of a maximum.
However, when the natural parameter space of a model is not compact, we
may prove that the sequence of ML estimates remains in a compact subset, as
in the following theorem.
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Theorem 4 Let X = {x1, . . . ,xN} be a sample drawn from a multivariate
Gaussian mixture containing at least G+ d distinct points. Then, for any pos-
itive real numbers a, b, with a < b, there exists a constrained global maximizer
of L(ψ) over the set Ψa,b defined by (25).

Proof. To maximize L(ψ) means to jointly maximize |Σg|−1/2 and minimize
the argument of the exponential, i.e. (xn − µg)′Σ−1

g (xn − µg), for each g =
1, . . . , G. Hence, firstly we will show that, for a given Σg, the mean vector µg
has to lie in a compact subset in R

d. Let C be the convex hull of X , i.e. the
intersection of all convex sets containing the N points, given by

C(X ) =

{
N∑
n=1

unxn |
N∑
n=1

un = 1 , un ≥ 0

}
. (26)

Suppose now that ψ̄ ∈ Ψa,b satisfies µg /∈ C(X ). Then L(ψ̄) ≤ L(ψ∗) where
ψ∗ ∈ Ψa,b is obtained from ψ̄ by changing the gth mean component to µ∗

g =
αµg for some α ∈ (0, 1) (i.e., along the line joining 0 and µg) such that
µ∗
g ∈ C(X ).
Let us set S = {ψ ∈ Ψa,b |µg ∈ C(X ); 0 < a ≤ λi(Σg) ≤ b < +∞ g =

1, . . . , G}. Then, it follows that
sup

ψ∈Ψa,b

L(ψ) = sup
ψ∈S

L(ψ).

By the compactness of S and the continuity of L(ψ), there exists a parameter

ψ̂ ∈ Ψa,b satisfying

L(ψ̂) = sup
ψ∈Ψa,b

L(ψ) = sup
ψ∈S

L(ψ)

by Weierstrass’ theorem. 
�
The above recipes obviously require some a priori information on the co-

variance structure of the mixture throughout the bounds a and b in such a
way that Ψa,b contains the maximum likelihood estimate ψ̂ introduced at the
end of Section 2 and, at least, a reduced number of spurious maximizers.

When we lack such information, this position introduce subjectivity and
this is a drawback. Hence, in Ingrassia and Rocci (2007), a weaker constraint
is directly imposed on the ratio a/b, setting a/b ≥ c, and using a suitable
parameterization for Σg. Let us rewrite them as Σg = η2Ωg (g = 1, . . . , G),
where minig λi(Ωg) = 1 and impose the constraints

1 ≤ λi(Ωg) ≤ 1

c
, (27)

for i = 1, . . . , d and g = 1, . . . , G. The constraints (27) are weaker than (21),

in fact if (21) are satisfied and we set η2 = minig λi(Σg) and Ωg =
Σj

η2 then,

by noting that λi(Ωg) = η−2λi(Σg), we obtain

1 ≤ λi(Ωg) ≤ b

a
≤ 1

c
.
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Constraints (27), in turn, are stronger than (18). In fact, if the former are
satisfied then

λmin(ΣgΣ
−1
j ) ≥ λmin(Σg)

λmax(Σj)
=
λmin(Ωg)

λmax(Ωj)
≥ c, 1 ≤ g �= j ≤ G .

Other similar constraints are proposed in Ingrassia and Rocci (2007).
The constraints (21) (as well as the constraints (27) and others of the same

kind) can be implemented quite easily in the EM algorithm, using the spectral
decomposition theorem. It is well known that any symmetric matrix A can be
decomposed as:

A = ΓΛΓ′ (28)

where Λ is the diagonal matrix of the eigenvalues of A, and Γ is an orthogonal
matrix whose columns are standardized eigenvectors. Based on the formula
(28), at the r-th iteration of the EM algorithm we can build an estimate Σ(r)

g

of the covariance matrix Σg such that the eigenvalues λ
(r)
ig = λi(Σ

(r)
g ) satisfy

the constraints (21), by setting:

λ
(r)
ig = min

(
b,max

(
a, l

(r)
ig

))
(29)

where l
(r)
ig is the update of λi(Σg) computed in the unconstrained M -step

of the EM algorithm. The behaviour of (29) is illustrated in Figure 3. These
constraints have been implemented in Ingrassia (2004), Ingrassia and Rocci
(2007) and in Greselin and Ingrassia (2010), both for mixtures of multivariate
Gaussian distributions and mixtures of multivariate t distributions. We remark
that the approach (29) is not scale invariant.

An important issue concerns the monotonicity of the constrained EM al-
gorithms described above. To this end, the following results hold.

