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Abstract Archetype and archetypoid analysis are extended to shapes. The objec-
tive is to find representative shapes. Archetypal shapes are pure (extreme) shapes.
We focus on the case where the shape of an object is represented by a configura-
tion matrix of landmarks. As shape space is not a vectorial space, we work in the
tangent space, the linearized space about the mean shape. Then, each observation
is approximated by a convex combination of actual observations (archetypoids)
or archetypes, which are a convex combination of observations in the data set.
These tools can contribute to the understanding of shapes, as in the usual multi-
variate case, since they lie somewhere between clustering and matrix factorization
methods. A new simplex visualization tool is also proposed to provide a picture
of the archetypal analysis results. We also propose new algorithms for performing
archetypal analysis with missing data and its extension to incomplete shapes. A
well-known data set is used to illustrate the methodologies developed. The pro-
posed methodology is applied to an apparel design problem in children.

Keywords Statistical shape analysis · Archetype analysis · Archetypoid analysis ·
Anthropometric data · Children’s wear · Missing data
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1 Introduction

One of the main steps in image processing is the representation and description of
the objects in the images. Specifically, here we concentrate on the analysis of their
shape. A significant amount of research and activity has been carried out in recent
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decades in the general area of shape analysis. By shape analysis, we mean a set of
tools for describing, comparing, matching, deforming, and modeling shapes. Three
major approaches can be identified in shape analysis based on how the object is
treated in mathematical terms (Stoyan and Stoyan (1995)): Objects can be treated
as subsets of Rm, they can be described as sequences of points that are given by
certain geometrical or anatomical properties (landmarks), or they can be defined
using functions that represent their contours.

The majority of research has been restricted to landmark-based analysis, where
objects are represented using k labeled points in the Euclidean space Rm. These
landmarks are required to appear in each data object and to correspond to each
other in a physical sense. Seminal papers on this topic are Bookstein (1978),
Kendall (1984), and Goodall (1991). The main references are Dryden and Mardia
(1998) and Kendall et al (2009). In this paper we concentrate on this approach.

When the landmark-based approach is used, the corresponding shape space is
a finite-dimensional Riemannian manifold, and statistical methodologies on man-
ifolds must be used. There are several difficulties with generalizing probability
distributions and statistical procedures to measurements in a non-vectorial space
like a Riemannian manifold, but fortunately, there has been a significant amount
of research and activity in this area over recent years. An excellent review is given
by Pennec (2006).

Statistical learning can be supervised or unsupervised ((Hastie et al, 2009, Ch.
14) provide an excellent overview of unsupervised learning techniques) depending
on whether or not outcome variables are present or not. This last is our case.
In multivariate statistics, data decomposition techniques for finding the latent
components are very popular. A data matrix is viewed as a linear combination
of several factors. Different unsupervised methods emerge depending on the con-
straints on the factors and their combination (Mørup and Hansen (2012); Thurau
et al (2012); Vinué et al (2015a)). For example, in clustering methods such as
k-means (or k-medoids) data are explained by means of several centroids, which
are the average of groups of data (or data points in the case of k-medoids). This
makes factors easily interpretable. However, binary assignment of data to the clus-
ters reduces their modeling flexibility, as compared with methods such as principal
component analysis (PCA). PCA can explain data variability very well, but the
factors obtained are not always easy to interpret, as they are a linear combination
of the variables. Obviously, their objectives are different. Archetype analysis (AA)
lies somewhere between these two techniques, in the sense that its modeling flexi-
bility is higher than clustering methods and its factors are very easy to interpret.
The same happens with fuzzy versions of k-means and k-medoids, although their
objectives are different from that of AA. A summary table showing the relation-
ship between several unsupervised methods in the multivariate context, which also
applies to shapes, is given by Vinué et al (2015a).

AA was proposed by Cutler and Breiman (1994). The objective of AA is to
represent data as a convex combination (mixture) of pure or extremal patterns
called archetypes. Archetypes are a convex combination of data points. A variant
of AA is archetypoid analysis (ADA). Unlike AA, the pure types in ADA are not a
mixture of cases, but real (observed) cases. ADA represents the data as mixtures
of extreme cases, and not as mixtures of mixtures, as AA does. ADA was proposed
by Vinué et al (2015a).
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The archetypal patterns obtained in both AA and ADA are extreme observa-
tions (archetypes belong to the convex hull of data (Cutler and Breiman (1994)).
Representing data by their extreme constituents (Davis and Love (2010)) facil-
itates human interpretation and understanding of data due to the principle of
opposites (Thurau et al (2012)). Central points are not as good as extreme points
for human interpretability. Furthermore, the expression of data as a convex com-
bination of archetypal patterns makes a human reading of data easier, unlike a
linear combination without any constraints.

Besides ADA, AA has given rise to the development of other new methodolo-
gies and it has been extended to other kinds of data. Some examples are weighted
and robust AA (Eugster and Leisch (2011)), interval archetypes (D’Esposito et al
(2012)), functional AA and ADA (Epifanio (2016)), data-driven prototype iden-
tification (Ragozini et al (2017)), probabilistic AA (Seth and Eugster (2016b)),
AA for nominal observations (Seth and Eugster (2016a)) and archetypal networks
(Ragozini and D’Esposito (2015)).

AA and ADA have been applied in many different fields, such as astrophysics
(Chan et al (2003)), biology (D’Esposito et al (2012)), developmental psychology
(Ragozini et al (2017)), e-learning (Theodosiou et al (2013)), genetics (Thøgersen
et al (2013)), global development (Epifanio (2016)), industrial engineering (Epi-
fanio et al (2013); Vinué et al (2015a)), machine learning problems (Mørup and
Hansen (2012)), market research (Li et al (2003); Porzio et al (2008); Midgley and
Venaik (2013)), multi-document summarization (Canhasi and Kononenko (2013,
2014)), neuroscience (Tsanousa et al (2015); Hinrich et al (2016)) and sports (Eug-
ster (2012); Vinué and Epifanio (2017)). AA and ADA algorithms are implemented
in the R package archetypes (Eugster and Leisch (2009)) and Anthropometry
(Vinué et al (2015b); Vinué (2017)), respectively.

Displaying figures that correspond to extreme scores of principal components is
quite a common exploratory tool in statistical shape analysis (Dryden and Mardia
(1998); Claude (2008)). This could be viewed as looking for the archetypal shapes.
Nevertheless, unlike PCA, the purpose of AA or ADA is to find extreme obser-
vations, and cases with extreme PCA scores do not necessarily return archetypal
cases. This is explained by Cutler and Breiman (1994) and shown by Epifanio et al
(2013) through a problem where archetypes could not be recovered with PCA even
if all the components had been considered.

Although it is common to study the average and variability of shapes in mor-
phometrics, many applications have to cope with the analysis of extreme shapes.
Several biological applications where the interest is on extreme shapes rather than
mean shapes are introduced by Dryden and Zempléni (2006): the analysis of
healthy and diseased muscle fiber cells and a time series of 4000 conformations
of a DNA molecule over 4 nanoseconds. In several diseases, the morphology of cer-
tain organic structures is affected and they have extreme shapes when compared
with those found in controls. For example, spines in scoliosis patients, or corneal
endothelium cells in pathological cases (Ayala et al (2006); Zapater et al (2002)).
Another potential biological application is taxonomy, since the interest is precisely
on species (pure types or archetypes) and their hybrids (mixture of archetypes).
Therefore, instead of the usual application of PCA in this field (Viscosi and Cardini
(2011)), AA for shapes could be very useful.

However, there are sometimes error-prone shape data (Du et al (2015)), i.e.
shape data that are not free from measurement errors, or some landmarks may even
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be missing for different observations (Brown et al (2012)); for example, if we are
working with fossilized specimens, which are frequently subject to fragmentation,
distortion and erosion (Arbour and Brown (2014)). Excluding the cases (or missed
landmarks) with missing data is not a good option (Arbour and Brown (2014)),
especially if the sample size is small and the collection of additional, more complete,
material is not possible. Another option would be imputation, provided that the
proportion of missing data is small. Nevertheless, if the proportion is large, the
errors caused by imputation are increasingly important (Eirola et al (2013)). For
that reason, we also propose a new procedure for computing AA with missing data
in the multivariate case and we extend it to shapes with missing landmarks. A
previous attempt to compute multivariate AA with missing data was introduced
by Mørup and Hansen (2012), but by modifying the original objective function of
AA.

In industrial design, extremes are also very important. Human modeling is
widely used in many industries such as the aviation, automotive, defense and
manufacturing sectors. The use of representative human models (cases) provides
designers with an efficient way of applying the body size characteristics of the
target population to ergonomic design and evaluation. Boundary cases are those
located toward the edges of the distribution, and are very relevant in ergonomic
product design assuming that the accommodation of boundaries ensures the ac-
commodation of interior points. Note that if the “hard-to-fit” extreme subjects (the
boundary cases) are located before the design process begins, the design could be
improved from the very beginning. This would reduce the time and cost of the
design process.

The problem that motivated us is concerned with the analysis of children’s
shapes for garment fit problems, although it could be applied to the design of
other products for an appropriate target population. Lack of fit is a significant
problem for both customers and apparel companies. In fact, the return rates due
to size misfit are very high in online garment shops (Eneh (2015)). The idea is to
identify individuals who represent the fitting problems of the target population
by means of archetypal shapes. Then the designer may adapt the base pattern to
ensure that each new pattern is adapted to the measurements of the extremes of a
size. A 3D anthropometric study of the child population in Spain was carried out
by the Biomechanics Institute of Valencia. The aim of this study was to obtain
anthropometric data from the child population for the clothing industry. A total
of 502 Spanish children aged 6 to 12 years old were randomly selected. They were
scanned using the Vitus Smart 3D body scanner from Human Solutions, a non-
intrusive laser system formed by four columns housing the optic system, which
moves from head to feet in ten seconds, performing a sweep of the body.

The purpose of this work is to extend AA and ADA to statistical shape anal-
ysis, which will help make a shape data set easier to understand, displaying and
describing the relevant features of the data. AA and ADA in the multivariate
case is reviewed in Section 2, together with some aspects of shape analysis, and
the novel extension of AA and ADA to shapes is introduced. In Section 3, AA
and ADA with landmarks is illustrated with a very well-known data set, and the
results are compared with those obtained with PCA, sparse PCA and k-means
clustering. A new simplex visualization tool is also proposed to provide a picture
of the archetypal analysis results. In Section 4, AA with missing data is proposed,
together with its extension to shapes with missing landmarks. The procedure is
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again illustrated and compared with different alternatives in the multivariate case
and shape case in the supplementary material (Online Resource 1). ADA with
missing data is also discussed. In Section 5, children’s shapes for garment design
are analyzed. Finally, conclusions and further developments are discussed in Sec-
tion 6. The code in R (R Development Core Team (2017)) and data for reproducing
the examples are available at http://www3.uji.es/∼epifanio/RESEARCH/laa.rar.

2 Definition of AA and ADA with landmarks

2.1 AA and ADA in the multivariate case

Let X = (x1, ..., xn) be an n×r data matrix with n cases and r variables. For AA,
the p × r matrix Z = (z1, ..., zp) will contain the p archetypes in those data, in
such a way that row xi is approximated by a mixture of the rows zj ’s (archetypes):

xi ∼ x̂i =

p∑
j=1

αijzj , (1)

with the mixture coefficients contained in the n× p matrix α = (αij). On the
other hand, the archetypes zj are obtained with mixture coefficients compiled in
the p× n matrix β = (βjl) according to:

zj =
n∑
l=1

βjlxl. (2)

To determine the matrices Z, α and β for a given data matrix X, the following
residual sum of squares (RSS) is minimized ( ‖ · ‖ denotes the Frobenius matrix
norm for matrices, and the Euclidean norm for vectors ):

RSS = ‖X − αβX‖2 =
n∑
i=1

‖xi −
p∑
j=1

αijzj‖2 =
n∑
i=1

‖xi −
p∑
j=1

αij

n∑
l=1

βjlxl‖2, (3)

under the constraints

1)

p∑
j=1

αij = 1 with αij ≥ 0 and i = 1, . . . , n, j = 1, . . . , p and

2)

n∑
l=1

βjl = 1 with βjl ≥ 0 and j = 1, . . . , p and l = 1, . . . , n.

Constraint 1) indicates that the approximation of xi is a convex combination

of archetypes, x̂i =

p∑
j=1

αijzj . Each αij is the weight of the archetype j for the case

i; that is to say, the α coefficients indicate how much each archetype contributes
to the approximation of each case. Constraint 2) indicates that archetypes zj are

case mixtures, zj =
n∑
l=1

βjlxl.

http://www3.uji.es/~epifanio/RESEARCH/laa.rar
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Archetypes zj are not necessarily observed data points. zj would only be an
observed data point if one βjl was equal to 1 in constraint 2) for each j. In ADA,
therefore, βjl can only take on the binary values 0 or 1, because βjl ≥ 0 and the
sum of constraint 2) is 1. As a consequence, instead of the continuous optimization
problem of AA, the following mixed-integer optimization problem has to be solved
in ADA:

RSS =
n∑
i=1

‖xi −
p∑
j=1

αijzj‖2 =
n∑
i=1

‖xi −
p∑
j=1

αij

n∑
l=1

βjlxl‖2, (4)

under the constraints

1)

p∑
j=1

αij = 1 with αij ≥ 0 and i = 1, . . . , n, j = 1, . . . , p and

2)
n∑
l=1

βjl = 1 with βjl ∈ {0, 1} and j = 1, . . . , p and l = 1, . . . , n.

Note that βjl = 1 for one and only one l, otherwise βjl = 0.

Due to their definitions, archetypes and archetypoids are extremal representa-
tives of the data. If p > 1, archetypes are located on the boundary of the convex
hull of the data (see Cutler and Breiman (1994)), while this does not necessarily
hold for archetypoids (see Vinué et al (2015a)). If p = 1, the mean of the data
is the archetype, and the archetypoid is the medoid of the data (Kaufman and
Rousseeuw (1990)).

An alternating minimizing algorithm was proposed by Cutler and Breiman
(1994) to solve the problem (3). It alternates between estimating the best α for
given archetypes Z and the best archetypes Z for a given α. The convex least
squares problems were solved with a penalized version of the non-negative least
squares algorithm by Lawson and Hanson (1974). Eugster and Leisch (2009) im-
plemented that algorithm in the R library archetypes, where data are standard-
ized by default. We have based our algorithm on this one, but the data are not
standardized and the Frobenius norm is considered, as indicated in equation (3),
instead of the spectral norm used by Eugster and Leisch (2009).

An algorithm based on the idea of the Partitioning Around Medoids (PAM)
clustering algorithm (Kaufman and Rousseeuw (1990)) was proposed by Vinué
et al (2015a) to solve the problem (4). A BUILD phase and a SWAP phase are
considered in that algorithm. From an initial set of archetypoids calculated in
the BUILD step, the SWAP phase improves that set by exchanging selected cases
for unselected observations and by checking if these replacements reduce the RSS.
That algorithm was implemented in the R library Anthropometry by Vinué et al
(2015b). Three alternatives for the BUILD phase are considered in the R imple-
mentation. The first candidates are the nearest neighbors in Euclidean distance to
the p archetypes, the so-called candns set. The second initial candidates, referred
to as the candα set, are the cases with the maximum α value for each archetype
j, i.e., the cases with the largest relative share for the respective archetype. The
third set of candidates, the candβ set, consists of the observations with the maxi-
mum β value for each archetype j, i.e., the major contributors in the generation of
the archetypes. From these three initial sets, after the SWAP phase, ADA returns
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three sets of archetypoids. The set with lowest RSS (often the same set is obtained
from the three initializations) is the returned ADA solution.