Theorem 5 (Ingrassia and Rocci, 2007) Let L(ψ) be the loglikelihood func-
tion for a mixture of elliptical distributions (2), given a sample X of size N .
Denote by {ψ(r)}r the sequence of the estimates generated by the EM algo-
rithm, where ψ(r) ∈ Ψa,b, for r ≥ 1. Then, the resulting sequence of the loglike-
lihood values {L(ψ(r))}r is not decreasing, once the initial guess ψ(0) ∈ Ψa,b.

The proof relies on the following inequality, due to Theobald (1975, 1976). Let
A,B be two real symmetric d×dmatrices and letΛA,ΛB be the corresponding
diagonal matrices of the eigenvalues. Then, it results tr(AB−1) ≥ tr(ΛAΛ

−1
B ).

We remark that, even if the constraint (29) leads to a monotone EM algo-
rithm, the choice of a, b is quite critical.

3.4 Equivariant constraints based on eigenvalues of the covariance matrices

Very recently, Rocci et al. (2017) proposed a generalization of the constraint
(21) that enforces the equivariance with respect to linear affine transformation
of the data. Let A be a d× d non singular matrix and b ∈ R

d and consider

x∗ = Ax+ b. (30)
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a) b)

Fig. 3 Results of enforcing constraints (29) on the eigenvalues of the covariance matrix at

r-th step: a) If l
(r)
ig < a (the covariance ellipse in dashed black) then the lowest eigenvalue

should be forced to be equal to constant a (the covariance ellipse in blue). On the other

hand, in b), if l
(r)
ig > b (covariance ellipse in dashed black), then the greatest eigenvalue

should be shrunk to constant b (the covariance ellipse in blue).

We easily see that

φ(x;µ,Σ) = |A|φ(x∗;µ∗,Σ∗) (31)

where µ∗ = Aµ + b and Σ∗ = AΣA′. If we consider Gaussian mixtures, it
can be easily proven that the relation between the loglikelihood of the original
data (7) and the loglikelihood of the transformed data is given by

L(ψ) = N log |A|+ L(ψ∗) (32)

where L(ψ∗) =
∑N

n=1 log
(∑G

g=1 πgφ(x
∗
n;µ

∗
g,Σ

∗
g)
)
is the loglikelihood based

on the transformed data. Moreover, it can be proved that the classification of
units, based on the maximum posterior probabilities, is invariant under this
group of linear affine transformations.

It can be easily shown that constraints of kind (21) do not preserve the
equivariance and this implies that the clustering depends on the choice of
the matrix A in (30). In particular, constraints of kind (21) are sensitive to
change in the units of data measurement. To overcome this drawback, Rocci
et al. (2017) recently proposed to generalize the constraint (21) by considering

a ≤ λi(ΣgΞ
−1) ≤ b (33)

where Ξ is a symmetric positive definite matrix representing the prior in-
formation about the covariance structure. In particular, the constraint (33)
reduces to (21) when Ξ = I, i.e. the identity matrix. It can be proven that
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this constraint implies (18), indeed we have

λmin(ΣgΣ
−1
j ) ≥ λmin(ΣgΞ

−1)λmin(ΞΣ
−1
j ) =

λmin(ΣgΞ
−1)

λmax(ΞΣ
−1
j )

≥ a

b
≥ c.

The constraint (33) is shown to lead to an affine equivariant maximum likeli-
hood function. Rocci et al. (2017) discuss also some data-driven choices for Ξ
and c and propose an algorithm for maximizing (7) under the constraint (33).

3.5 Constraints on the ratio between maximum and minimum eigenvalues of
the covariance matrices

A fully developed approach based on controlling the ratio between the max-
imum and the minimum eigenvalues of the groups scatter matrices has been
proposed in Garćıa-Escudero et al. (2015). It is based on the robust classifica-
tion framework previously developed by the same authors in Garćıa-Escudero
et al. (2008), where a proportion of contaminating data was also discarded, to
guarantee the robustness of the estimation.

The crucial feature introduced in Fritz et al. (2012) is that the optimum of
the eigenvalues in the constrained space is obtained in closed form at each step
of the EM algorithm. All previous attempts only offered approximations for it.
For instance, Garćıa-Escudero et al. (2008) was based on the Dykstra (1983)
algorithm. Ingrassia and Rocci (2007) and Greselin and Ingrassia (2010) were
just based on truncating the scatter matrices eigenvalues to assure monotonic-
ity of the likelihood throughout (29). They implemented the constraint

λ∗max

λ∗min

≤ c′ (34)

where c′ ≥ 1 is a fixed constant, and λ∗min and λ∗max have been defined in (23)
and (24), respectively. Note that the constraint (34) is equivalent to the one
introduced in (22), with c′ = 1/c.