An open question is the number p of archetypes or archetypoids to compute.
Note that neither archetypes nor archetypoids are necessarily nested. It could be
decided by the user or the elbow criterion could be used as made by Cutler and
Breiman (1994); Eugster and Leisch (2009); Vinué et al (2015a) (the value p is
selected as the point where the elbow on the RSS representation for a series of
different p values is found).

2.2 Shape space and shape distances

The word “shape” is very commonly used in everyday language, usually referring to
the visual appearance of a geometric object. More formally, shape can be defined
as geometric information about the object that is invariant under a Euclidean
similarity transformation, i.e., with respect to location (translation), orientation
(rotation) and scale (size) (Dryden and Mardia (1998)). In this work, the shape
of geometrical m-dimensional objects (usually m = 2, 3) is determined by a finite
number of k > m coordinate points, known as landmark points. Each object is then
described by a k×m configuration matrix X = (xij) containing the m Cartesian
coordinates xij of its k landmarks, i.e. each row represents a landmark and each
column represents one Cartesian coordinate of that landmark.

However, a configuration matrix X is not a proper shape descriptor because it
is not invariant to similarity transformations. For any similarity transformation,
i.e., for any translation vector b ∈ Rm, scale parameter s ∈ R+, and m × m
rotation matrix R, the configuration matrix given by sXR+1kb

T (where 1k is the
k × 1 vector of ones, and the superscript T means transpose) describes the same
shape as X.

Definition 1 The shape space Σkm is the set of equivalence classes [X] of k ×
m configuration matrices X ∈ Rk×m under the action of Euclidean similarity
transformations.

A representative of each equivalence class [X] can be obtained by removing the
similarity transformations one at a time. There are different ways to do that.

Let X be a configuration matrix. One way to remove the location effect consists
of multiplying it by the Helmert sub-matrix ((Dryden and Mardia, 2016, p. 49-50)),
H, i. e., XH = HX.

To filter scale we can divide XH by the centroid size, which is given by S(X) =
‖XH‖.

Y =
XH
‖XH‖

(5)

is called the pre-shape of the configuration matrix X because all information about
location and scale is removed, but rotation information remains.

Definition 2 The pre-shape space Skm is the set of all possible pre-shapes Y .

Skm is a hypersphere of unit radius in Rm(k−1) (a Riemannian manifold that is
widely studied and known). Σkm is the quotient space of Skm under rotations.
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As a result, a shape [X] is an orbit generated by the rotation group SO(m) on
the pre-shape space.

For m = 2, this quotient space is isometric with the complex projective space
CPk−2, a familiar Riemannian manifold without singularities. For m > 2, which
is the case of our application, Σkm is not a familiar space, and it has singulari-
ties; however, the Riemannian structure of the non-singular part of Σkm can be
obtained taking into account that the quotient space Σkm/SO(m) is a Riemannian
submersion; see Kendall et al (2009).

Different distances between shapes can be introduced in Σkm. One of the most
popular is the full Procrustes distance. Given two configuration matrices X1 and
X2, the full Procrustes distance is a least-squares type metric between the corre-
sponding pre-shapes Y1 and Y2, respectively.

Definition 3 The full Procrustes distance between configuration matrices X1 and
X2 is defined by:

dF (X1, X2) = inf
R∈SO(m),β∈R

‖Y2 − βY1R‖, (6)

SO(m) being the orthogonal group of rotations.

The solution of this optimization problem is given by:

dF (X1, X2) =

√√√√1− (
m∑
i=1

λi)2,

where λ1 ≥ λ2 ≥ . . . λm−1 ≥| λm | are the square roots of the eigenvalues of
Y T1 Y2Y

T
2 Y1, and the smallest value λm is the negative square root if and only if

detY T1 Y2 < 0 Dryden and Mardia (1998).
Alternative distances could be used in the shape space. In particular, we will

also work with:

Definition 4 The Procrustes distance ρ(X1, X2) is the closest (over rotations)
great circle distance (the shortest distance between two points on the surface of
a sphere, measured along the surface of the sphere) between Z1 and Z2 on the
pre-shape space Skm.

The relationship between dF and ρ is (Kendall et al (2009)): dF (X1, X2) =
sin ρ(X1, X2).

Based on the full Procrustes distance a concept of mean shape [µ̂] can be
introduced in the Fréchet sense Fréchet (1948), i.e., one that minimizes the sum
of squared distances from any shape in the set.

Definition 5 Given a set of configuration matrices X1, . . . , Xn, the full Pro-
crustes mean in Σkm is given by

[µ̂] = arg inf
µ:S(µ)=1

n∑
i=1

d2F (Xi, µ). (7)

For two-dimensional data an explicit eigenvector solution of the optimization prob-
lem (5) is available (see p. 44 by Dryden and Mardia (1998)), but for m = 3 and
higher dimensional data, an iterative procedure must be used.
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2.3 AA and ADA for shapes

Let X1, . . . , Xn be n landmark configuration matrices, with k landmarks in di-
mension m, each Xi is the representative of a shape [Xi], an element of the shape
space Σkm. Henceforth, in order to simplify the notation, we will use X to denote
both a configuration matrix and its shape, provided that it is understood from the
context.

Our objective is to find shapes Zj ∈ Σkm, j = 1, .., p that generalize the settings
(1) and (2) to this space. They cannot be used directly because shape space is not
a vectorial space and the expressions

∑p
j=1 αijZj and

∑n
i=1 βjlXl are not defined.

Instead we propose to project X1, ..., Xn to an approximating linear space
where this expression could be defined and then take it back to Σkm.

In order to obtain this linear space we have to take into account that, as
noted before, the non-singular part of Σkm has a Riemannian manifold structure
and so it is locally homeomorphic with a Euclidean space such that the local
homeomorphisms can be smoothly patched together. This leads us to the definition
of the tangent space at each point (pole) that is linear and contains all possible
directions at the pole.

Additionally, the tangent space has the desirable property that the distance
from the shape to the pole is preserved, i.e. the distance from a point in the
manifold to the pole is equal to the Euclidean distance between its projections in
the tangent space. The type of distance depends on the choice of the tangent; in
our application the full Procrustes distance will be adopted (Dryden and Mardia
(2016)).

As one moves away from the pole, Euclidean distances between some pairs of
points in the tangent space are smaller than their corresponding shape distances.
This distortion becomes larger as one considers points that are more distant from
the pole. For this reason, the pole should be taken close to all of the points and
the mean of the observed shapes is the best choice (Rohlf (1998); Slice (2001)).

The tangent space of the shape space at the Procrustes mean (7) is called the
Procrustes tangent space.

As discussed before, if the data are fairly concentrated around this mean, the
Euclidean distance in the Procrustes tangent space is a good approximation to dF ,
and standard multivariate techniques based on Euclidean distance can be used in
this space. For this reason, this approach is widely used for statistical inference on
the shape space in many applications.

To know whether shape variation is sufficiently small in practical applica-
tions, Rohlf (1999) suggests comparing the Euclidean distances between all pairs
of points in the tangent space (or simply the distance to the average shape)
against their Procrustes distances in the shape space. Furthermore, Rohlf (1999)
also points out that, at least in biological applications, the approximation would
usually be good when there are more than just a few landmarks.

In terms of Riemannian manifolds, the maps that allow us to move from the
manifold to the tangent space or vice versa are called logarithmic and exponential
maps, respectively. For m = 2 their expressions are easy because, as noted before,
in this case the shape space is isometric to the complex projective space. To obtain
their expressions in the case of m > 2, which is the case of our application, we
have to take into account that the mapping π that assigns to each preshape Y
in Skm the corresponding element π(Y ) in Σkm is a Riemannian submersion and it
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maps the horizontal subspace of the tangent space to the pre-shape sphere at Y
isometrically onto the tangent space to the shape space at π(Y ). Using this result,
the exponential and logarithm maps in Σkm can be computed (Dryden and Mardia
(2016)).

Before showing the calculus, it is necessary to introduce the vectorizing oper-
ator. The vectorizing operator of an l ×m matrix A with columns a1, a2, . . . , am
is defined as: vec(A) = (aT1 , a

T
2 , . . . , a

T
m)T .

Let S be the pre-shape of the Procrustes mean µ of X1, ..., Xn and Y1, ..., Yn
their respective preshapes, obtained using equation (5). To obtain the expression
of the projection onto the tangent plane at S of X1, ..., Xn, the pre-shape Yi is
rotated to be as close as possible to S. We write the rotated pre-shape as YiΓ̂i with
the rotation matrix Γ̂i. The expression of Γ̂i can be found on p. 61 of Dryden and
Mardia (1998):Γ̂i = UiV

T
i , where Ui, Vi ∈ SO(m) are the left and right matrices

of the singular value decomposition of STYi. Then, the projection of Yi on the
tangent space at S is:

logS(Yi) = (Ikm−m − vec(S)vec(S)T )vec(YiΓ̂i)
trace(STYiΓ̂i)

sin(trace(STYiΓ̂i))
, (8)

where Ikm−m is the (km−m)× (km−m) identity matrix.
The logarithmic tangent projection has the property that it preserves the Pro-

crustes distance (Def. 4). Instead of using these coordinates, we propose to use:

vi = logS(Yi)
sin(trace(STYiΓ̂i))

trace(STYiΓ̂i)
.

The vi coordinates are called Kent’s partial tangent coordinates. We chose this
projection because instead of preserving the Procrustes distance it preserves the
full Procrustes distance (Def. 6). The practical difference is that, using Kent’s
partial tangent coordinates the more extreme observations are pulled in more
towards the pole Dryden and Mardia (2016).

We are now ready to introduce the definition of AA and ADA for shapes.
Let v1, . . . , vn be the tangent coordinates of X1, . . . , Xn. The coordinates in the
tangent space uj j = 1, .., p of the archetypes Zj ∈ Σkm, j = 1, .., p are obtained
by minimizing:

RSS =
n∑
i=1

‖vi −
p∑
j=1

αijuj‖2 =
n∑
i=1

‖vi −
p∑
j=1

αij

n∑
l=1

βjlvl‖2, (9)

under the constraints

1)

p∑
j=1

αij = 1 with αij ≥ 0 and i = 1, . . . , n, j = 1, . . . , p and

2)
n∑
l=1

βjl = 1 with βjl ≥ 0 and j = 1, . . . , p and l = 1, . . . , n.

For the case of ADA, the definition is analogous, but constraint 2) is changed
as in Eq. 4.

A significant difference between our methodology and the usual statistical
methods for shape analysis is that once archetypes are computed in the tangent
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space, they are projected back into the configuration space. For this reason, usu-
ally this inverse function cannot be found in standard shape analysis software. The
calculus of this map is again given by Dryden and Mardia (1998) and explained
below. Given uj (j = 1, ..., p) on the tangent space at S obtained by solving the
minimization problem (9), the corresponding points YZj

j = 1, ..., p on the pre-
shape space are:

YZj
= vec−1((1− uTj uj)1/2vec(S) + uj). (10)

Finally, the configuration matrices representing Zj j = 1, ..., p would be:

XZj
= HTYZj

. (11)

As archetypoids correspond to concrete observations, besides inspecting their
landmarks, if other information about the observation is available, it can also be
inspected. For example, in many cases landmarks are extracted from images, so
not only can the landmark configuration of archetypoids be visualized, but also
the corresponding images from which the landmarks were extracted. This is the
case of the problem in hand.

3 Comparison with other unsupervised methods - an example

Firstly, we illustrate AA and ADA with landmarks using digit 3 data, a well-
known and simple database that appears as an example of PCA application by
Dryden and Mardia (1998). It is available in the R package shapes Dryden (2015).
It consists of k = 13 landmarks in m = 2 dimensions from n = 30 individuals
(see Dryden and Mardia (1998) for details about this database). As landmarks
are two-dimensional, results can be visualized more simply. We apply AA, ADA,
PCA, sparse PCA (SPCA) and k-means to this database to better understand the
differences between the various methodologies for obtaining representative data.
Throughout this work, function procGPA (with ’partial’ tangent coordinates) from
the R package shapes is used for registering landmark configurations into optimal
registration using translation, rotation and scaling, and matrix V is obtained. The
same function is used to carry out PCA. AA, ADA and SPCA are applied to
V . SPCA aims to produce easily interpreted models through sparse loadings, i.e.
PC components are a linear combination of a subset of the original variables.
An excellent explanation of SPCA for landmark-based shape analysis is given by
Sjöstrand et al (2007); more examples of SPCA in medical shape modeling are
shown by Sjöstrand et al (2006). For computing SPCA in the multivariate case,
the R package elasticnet Zou and Hastie (2012) is used. For carrying out k-means
clustering with shapes, we consider Lloyd’s classic algorithm for k-means clustering
adapted to the context of Shape Analysis, as made by Vinué et al (2016).

First of all, Procrustes distances to the mean are computed. The distance from
the first digit to the mean is very high and is considered an outlier by Dryden and
Mardia (1998). Therefore, the analyses are performed without this first digit as
made by Dryden and Mardia (1998). In the interest of brevity and as an illustrative
example we examine the results of p = 4 with AA (the RSS elbow is found at p = 4)
and ADA. We also consider the first four PC components in PCA and SPCA (with
6, 25% of the variables, non-zero loadings in each component), and k = 4 clusters
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with k-means. The same number of representative objects is considered for all the
techniques in order to better compare the results. The first four PC components
obtained by PCA explained a total of 84.2% of the variability; 43.6%, 18.4%,
13.2% and 9.0%, respectively. While, the first four SPC components obtained by
SPCA explained a total of 50.1% of the variability; 22.7%, 12.0%, 10.9%, 4.5%,
respectively. Note the difference in the total variability explained by PCA and
SPCA.

Figures 1 and 2 display the PCs for PCA and SPCA. Icons as explained by
(Dryden and Mardia, 1998, Sect. 5.5) are plotted. Scores are standardized to make
them easier to interpret.
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Fig. 1 Plots of the first four PCs of the digit 3s. In the ith row: mean - 3sd PCi, mean,
mean + 3sd PCi (where mean is the full Procrustes mean, sd is the standard deviation and
i = 1, 2, 3, 4).

The first PC of PCA can be interpreted as mainly measuring the length of the
central part, but also the length of the top loop, and the curl of the bottom loop.
The second PC contrasts tall thin digits versus fat short digits, encompassing
many characteristics of the digits. The third PC contrasts digits with wide top
loop versus wide bottom loop digits, but also the tilt of loops. The interpretation
of the fourth PC is not as clear as the previous ones, but it can be interpreted
as measuring the angle at which both loops join and also the length of the loops.
Although in the example in Dryden and Mardia (1998), the interpretation of the
PCs is quite evident, it is more difficult for higher order PCs. In fact, the difficulty
of interpreting them in many other problems leads to the use of SPCA. PCA
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usually produces holistic modes of variation, describing a series of effects at once.
There are often many combined effects on each PC.
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Fig. 2 Plots of the first four SPCs of the digit 3s. In the ith row: mean - 3sd SPCi, mean,
mean + 3sd SPCi (where mean is the full Procrustes mean, sd is the standard deviation and
i = 1, 2, 3, 4).