Let Ψ∗
c be the set of mixture parameters obeying that eigenvalues ratio

constraint for constant c′ = 1/c ≥ 1.
We take the opportunity of discussing in more depth this type of constraints

here. They simultaneously control differences between groups and departure
for sphericity. Note that the relative length of the equidensity ellipsoids axes,
based on φ(·;µg, Σg), is forced to be smaller than

√
c, see Figure 4. The smaller

c, the more similarly scattered and spherical the mixture components are. For
instance, for c = 1 these ellipsoids reduce to balls with the same radius, so
extending k-means, in the sense of allowing different component weights.

Garćıa-Escudero et al. (2015) gives results guaranteeing the existence of
both the empirical and population problem solutions, as well as the consistency
of the empirical solution to the population one. These two results requires only
mild assumptions on the underlying distribution P . In particular, it is only
required P to have a finite second moment, i.e. EP [‖ · ‖2] < ∞ and to avoid
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l1, 1

l1, 2

l2, 1

l2, 2

Fig. 4 If {lh,g} denotes the length of the semi-axes of the equidensity ellipsoids based on

the normal density φ(·;µg,Σg) for h = 1, 2 and g = 1, 2, we set max{lh,g}/min{lh,g} ≤ √
c′

by (34).

that P is completely inappropriate for a mixture fitting approach by requiring
that the distribution P is not concentrated on G points.

Proposition 6 (Garćıa-Escudero et al., 2015) If P is not concentrated
on G points and EP [‖ · ‖2] <∞, then there exists some ψ ∈ Ψ∗

c such that the
maximum of (9) under the constraint (34) is achieved.

The following consistency result also holds under similar assumptions.

Proposition 7 (Garćıa-Escudero et al., 2015) Let us assume that P is
not concentrated on G points and EP [‖ · ‖2] < ∞, and let ψ0 be the unique
maximum of (9) under the constraint (34). If ψN ∈ Ψ∗

c denotes a sample
version of the estimator based on the empirical measure PN , then ψN → ψ0

almost surely, as N → ∞.

The consistency result presented in Garćıa-Escudero et al. (2008) needed
an absolutely continuous distribution P with strictly positive density function
(in the boundary of the set including the non-trimmed part of the distribu-
tion). This condition was needed due to the “trimming” approach considered
by the TCLUST methodology. On the other hand, Propositions 6 and 7 do
not longer need this assumption, it instead requires the finite second order
moments hypothesis to control the tails of the mixture components.

Due to the employed constraints, this approach is rotation and translation
equivariant, but not affine equivariant. Though the method becomes closer to
affine equivariance when considering large values for c′, it is always recom-
mended to standardize the variables when very different measurement scales
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are involved. Results in Hennig (2004), Ingrassia (2004), Ingrassia and Rocci
(2007) and Greselin and Ingrassia (2010) may be seen as first steps toward the
theoretical results presented in Garćıa-Escudero et al. (2015).

The constraints (34) have been firstly implemented in a Classification EM
algorithm by solving several complex optimization problems at each iteration
of the algorithm, through Dykstra’s algorithm (Dykstra, 1983), to minimize
a multivariate function on Gd parameters under Gd(Gd − 1)/2 linear con-
straints. This original problem is computationally expensive, even for moder-
ately high values of G or p. After introducing an efficient algorithm for solving
the constrained maximization of the M step (Fritz et al., 2013), besides the
singular-value decompositions of the covariance matrices, only the evaluation
of a univariate function 2Gd+1 times is needed in the new M-step, with afford-
able computing time with respect to standard EM algorithms. More recently,
the versions for constrained mixture estimation (Garćıa-Escudero et al., 2015)
and robust mixture modeling (Garćıa-Escudero et al., 2014) have also been
developed by the same authors.

It is important to note that the estimator in Garćıa-Escudero et al. (2015)
is well defined as a maximum of the likelihood in the constrained space. The
proposed algorithm tries to find this maximum by applying the constrained
EM algorithm with multiple random initializations. Proposition 7 shows that
the solution of the sample problem converges to the solution of the population
one. The consistency result in Redner and Walker (1984) states that there is
a sequence of local maxima of the likelihood converging to the optimum. Un-
fortunately, it does not provide a constructive way to choose the right optimal
local maximum, for a fixed sample problem of size N , to obtain the consistent
sequence.