Unlike PCA, each SPC concentrates on more or less separate effects. On the
other hand, more SPCs are needed to collect a variety of effects and explain the
variability of the data. As more components are needed, human understanding
becomes a more difficult task. It is difficult for our brain to process the meaning of
many components at the same time. The first SPC effect concentrates mainly on
the following landmarks: extreme top left points and the point with the maximum
curvature of the bottom arc. The second SPC effect concentrates on the point with
the maximum curvature of the top arc and the point that marks the extreme end
of the central protrusion in a vertical sense. However, the third SPC concentrates
on this same point but in a horizontal sense. The fourth SPC reflects the different
position of pseudo landmarks between the point with the maximum curvature of
the bottom arc and the point marking the extreme end of the central protrusion. As
can be seen, SPC effects are not as global as PC effects, but they are very localized.
Note that for interpreting PCs or SPCs, the icons corresponding to extreme values
of standardized PC scores were plotted. Note also that the values of the PC or
SPC scores can take any value; they are not constrained as in AA or ADA to the
[0, 1] interval, neither do they add one. Therefore, their standardization facilitates
their interpretation.
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Figure 3 displays the centers of each cluster obtained by k-means. Some con-
trast can be found between the cluster centers corresponding to the top row, as
regards the extreme top left point and the point marking the extreme end of the
central protrusion. However, the cluster centers corresponding to the bottom row
of Figure 3, especially the digit on the left of the bottom row, are typical. They
have elegant calligraphy with no significant features. Furthermore, as k-means
only return the assignments to each cluster, we cannot obtain information about
deviations from the mean or where they occur.
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Fig. 3 Mean shapes for the 4 clusters obtained with k-means.

Archetypal shapes are precisely extreme shapes, which are easier for humans
to interpret than central points. Figures 4 and 5 show the archetypes and archety-
poids. The archetypal shapes obtained for AA and ADA are quite similar, so we
only discuss the results for AA. Remember that archetypoids are concrete cases
from the database. The most relevant characteristic of the first archetype is the
long length of the central protrusion. By contrast, the central protrusion is almost
missing in the second archetype, which also presents very long loops. The third
archetype is a thin digit with a large bottom arc. The fourth archetype can be
seen as the opposite of the third archetype.

Archetypoids do not have to be those cases with the highest Kendall’s Rieman-
nian distance ρ to the mean shape. In this example, the archetypoids are the cases
with the first, second, fourth and ninth largest distances. The variability explained
with p = 4 archetypes is 66%. To explain 84% of the variability, as with PCA, p
= 8 archetypes would be necessary. However, it should be remembered that PC
scores can take any value, so in order to interpret them the sign is very important.
A positive sign in a PC score reflects different shapes to the same PC score with
a negative sign. Therefore, although 4 PCs were computed, in Figure 1 eight plots
(without considering the mean shapes) were necessary. In addition, the constraints
for α in AA and ADA are a major advantage for understanding the data. Each
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Fig. 4 Four archetypes of the digit 3s.
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Fig. 5 Digit 3 example: The four archetypoids are the sample no. 2, 28, 15, 7 (after removing
the first digit).

digit is approximated by a mixture of the archetypal shapes. In this problem, the
second and third archetypoids are 100% explained by the respective archetype,
while the first and fourth archetypoids are 97% and 99% explained, respectively.
The other digits are approximated by mixtures of two, three or four archetypes. For
example, the 10th digit of the data set is explained 82% by archetype 1 and 18%
by archetype 2; the 19th digit is explained 14% by archetype 1, 50% by archetype
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3 and 37% by archetype 4; the mean shape is explained 31% by archetype 1, 20%
by archetype 2, 19% by archetype 3 and 31% by archetype 4.

Several kinds of plots for simplex visualization for classic multivariate AA are
available in the R package archetypes (Eugster and Leisch (2009)) to represent
the information in α. The left-hand panel in Figure 6 shows the plot with parallel
coordinates, with α on the Y axis: the n = 29 αj values of each archetype j are
represented in vertical axes at X = 1, 2, 3 and 4, respectively. Note that it is
difficult to appreciate this information. The more observations there are, the more
difficult it is to see anything, as the lines are superimposed. The right-hand panel of
Figure 6 shows a simplex plot visualization, where A1, A2, A3 and A4 represent the
archetypes from j = 1 to 4. However, they do have their limitations, as information
is projected in 2D. With more than three archetypes, the information in this plot
can be misleading due to the non-uniqueness of the projections (see Seth and
Eugster (2016b) for details about this issue).
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Fig. 6 α for AA of digit 3s. Left: parallel coordinates; Right: simplex visualization.

As the sample size of this database is small, we propose a scheme to show
the information in α by exploiting the constraints in the definition of this matrix.
This keeps all the information contained in this matrix visible, unlike the previous
simplex visualization tools. First, we compute the Gini coefficient of the matrix α
for each observation. The Gini coefficient is a concentration index that measures
inequality. A Gini coefficient of one for an observation i indicates that only one
archetype j explains that observation, i.e. its αij for that archetype is 1. On the
other hand, a Gini coefficient of zero indicates that that observation is a mixture
of all the archetypes; all its αij values are the same (i.e., αij = 1/p). The higher
the Gini coefficient, the less mixed the observation is. In this way, the purity of
the observation is measured. Observations are ordered according to their Gini
coefficient, i.e., from the purest cases to the most mixed cases. To the best of
our knowledge, this is the first time a multivariate ordering based on the purity
of the observations obtained by archetypes has been proposed. The most closely
related approach would be the procedure proposed by D’Esposito and Ragozini
(2008). They ranked multivariate performances based on the idea of the “worst-
best” direction selected by applying AA with p = 2 archetypes (one of them is
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considered the “worst” case and the other is the “best” case). Once observations
are ordered using the Gini coefficient, a barplot of α is carried out. This barplot for
our example can be seen in Figure 7. More digits are similar to archetype 1, i.e.,
well explained by this archetype, than to other archetypes. Archetype 4 usually
appears in the digits explained by mixtures consisting of only two archetypes
(represented with two colors in the corresponding bar). Approximately half of the
digits (the last digits represented in the barplot) in the database are explained as
mixtures of three or four archetypes, with no high coefficients (less than 0.5) for
any of them.
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Fig. 7 α barplot for four archetypes of the digit 3s, ordered using the Gini coefficient. Red,
green, cyan and blue colors for α values correspond to archetype 1, 2, 3 and 4, respectively.

4 AA and ADA with missing data

4.1 AA with missing values in the multivariate case

We follow the same strategy used in many basic functions in R R Development
Core Team (2017) for handling missing data. Let X be an n× r matrix as before,
but now allowing missing values (NAs). Let us suppose that there is no row or
column with all its values missing; otherwise, that row or column would have to
be removed. The missing values are excluded from the computations, but they are
scaled up proportionally to the number of elements used. For example, if the mean
of a column q has to be calculated and there are nq missing values in that column,
then the divisor for the mean computation should be n − nq. This is equivalent
to weighting the non-missing values by n/(n− nq) and using n as divisor for the
mean computation. Analogously, if the squared norm of xi has to be calculated
and there are ri missing values, then the non-missing values should be weighted by
r/(r− ri). This is equivalent to r/(r− ri) times the squared norm of xi computed
with the non-missing values.
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In summary, Z = βX can be computed as follows. Let W be an n× r matrix
with zeros in the positions where there are missing values in X, ones in the column
q if there are not any missing values inX for that column, and n/(n−nq) otherwise.
If we denote .∗ as the element-wise multiplication and define NA ∗ 0 as zero, then
multiplying X and W element by element allows us to compute Z as βX. ∗W .
Therefore, no archetype (Z) will have missing values. Analogously, ‖xi− x̂i‖2 can
be computed as follows. Let wei be a vector of length r with zeros in the positions
where there are missing values in xi and r/(r − ri) otherwise. Note that if there
are no missing values, then we is a vector of ones. In this way, the summands of
RSS can be computed as ‖xi. ∗ wei − x̂i‖2.