We have seen that constraining the ratio between the scatter matrices
eigenvalues to be smaller than a fixed in advance constant c′ leads to an
approach with nice theoretical properties (existence and consistency results)
and a feasible algorithm for its practical implementation. Now we still may
wonder on how to properly select the c′ constant. In Garćıa-Escudero et al.
(2015) it is argued that usually the researcher has some information about
the populations underlying the dataset at hand, and this could help in set-
ting a reasonable value for c′. If this were not the case, the suggestion is to
choose small or moderate value of c′, just to avoid degeneracies of the target
function and to reduce the occurrence of non-interesting spurious solutions.
However, more useful information can be obtained from a careful analysis of
the fitted mixtures when moving parameter c in a controlled way, as shown in
Garćıa-Escudero et al. (2015). A few essentially different solutions arise when
considering “sensible” values of c′, leading to a very reduced list of candi-
date mixture fits to be carefully investigated, to distinguish legitimate local
maximizers from uninteresting spurious solutions.
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3.6 Affine equivariant constraints on covariance matrices based on Löwner
partial ordering

A different kind of constraints on the eigenvalues of the covariance matrices
has been considered in Gallegos and Ritter (2009), resorting to the Löwner
matrix ordering, in the framework of robust clustering. This approach is affine
equivariant, as it can be easily seen.

Let A and B be symmetric matrices of equal size. We say that A is less
than or equal to B w.r.t. Löwner’s (or semi-definite) order, and we denote
it by A � B, if B − A is positive semi-definite. Analogously, if B − A is
positive definite, then we will write A ≺ B. Puntanen et al. (2011) remark
that the Löwner matrix ordering is a surprisingly strong and useful property.
In particular, we recall that if A � B, then it results λi(A) ≤ λi(B), implying
that trace(A) ≤ trace(B) and det(A) ≤ det(B).

To be more specific, Gallegos and Ritter (2009) constrained the scatter
matrices to satisfy

cΣj � Σg for every j �= g = 1, . . . , G, (35)

where c ≥ 0 is the HDBT constant, introduced in (18). It can be proved that
the constraint (35) can be equivalently written as

λ(Σ
−1/2
j ΣgΣ

−1/2
j ) ≤ c for every g, j = 1, . . . , G. (36)

Differently from the previous cases, the constraint (35) depends also on the
orientation of the covariance matrices. To see it, let A be a positive definite
matrix and B = VAV′ be its rotation, under some orthonormal matrix V.
Then, in general, B −A is not positive definite, i.e. A �≺ B. In Figure 5 the
matrix A = diag(1, 4) and some rotations of A are considered according to
the rotation matrix

Vθ =

(
cos θ − sin θ
sin θ cos θ

)

For instance, let

Biπ/6 = Viπ/6AV′
iπ/6,

for i = 1, 2, 3. Different suitable values of constant c are required in order
to ensure that cBiπ/6 � A. In other words, the ordering depends not only
on the eigenvalues but also on the relative rotation between the ellipsoids of
equidensity. The largest values of c such that cBiπ/6 � A are c∗π/6 = 0.4802,
c∗π/3 = 0.2947 and c∗π/2 = 0.2499, respectively. See Figure 5 for details.

Apart from the peculiarities of the Löwner order discussed so far, a spe-
cific algorithm was not given in Gallegos and Ritter (2009) to solve the EM
problems under constraint (35) for a fixed value of the constant c. Instead, the
authors proposed to obtain all local maxima of the (trimmed) likelihood and
derived from them the required values of c.
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a) θ = 0, c0 = 1 b) θ = π/6, c∗
π/6

= 0.4802

c) θ = π/3, c∗
π/3

= 0.2947 d) θ = π/2, c∗
π/2

= 0.2499

Fig. 5 The Löwner order is related to the relative size and the rotation between ellipsoids
of equidensity. The blue ellipse in panel a) is comparable with the blue ellipses in panels b),
c) and d). The relation cBθ � A holds for c ≤ c∗θ where c∗θ are the indicated thresholds.

4 On the degeneracy in the maximum likelihood estimation

Convergence properties of the EM algorithm nearby stationary point has been
investigated in many papers. See e.g. Boyles (1983), Wu (1983), Meng (1994)
and Nettleton (1999). Here we consider convergence properties of the EM
towards a solution containing degenerate components, as introduced in Sec-
tion 2. Let {ψ(r)}r be a sequence of the estimates of ψ provided by the EM
and let {L(ψ(r))}r be the corresponding sequence of the loglikelihood values.
Throughout this section, for simplicity, the superscript “−” will denote the
estimation at iteration r and the superscript “+” denotes the estimation at
iteration r + 1.

The behaviour of the EM algorithm near degenerate components has been
first investigated in Biernacki and Chrétien (2003) for mixtures of univariate
Gaussian distributions. In particular, they prove the existence of a domain of
attraction leading the EM algorithm to degeneracy.