Unlike the previous attempt by Mørup and Hansen (2012) to compute AA
with missing values, where the objective function in AA was modified, in our
proposal the optimization problem with missing data is the same as Eq. 3. To solve
AA problem with missing values, we modify the original alternating minimization
algorithm described by Eugster and Leisch (2009) to handle the missing values.
The outline of the algorithm is for a given number of archetypes p:

1. Preprocessing and initialization: build W and initialize β and α as made by
Eugster and Leisch (2009). Calculate RSS as explained above.

2. Loop until RSS reduction is sufficiently small or the number of maximum
iterations is reached.
(a) Find best α for the given set of archetypes Z: solve n convex least squares

problems (i = 1, . . . , n). Note that each problem is independent of the rest,
and its result can be computed by excluding the coordinates with missing
values

minαi‖xi − αiZ‖2
subject to αi ≥ 0 and

∑p
j=1 αij = 1.

(b) Recalculate archetypes Z: solve the system of linear equations X. ∗W =
αZ.

(c) Find best β for the given set of archetypes Z: solve p convex least squares
problems (j = 1, . . . , p).

minβj
‖zj − βj(X. ∗W )‖2

subject to βj ≥ 0 and
∑n
l=1 βjl = 1.

(d) Recalculate archetypes Z: Z = β(X. ∗W )
(e) Calculate RSS.

Details about how to solve the numerical problems, such as the systems of
linear equations and the convex least squares problems, can be found in Eugster
and Leisch (2009). Note also that not only is RSS computation adapted to handle
missing values, but instead of the spectral norm used by Eugster and Leisch (2009),
the Frobenius norm is used as in the original AA definition (Cutler and Breiman
(1994)).

In the supplementary material (Online Resource 1), we compare the results of
our proposal versus those obtained using the methodology put forward by Mørup
and Hansen (2012). We also carried out another comparison between the results
with our proposal and those obtained by removing the cases with missing data and
with imputations. The results show that our new procedure is the best alternative
of those considered.
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4.2 ADA with missing values in the multivariate case

Since archetypes (Z) do not have missing values, only the complete cases will
be considered as possible archetypoids (zj). In this way, RSS can be computed
as explained in Section 4.1. In other words, l in equation (4) and the respective
constraint 2) is only defined for the indices that correspond to the complete cases

(ICC), i.e. zj =
∑

l∈ICC

βjlxl.

To solve ADA problem with missing values, we modify the original algorithm
proposed by Vinué et al (2015a) to handle the missing values. The outline of the
algorithm is for a given number of archetypoids p:

1. BUILD phase: look for a good initial set of p archetypoids from the complete
data points.

2. SWAP phase: For each archetypoid a
(a) For each non-archetypoid data point o from the complete data set

i. Swap a and o and calculate the RSS of the configuration as explained
in Section 4.1 (α coefficients must be calculated as indicated in Section
4.1).

3. Select the configuration with the lowest RSS.
4. Repeat steps 2 to 4 until there is no change in the archetypoids.

The initial set of archetypoids in the BUILD phase can be determined by the
same strategies explained in Section 2.1, but taking into account that only the
complete cases are considered as possible archetypoids.

4.3 AA and ADA with missing landmarks

Let X1, ..., Xn be n landmark configuration matrices, with k landmarks in di-
mension m, as before, but this time allowing missing landmarks. Let us suppose
that there is at least one complete configuration. The procedure proposed is very
similar to that explained in section 2.3, but the Procrustes mean shape of the
complete configurations is used as a pole, following the same idea as Arbour and
Brown (2014).

Specifically the procedure is as follows:
Firstly, the mean shape and tangent coordinates of complete cases are obtained

using centered coordinates instead of the Helmert matrix in order to remove loca-
tion. We cannot use the Helmert matrix to remove location when we have missing
landmarks, because the pre-shape resulting from applying this matrix would have
all its landmarks missing.

Secondly, we obtain the coordinates of each case with missing landmarks on the
tangent space at the mean shape of complete cases using the available landmarks
(Rohlf (1999)). As a result, the matrix V with the vectors of Procrustes tangent
coordinates now have missing values.

Next, multivariate AA with missing values is applied and the archetypes are
computed in the tangent space.

Finally, they are projected back into the configuration.
The procedure is analogous for ADA, but considering multivariate ADA.
A comparative analysis of the impact of missing landmarks in AA for different

alternatives is carried out in the supplementary material (Online Resource 1).



20 Irene Epifanio et al.

5 Application

The aim of this section is to show how the aforementioned methods can be used to
identify extreme shapes by means of archetypal shapes. These will be the children
with fitting problems in the actual sizing system and identifying them can be
useful for the apparel design application.

A randomly selected sample of 502 Spanish children aged 6 to 12 years old
was scanned using a Vitus Smart 3D body scanner from Human Solutions. The
children were asked to wear a standard white garment in order to standardize
the measurements. The body shape of each child in our data set was represented
by 3075 3D landmarks, i.e., by a 3075 × 3 configuration matrix. From the 3D
mesh, several anthropometric measurements were calculated semi-automatically
by combining automatic measurements based on characteristic geometric points
with a manual review.

Nowadays, a sizing system shows the range of body measurements for each key
dimension. The body measurements that are covered by a standard garment sizing
system differ from one country to another. The key dimensions that are most often
used are chest girth, waist girth and height for men’s garments; bust girth, waist
girth, hip girth and height for women’s garments; and apparel sizes for children
are usually designated by sex and height or age. So, children aged between 6 and
12 are usually classified into three sizes per sex, and clothing designers use tables
that list ranges of values of the main anthropometric measurements for each size.
For most of the commercial tables these variables are: Sex, Age, Height, Chest
girth, Waist girth and Hip girth, with the values shown in Table 1 according to
Guerrero and ASEPRI (2000).

Table 1 Commercial measurements for sizes 8, 10 and 12, for boys and girls, respectively.
Approximate age is given in years, and the other measurements are taken in cm.

Sex Boys Girls
Age 6-8 8-10 10-12 6-8 8-10 10-12

Height [116, 128) [128, 140) [140, 152) [116, 128) [128, 140) [140, 152)
Chest [60.0-64.0) [64.0-68.0) [68.0-74.0) [60.0-64.0) [64.0-68.0) [68.0-73.0)
Waist [56.0-59.0) [59.0-62.0) [62.0-66.0) [54.0-56.0) [56.0-59.0) [59.0-62.0)
Hip [66.0-71.0) [71.0-76.0) [76.0-81.0) [66.0-71.0) [71.0-76.0) [76.0-81.5)

The children in our data set have been grouped into six groups according to
their sex and the height intervals defined in the sizing system shown in Table 1.
The sample size for each group is shown in Table 2. In order to illustrate our
methodology, we are going to look for archetypoids in the youngest groups of boys
and girls, where we expect to find a great variety of shapes, as this size covers
children ranging from tall preschoolers to early pubescent individuals. Note that
most children have a slimmer appearance during middle childhood than they did
during preschool years.