Consider the sequence of the estimates {ψ(r)}r provided by the EM algo-
rithm in the estimation of the parameters of a mixture of univariate Gaussian
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Fig. 6 Example of degenerate components

distributions (12), where ψ(r) ∈ Ψ, with Ψ defined in (13). Let us set

f (r)
ng = π(r)

g φ(xn;µ
(r)
g , σ(r)

g

2
) , (37)

and assume that, at the current iteration of the EM algorithm, the component
g0 (1 ≤ g0 ≤ G) is close to degeneracy at the unit xn0 (1 ≤ n0 ≤ N). Such a

situation is equivalent to a high density f
(r)
n0g0 of component g0 at xn0 and to

small densities f
(r)
ng0 at other units xn (n �= n0) (this occurs with probability

one, assuming all individuals to be different with probability one). Afterwards,
set the vector

v0 =
(
1/fn0g0 , {fng0}n�=n0

)
. (38)

For a degenerate component, the Euclidean norm ‖v0‖ is small. Finally, denote

by v
(r)
0 the value of v0 evaluated at step r of the EM algorithm. An example

of degenerate component is given in Figure 6.
In this framework, Biernacki and Chrétien (2003) prove two results that

we summarize below, see Theorems 8 and 9.

Theorem 8 (Biernacki and Chrétien, 2003) There exists ε > 0 such that

if ‖v0‖ ≤ ε then ‖v(r)
0 ‖ = o‖v0‖ with probability one.

The proof follows from the Taylor expansions for parameters π+
g0 , µ

+
g0 and

σ2+
g0 . This results states that, if ‖v0‖ is small enough, than the EM mapping is

contracting and, therefore, EM is convergent and its fixed point is degenerated
The second results concerns the speed towards degeneracy.

Theorem 9 (Biernacki and Chrétien, 2003) There exists ε > 0, α > 0
and β > 0 such that if ‖v0‖ ≤ ε then, with probability one

σ2+
g0 ≤ α

exp(−β/σ2−
g0 )

σ2−
g0

(39)
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The proof follows again from the Taylor expansions. In particular, this results
establishes that the variance of a degenerated component tends to zero with
an exponential rate. Since the likelihood tends to infinity as fast as the inverse
of the standard deviation, the divergence of the likelihood is exponential too.

These results have been extended to the multivariate case in Ingrassia and
Rocci (2011). In this case, a degenerate solutions occurs at some subset of X
containing q ≤ d points. Thus, let D be a subset of {1, 2, . . . , N} containing
q ≤ d units and consider the vector

v0 =
(
{1/fng0}n∈D , {fng0}n�∈D

)
(40)

which generalizes (38) in the multivariate setting. The following result extends
Theorem 9 to the multivariate case.

Theorem 10 (Ingrassia and Rocci, 2011) Let g0 be a degenerate compo-

nent of the mixture (3)), with 1 ≤ g0 ≤ G. Let Σ(m+1)
g0 be the estimate of the

covariance matrix Σj0 at iteration m + 1 ∈ N. There exist ε > 0 and β > 0
such that if ‖v0‖ ≤ ε then

λmin(Σ
+
g0) <

δ

[λmin(Σ
−
g0)]

d/2
exp

{
− β

4λmin(Σ
−
g0)

}
+ o||v0||. (41)

The proof follows again from arguments based on the Taylor expansion.
The relation (41) suggests that, near degeneracy, the smallest eigenvalue

decreases very fast. Based on this result, in Ingrassia and Rocci (2011) is
conjectured that such bad behavior should be prevented by bounding the
eigenvalues variations between two consecutive iterations. Thus, the idea is to
control the speed of variation of both the smallest and the largest eigenvalues
at each iteration and the following constraints have been proposed

λmin(Σ
−
j )/ϑa ≤ λ+ij ≤ ϑbλmax(Σ

−
j ) , (42)

with ϑa, ϑb > 1 and thus from (42) we get

λ
(m+1)
ij = min

(
ϑbλmax(Σ

(m)
j ),max

(
λmin(Σ

(m)
j )/ϑa, l

(m+1)
ij

))
. (43)

We refer to such constraints as “dynamic constraints” to point out that the
bound on the eigenvalue at the current iteration depends on the value of the
eigenvalue computed at the previous step of the algorithm. On the contrary,
we shall refer to the type of constraints like in (21) as “static” because the
interval remains fixed during the whole computation.

A monotone algorithm implementing (42) can be easily derived by us-
ing the constrained EM algorithm of Ingrassia and Rocci (2007) previously
described. We remark that this implementation does not lead to an EM al-
gorithm, because in the “M-step” the complete log-likelihood function is not
necessarily maximized. However, by noting that at iterationm+1 the complete
log-likelihood is increased by every update of λij lying in the interval

[min(λmij , l
(m+1)
ij ),max(λmij , l

(m+1)
ij )],
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in the M-step the complete log-likelihood is always increased. This kind of
algorithm, where the complete log-likelihood is increased instead of maximized,
has been referred to as generalized EM in Dempster et al. (1977).

We point out that such constraints have a different background with respect
to (21), (27) and others proposed in Ingrassia and Rocci (2007). The latter
are based on a constrained formulation of the likelihood function for mixture
models; the constraints proposed here are in some sense of an algorithmic type
being based on the convergence properties of the EM algorithm.

Our results highlighted that, in some way, the convergence of the EM algo-
rithm to some spurious maximum is also due to the properties of the algorithm
itself. Indeed, since in the near degeneracy case the covariance matrices con-
verge at exponential rate toward singularity, this implies that in such cases
such a covariance matrix could model some spurious small group of data quite
quickly and this amounts to an increase in the probability of the algorithm to
get stuck into some spurious maximum.

In general, dynamic constraints performed always at least as good as the
unconstrained EM algorithm and good performances were attained when both
bounds on the variation of the eigenvalues were implemented.

5 Gaussian parsimonious clustering models

In literature, intermediate component covariance matrices lying between ho-
moscedasticity and heteroscedasticity, have been proposed by Banfield and
Raftery (1993) and Celeux and Govaert (1995). They proposed a general
framework for geometric cross-cluster constraints in multivariate normal mix-
tures by parameterizing covariance matrices through eigenvalue decomposition
in the form

Σg = λgDgAgD
′
g g = 1, . . . , G (44)

where Dg is the orthogonal matrix of the eigenvectors of Σg, describing the
scatter orientation, Ag is a scaled (|Ag | = 1) diagonal matrix whose elements
are proportional to the eigenvalues ofΣg in decreasing order, giving the shape,
and λg is an associated constant of proportionality, related to the volume of

the clusters, which is proportional to λ
d/2
g = |Σg|1/2. The idea is to treat

λg,Dg and Ag as independent sets of parameters and either constrain them
to be the same for each cluster or allow them to vary among clusters, see Table
1. In a quite different context, similar ideas have been introduced in Greselin
et al. (2011).

Hence, we allow the volumes, the shapes and the orientations of clusters
to vary or to be equal between clusters. Variations on assumptions on the
parameters λg,Dg and Ag (g = 1, . . . , G) lead to fourteen general models of
interest, plus two models for the univariate case. For instance, we can assume
different volumes and keep the shapes and orientations equal by requiring
that Ag = A (A unknown) and Dg = D (D unknown) for g = 1, . . . , G.
We denote this model [λgDAD′]. With this convention, writing (for instance)
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Model ID Model Distribution Volume Shape Orientation # parameters

E univariate equal 1

V univariate variable G

EII [λI] spherical equal equal NA α+ 1

VII [λgI] spherical variable equal NA α+ d

EII [λA] diagonal equal equal coordinate axes α+ d

VEI [λgA] diagonal variable equal coordinate axes α+ d+G− 1

EVI [λAg] diagonal equal variable coordinate axes α+ dG−G+ 1

VVI [λgAg ] diagonal variable variable coordinate axes α+ dG

EEE [λDAD′] ellipsoidal equal equal equal α+ β

VEE [λgDAD′] ellipsoidal variable equal equal α+ β +G− 1

EVE [λDAgD′] ellipsoidal equal variable equal α+ β + (G− 1)(d − 1)

VVE [λgDAgD′] ellipsoidal variable variable equal α+ β + (G− 1)d

EEV [λDgAD′
g] ellipsoidal equal equal variable α+Gβ − (G− 1)d

VEV [λgDgAD′
g] ellipsoidal variable equal variable α+Gβ − (G− 1)(d − 1)

EVV [λDgAgD′
g] ellipsoidal equal variable variable α+Gβ − (G− 1)

VVV [λgDgAgD′
g ] ellipsoidal variable variable variable α+Gβ

Table 1 Parameterizations of the covariance matrix Σg. We have α = Gd in the restricted
case (equal weights, πg = 1/G) and α = Gd+G− 1 in the unrestricted case. β denotes the
number of parameters of each covariance matrix, i.e. β = d(d + 1)/2.

EEE VEE EVE EEV

VVE VEV EVV VVV

Fig. 7 Example of covariance matrices having different patterns according to Table 1.

[λDgAD′
g] means that we consider the mixture model with equal volumes λ,

equal shapes A and different orientations Dg. All these models can be esti-
mated by the MCLUST software (Fraley and Raftery, 1999, 2003, 2006; Fraley
et al., 2012) where they are designated by a three-letter symbol indicating vol-
ume, shape and orientation, respectively. The letter E indicates cross-cluster
equality, while V denotes freedom to vary across clusters, and the letter I des-
ignates a spherical shape or an axis-aligned orientation. Patterned covariance
matrices are listed in Table 1 and some of them are showed in Figure 7.
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This approach has been extended to multivariate t-distributions by An-
drews et al. (2011).