Procrustes distances to the mean are computed. Some children could be con-
sidered outliers, but we have decided not to remove them, as they are part of the
population variability. If we were more interested in the archetypes of the majority
than of the totality, those outlier children could be removed before the analysis,
as in Section 3. In the same way, if we want to accommodate a certain percentage
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Table 2 Sample sizes.

Sex \ Height [116, 128) cm [128, 140) cm [140, 152) cm
Boy 61 116 74
Girl 84 99 68

of the population, then only an appropriate part of the sample should be used.
As stated in Section 2.1 the number p of archetypes or archetypoids to compute
is selected as the point where the elbow on the RSS representation for a series
of different p values is found. As an illustration, Figure 8 shows the RSS repre-
sentation for different numbers of archetypoids for the groups of younger boys
and girls. In these figures, no clear elbow can be seen, so, according to a garment
designer expert, four or five would be a reasonable number for design purposes
(a large number of representative cases may overwhelm the designer and thus be
counterproductive Epifanio et al (2013)). We decided to find five archetypoids per
group. Although archetypoids are not necessarily nested, in this problem when the
number of archetypoids is increased from p = 4 to p = 6, the patterns discovered
with smaller p values have been kept, and increasing p has led to the discovery of
new finer patterns. So, the decision about the number of archetypoids can simply
be based on the most suitable option for the garment designer.
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Fig. 8 (a) RSS representations for the boys in height group [116, 128) cm; (b) RSS represen-
tations for the girls in height group [116, 128) cm.

The results for the first group (boys with heights ranging between [116, 128)
cm) are shown in Figure 9 and Table 3. The numbers in bold in Table 3 show
measurements that lie outside the “normal” limits considered in the sizing system
(Table 1). In Figure 10, the points representing the archetypoids have been labeled
in red numbers, and green lines have been plotted to indicate the ‘fit’ ranges
established by the sizing system that correspond to boys in this height range
(Table 1).

In the boys group, the five archetypoids correspond to the boys labeled as
KID531 (archetypoid B1), KID435 (archetypoid B2), KID576 (archetypoid B3),
KID532 (archetypoid B4) and KID773 (archetypoid B5).

The measurements of archetypoid B5 in the main dimensions (chest, waist
and hip contour) used for determining the size besides height are very large with
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B5

Fig. 9 Archetypoids found in group 1 (boys with height between [116, 128) cm), labeled as
B1, B2, B3, B4 and B5.

Table 3 Anthropometric variables commonly used in the clothing design process for the five
archetypoids found in group 1 (boys with height between [116, 128) cm).

Boys
Archetypoid B1 B2 B3 B4 B5

Label KID531 KID435 KID576 KID532 KID773
Age 7.4 6.9 8.6 7.5 6.6

Height 123.4 127.2 126.7 125.6 125.2
Chest circumf. 60.6 63.9 62.0 59.0 79.8
Waist circumf. 53.3 56.5 54.9 54.0 76.5
Hip circumf. 67.2 68.0 67.0 65.9 79.5

respect to the standards of his supposed size according to his height. Note that his
chest, waist and hip contours are 79.8 > 64, 76.5 > 59 and 79.5 > 71, respectively.
His hip contour corresponds to two sizes above that suggested by his height (Table
1). According to his chest and hip contours, this boy would need to go three or
four sizes up from the size indicated by his height. His clothes would therefore
look extremely tight with a size 8. Figure 10 clearly shows that this child has the
largest chest and waist contours of all the boys included in this height group, and
one of the largest hip contours in the group, without being one of the tallest boys.
Additionally, if the hip/waist ratio is computed, this child shows the lowest value
in his group (Figure 11 (c)).

His opposite archetypoid would be archetypoid B4, whose main dimensions
(besides height) are smaller than those supposed for his size according to his height
(Figure 10). Therefore, for size 8, which corresponds to his height, the clothes will
look loose on this child. Additionally, his shoulder length (8.4) is below the limits
of this dimension for size 8.

On the other hand, both archetypoids B1 and B3, respectively, have a waist
contour below the limits of their supposed size according to their height (Figure
10). This dimension is especially important for trousers. The chest and hip con-
tours are within the limits. However, archetypoid B3 shows values of crotch height
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Fig. 10 Scatterplots of the main anthropometric measurements for designing clothes for all the
boys with heights between [116, 128) cm. Points corresponding to archetypoid measurements
are labeled in red numbers. Green lines indicate the ‘fit’ ranges established by the sizing system.

(58.3), knee height (35.1) and shoulder width (10.85) above the limits of his size
according to his height and one of the largest values in these variables in his height
group (Figure 11 (a) and (b)). So he is a long legged boy with broad shoulders.
Archetypoid B1 presents one of the highest ratios between hip and waist in his
height group (Figure 11 (c)), so he is one of the straightest boys with small differ-
ences between his hip and waist contour. Unlike B3, the crotch height (50.8), arm
(40.2) and shoulder (89) lengths of B1 are below the limits of his supposed size
according to his height.

Finally, for archetypoid B2, the main dimensions (chest, waist and hip con-
tours) are within the limits of size 8, which corresponds to his height. However,
although his basic dimensions are all within the limits, he has broad shoulders
(above the limits of his size) in relation to his hip contour (Figure 11 (a) and (d)),
like archetypoid B3, but with shorter legs (Figure 11 (b)).

Archetypoids found for the sample of girls with heights ranging between [116, 128)
cm are shown in Figure 12 and Table 4. They are labeled as G1, G2, G3, G4 and
G5. In Figure 13, the points representing the archetypoids have been labeled in
red numbers, and green lines have been plotted to indicate the ‘fit’ ranges estab-
lished by the sizing system that correspond to girls in this height range (Table 1).
The numbers in bold in Table 4 show measurements that lie outside the “normal”
limits considered in the sizing system (Table 1).
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Fig. 11 Scatterplots of different measurements and ratios of measurements of all the boys
with heights between [116, 128) cm. Points corresponding to archetypoid measurements are
labeled in red numbers. (a) scatterplot between shoulder width and height; (b) scatterplot
between leg length and height; (c) shows the relationship between hip/waist ratio and total
height of each boy, and finally (d) shows the relationship between shoulder/hip ratio and total
height.
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Fig. 12 Archetypoids found in the group of girls with height between [116, 128) cm.

In the girls group, archetypoids G1 and G5 are “short” girls (Figure 13), with
short legs in realtion to their total height (Figure 14 (c)) but with different shapes.
Archetypoid G1 has smaller chest and hip contours than those established for her
height size, while archetypoid G5 has one of the largest chest, hip and waist con-
tours in this group. Her measurements are very large with respect to the standards
of her supposed size according to her height. This is clearly shown in Figure 13.
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Table 4 Anthropometric measurements of archetypoids in group 2 (girls with height:
[116, 128) cm).

Girls
Archetypoid G1 G2 G3 G4 G5

Label EKID156 KID333 KID553 KID037 KID220
Age 7.1 6.2 8.2 7.2 6.3

Height 117.2 124.1 127.4 120.2 118.6
Chest circumf. 58.3 57.8 67.2 61.0 78.1
Waist circumf. 54.0 53.8 60.6 50.4 75.3
Hip circumf. 64.0 62.4 74.5 65.2 78.2

Three of the archetypoids (G1, G2 and G4) show girls with smaller chest, waist
and/or hip contours than those established for their height interval, but with clear
height differences. G2 is taller than G4, who is also taller than G1. In fact, G1 is
one of the shortest girls in her group (Figure 13). G1 and G2 show narrow chest
contours (Figure 13), while G4 is one of the girls with the narrowest waist contour
and with the shortest arms in relation to her height (Figure 14 (c)). G4 has a
very low waist/chest ratio (Figure 14 (b)), this is not the case with G1 and G2.
There are also differences between these three archetypoids in crotch height/total
height ratio (Figure 14 (c)). More differences between G1 and G2 are found in
neck-related measurements.