We see that all models with equal volume and equal shape offer a good
alternative when looking at covariance constraints to avoid singularities and
reduce spurious solutions. For the other cases, “NA” values could appear in
MCLUST results, due to failure in the EM computations caused by singu-
larity and/or shrinking components, meaning that a particular model cannot
be estimated. Hence a constraint on the eigenvalues is still needed, and the
function emControl has been added to MCLUST.

6 Mixtures of factor analyzers

The general Gaussian mixture model (3) is a highly parameterized model,
with a total of (G − 1) + G[d + d(d + 1)/2] parameters. Looking for parsi-
mony, it is of interest to develop some methods for reducing the covariance
matrices parametrization Σg, requiring Gd(d+ 1)/2 parameters. To this pur-
pose, Ghahramani and Hinton (1997) and Tipping and Bishop (1999) proposed
Gaussian Mixtures of Factor Analyzers (MFA), able to explain multivariate
observations, by explicitly modeling correlations between variables.

This approach postulates a finite mixture of linear sub-models for the dis-
tribution of the full observation vector X, given the (unobservable) factors
U. Hence, it provides local dimensionality reduction by assuming that the
distribution of the observation Xn is given by

Xn = µg +ΛgUng + eng g = 1, . . . , G, n = 1, . . . , N, (45)

with probability πg, where Λg is a d× q matrix of factor loadings, the factors
U1g, . . . ,UNg are N (0, Iq) distributed independently of the errors eng, which
are N (0,Ψg) distributed, and Ψg is a d × d diagonal matrix (g = 1, . . . , G).
The diagonality of Ψg is one of the key assumptions of factor analysis: the
observed variables are independent given the factors.

Note that the factor variables Ung model correlations between the ele-
ments of Xn, while the eng variables account for independent noise for Xn.
We suppose that q < d, which means that q unobservable factors are jointly
explaining the d observable features of the statistical units. Under these as-
sumptions, the mixture of factor analyzers model is given by (3), where the
g-th component-covariance matrix Σg has the specific form

Σg = ΛgΛ
′
g +Ψg (g = 1, . . . , G). (46)

The parameter vector θ = θMFA(d, q,G) now consists of the elements of the
component means µg, the Λg, and the Ψg, along with the mixing proportions

πg (g = 1, . . . , G− 1), on putting πG = 1−∑G−1
g=1 πg. Note that, in the case of

q > 1, there is an infinity of choices for Λg, since model (45) is still satisfied
if we replace Λg by ΛgH

′, where H is any orthogonal matrix of order q. As
q(q − 1)/2 constraints are needed for Λg to be uniquely defined, the number
of free parameters for each component of the mixture, is dq + d− 1

2q(q − 1).
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Model ID Loading matrix Λg Error variance Ψg Isotropic Ψg = ψgI # parameters

CCC Constrained Constrained Constrained [pq − q(q − 1)/2] + 1

CCU Constrained Constrained Unconstrained [pq − q(q − 1)/2] + p

CUC Constrained Unconstrained Constrained [pq − q(q − 1)/2] +G

CUU Constrained Unconstrained Unconstrained [pq − q(q − 1)/2] +Gp

UCC Unconstrained Constrained Constrained G[pq − q(q − 1)/2] + 1

UCU Unconstrained Constrained Unconstrained G[pq − q(q − 1)/2] + p

UUC Unconstrained Unconstrained Constrained G[pq − q(q − 1)/2] +G

UUU Unconstrained Unconstrained Unconstrained G[pq − q(q − 1)/2] +Gp

Table 2 Parsimonious covariance structures introduced for mixtures of factor analyzers.

Parameters in mixtures of factor analyzers are usually estimated according
to the likelihood approach, based on the AECM algorithm (Meng and van Dyk,
1997). AECM is a variant of the EM procedure, where two E and conditional M
steps are alternated, acting on a partition of the parameter space, particularly
suitable for ML for Gaussian factors.

McNicholas and Murphy (2008) extended the idea of patterned covari-
ance matrices to mixture of factor analyzers by considering constraints across
groups on the Λg and Ψg matrices and on whether or not Ψg = ψgIp. The full
range of possible constraints provides a class of eight parsimonious Gaussian
mixture of factor analyzer models, which are given in Table 2. These models
provide a unified modeling framework which includes the mixtures of prob-
abilistic principal component analyzers and mixtures of factor of analyzers
models as special cases. This approach has been extended in different direc-
tions: Andrews and McNicholas (2011) generalized this family of models to
multivariate t distributions while Subedi et al. (2013) and Subedi et al. (2015)
introduced their version for cluster-weighted models.

To discuss these models from their ability to deal with singularity and spu-
rious solutions along the ML estimation, we observe that the error matrices
are either “unconstrained isotropic” Ψg = ψgI with different ψg for each com-
ponent, or “constrained isotropic”, say Ψg = Ψ = ψI. This parameterization
choice leads the covariance matrices Σg = Λ′

gΛg +Ψg far from singularities.
In a different approach, Greselin and Ingrassia (2015) constraints of type

(21) have been proposed for mixtures of factor analyzers. Due to the structure
of the covariance matrix Σg given in (46), bound in (21) yields

a ≤ λ(ΛgΛ
′
g +Ψg) ≤ b, g = 1, . . . , G . (47)

Concerning the square d × d matrix ΛgΛ
′
g (g = 1, . . . , G), we can get its

eigenvalue decomposition, i.e. we can find Λg and Γg such that

ΛgΛ
′
g = Γg∆gΓ

′
g (48)

where Γg is the orthonormal matrix whose columns are the eigenvectors of
ΛgΛ

′
g and ∆g = diag(δ1g, . . . , δdg) is the diagonal matrix of the eigenvalues
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of ΛgΛ
′
g, sorted in non increasing order, i.e. δ1g ≥ δ2g ≥ . . . ≥ δqg ≥ 0, and

δ(q+1)g = · · · = δdg = 0.
Now, let us consider the singular value decomposition of the d× q rectan-

gular matrix Λg, so giving Λg = UgDgV
′
g, where Ug is a d×d unitary matrix

(i.e., such that U′
gUg = Id) and Dg is a d×q rectangular diagonal matrix with

q nonnegative real numbers on the diagonal, known as singular values, and Vg

is a q × q unitary matrix. The d columns of U and the q columns of V are
called the left singular vectors and right singular vectors of Λg, respectively.
Now we have that

ΛgΛ
′
g = (UgDgV

′
g)(VgD

′
gU

′
g) = UgDgIqD

′
gU

′
g = UgDgD

′
gU

′
g (49)

and equating (48) and (49) we get Γg = Ug and ∆g = DgD
′
g, that is

diag(δ1g, . . . , δqg) = diag(d21g , . . . , d
2
qg) ., (50)

with d1g ≥ d2g ≥ · · · ≥ dqg ≥ 0. In particular, it is known that only the first q
values of Dg are non negative, and the remaining d− q terms are null.

Denoting now by ψig the i-th eigenvalue of Ψg, then constraint (47) is
satisfied when

d2ig + ψig ≥ a i = 1, . . . , d (51)

dig ≤
√
b− ψig i = 1, . . . , q

ψig ≤ b i = q + 1, . . . , d (52)

for g = 1, . . . , G. In particular, we remark that condition (51) reduces to
ψig ≥ a for i = (q + 1), . . . , d.

The two-fold (eigenvalue and singular value) decomposition of the Λg pre-
sented above, suggests how to modify the EM algorithm in such a way that the
eigenvalues of the covariances Σg (for g = 1, . . . , G) are confined into suitable
ranges. Details are given in Greselin and Ingrassia (2015). Finally, we observe
that only constraints on Ψg are needed to discard singularities and to reduce
spurious maximizers, as it has been done in a robust approach for estimating
Mixtures of Gaussian factors in Garćıa-Escudero et al. (2016).

7 Concluding remarks

In the maximum likelihood approach for model based clustering and classifi-
cation, based on mixtures of elliptical components, we have recalled here the
need of considering a constrained parameter space for the covariance matrices,
to yield a well posed optimization problem.

We have reviewed several different approaches for setting constraints to
the eigenvalues of the covariance matrices, as well as the algorithms needed
for their exact or approximate implementation. We also discussed the histori-
cal path, starting from the popular k-means methods, that implicitly assumes
the strongest constraint of equal spherical covariance matrices, till the most
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recent contributions in the literature that allows for milder conditions, and
arriving to dynamic and/or affine equivariant constraints. We developed a
detailed comparison of the advantages of each proposal, also in view of ob-
taining a sound theoretical framework assuring existence and consistency to
the obtained estimator.

Usually, the ML estimation is performed by using the EM algorithm. The
latter is a powerful iterative process, leading deterministically to a specific
solution, depending from the initial step. This makes the choice of the starting
points a very delicate matter. Many efforts have been made in the literature
to devise smart initialization methods, mainly to avoid convergence toward
singularities or spurious solutions. We have seen that the constrained approach
with a reasonable number of random initializations, on the other hand, yields
to a reduced set of meaningful solutions. The researcher can devise among
them the most convincing one, or the more interesting from the point of view
of the obtained clustering, in view of his knowledge of the field of application.
We argue that the clustering of a dataset should not be based solely on a
single solution of the likelihood equation, but rather on the various solutions
considered collectively and analyzed with care.

Finally, we discussed along the paper that the constrained approach in
mixture modelling, beyond allowing a proper mathematical setting of the op-
timization problem, at the same time provides stability to the obtained solu-
tions.

As we stated in the introduction, the role of constrained estimation within
robust statistical methods needs a longer discussion and will be the object of
a further paper.
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