On the other hand, G3 and G5 are girls with chest, waist and hip contours
greater than those established for their height interval. Archetypoid G3 is one of
the tallest girls in the group, and has long arms and long legs in relation to her total
height (Figures 13 and 14 (c) and (d)), while archetypoid G5 is just the opposite,
with low values in several non-basic dimensions such as crotch height/total height
ratio and hip/waist ratio. The crotch height (49.8) for G5 is below the limits of
her size according to her height, while it is above the limits for G3 (58.7).

We have found children with very different shapes who are supposedly in the
same size. This causes garment fitting problems. Having identified the extremes
of a size, and together with a central case that represents the basic proportions
in a range of clothing, the apparel grading process within that size can begin.
In this way, designers can know which adjustments are needed to accommodate
individuals in a certain size. We propose to use the selected cases for saving costs.
This strategy was also adopted for women by Vinué et al (2015a), but using
dissimilarities between trunk forms to find the archetypoids. The importance of
considering real people versus virtual people in sustainable sizing is highlighted by
Robinette and Veitch (2016). Finally, note that the objective is not to find sub-
sizes, but to accommodate children within a specific size. Clustering algorithms
could be used to define sizes (Ibáñez et al (2012); Vinué et al (2016)).

6 Conclusions

It has been proposed that AA and ADA could be extended from the multivariate
case to landmark-based data. A comparison with other unsupervised techniques
commonly used in shape analysis (PCA, SPCA and clustering) has been carried
out using the well-known digit 3s data set for illustration purposes. AA and ADA
with landmarks can be applied for the same purposes as in the multivariate case.
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Fig. 13 Scatterplots of the main anthropometric measurements for designing clothes for all the
girls with heights between [116, 128) cm. Points corresponding to archetypoid measurements
are labeled in red numbers. Green lines indicate the ‘fit’ ranges established by the sizing system.

A new tool for visualizing the information returned with archetypal shapes has
been also proposed, based on a purity-based order. A procedure for computing
AA and ADA with missing values has been also proposed in the multivariate case,
and is also extended to the case of missing landmarks. A comparison with different
alternatives has been carried out.

Archetypal shapes for children have been obtained for the apparel design ap-
plication. However, they can also be obtained for the design of other products for
children. Furthermore, instead of children, other populations could be of interest
and the methodology could be applied to the appropriate database in ergonomic
design or another application. In particular, AA and ADA with landmarks could
have great potential in biological and medical applications, as discussed in Section
1.

More directions for future work could be as follows: firstly, in many situations
landmarks are not the only descriptors of the observations, but also multivariate
variables. For example, color is also important besides shapes by MacLeod (2015).
In that case, the objective function in equations (3) and (4) should be modified to
take in both sets of features. Once the shapes are represented in the tangent space,
the information of both vectorial spaces could be (weighted) combined using an
appropriate interior product to build the corresponding RSS. Secondly, a robust
version for AA and ADA with landmarks could be used. In the illustrative example
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Fig. 14 Scatterplots of different ratios of measurements for all the girls with heights between
[116, 128) cm. Points corresponding to archetypoid measurements are labeled in red numbers.
(a) shows the ratio of hip and waist contours to height; (b) shows the ratio of waist and chest
contours to height; (c) shows the relationship between leg length and total height of each girl,
and finally (d) shows the ratio between arm length and total height.

with digit 3s, an outlier was removed prior to performing the analysis, as made by
Dryden and Mardia (1998). Instead of this strategy, the methodology proposed by
Eugster and Leisch (2011) could be followed. Thirdly, other multivariate techniques
could be extended to shapes, such as fuzzy versions of k-means or k-medoids.
Finally, we have extended AA to missing data without erasing incomplete cases or
resorting to imputation, and similar strategies could be studied for other statistical
techniques.
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10(4):215–310

Goodall C (1991) Procrustes methods in the statistical analysis of shape. Journal
of the Royal Statistical Society Series B (Methodological) pp 285–339

Guerrero J, ASEPRI (2000) Estudio de tallas y medidas de la población infantil
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Ibáñez MV, Vinué G, Alemany S, Simó A, Epifanio I, Domingo J, Ayala G (2012)
Apparel sizing using trimmed PAM and OWA operators. Expert Systems with
Applications 39(12):10,512 – 10,520

Kaufman L, Rousseeuw PJ (1990) Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley, New York

Kendall D (1984) Shape manifolds, Procrustean metrics, and complex projective
spaces. London Math Soc 16:81–121

Kendall DG, Barden D, Carne T, Le H (2009) Shape and shape theory. John Wiley
& Sons, Chichester

Lawson CL, Hanson RJ (1974) Solving Least Squares Problems. Prentice Hall,
Englewood Cliffs

Li S, Wang P, Louviere J, Carson R (2003) Archetypal Analysis: A New Way To
Segment Markets Based On Extreme Individuals. In: ANZMAC 2003 Conference
Proceedings, pp 1674–1679

MacLeod N (2015) Proceedings of the Third International Symposium on Bio-
logical Shape Analysis, World Scientific, Singapore, chap The direct analysis of
digital images (eigenimage) with a comment on the use of discriminant analysis
in morphometrics, pp 156–182

Midgley D, Venaik S (2013) Marketing strategy in MNC subsidiaries: pure versus
hybrid archetypes. In: P. McDougall-Covin and T. Kiyak, Proceedings of the
55th Annual Meeting of the Academy of International Business, pp 215–216

Mørup M, Hansen LK (2012) Archetypal analysis for machine learning and data
mining. Neurocomputing 80:54–63

Pennec X (2006) Intrinsic statistics on Riemannian manifolds: Basic tools for geo-
metric measurements. Journal of Mathematical Imaging and Vision 25(1):127–
154

Porzio GC, Ragozini G, Vistocco D (2008) On the use of archetypes as benchmarks.
Applied Stochastic Models in Business and Industry 24:419–437

R Development Core Team (2017) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, URL
http://www.R-project.org, ISBN 3-900051-07-0

Ragozini G, D’Esposito MR (2015) Archetypal networks. In: Proceedings of the
2015 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2015, ACM, New York, NY, USA, pp 807–814

Ragozini G, Palumbo F, D’Esposito MR (2017) Archetypal analysis for data-driven
prototype identification. Statistical Analysis and Data Mining: The ASA Data
Science Journal 10(1):6–20

Robinette KM, Veitch D (2016) Sustainable sizing. Human Factors: The Journal
of the Human Factors and Ergonomics Society 58:657–664

Rohlf FJ (1998) On applications of geometric morphometrics to studies of ontogeny
and phylogeny. Systematic Biology 47(1):147–158

Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces.
Journal of Classification 16(2):197–223

http://www.R-project.org


30 Irene Epifanio et al.

Seth S, Eugster MJA (2016a) Archetypal analysis for nominal observations. IEEE
Trans Pattern Anal Mach Intell 38(5):849–861

Seth S, Eugster MJA (2016b) Probabilistic archetypal analysis. Machine Learning
102(1):85–113
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Sjöstrand K, Rostrup E, Ryberg C, Larsen R, Studholme C, Baezner H, Ferro J,
Fazekas F, Pantoni L, Inzitari D, Waldemar G (2007) Sparse decomposition and
modeling of anatomical shape variation. IEEE Transactions on Medical Imaging
26(12):1625–1635

Slice DE (2001) Landmark coordinates aligned by Procrustes analysis do not lie
in Kendall’s shape space. Systematic Biology 50(1):141–149

Stoyan LA, Stoyan H (1995) Fractals, Random Shapes and Point Fields. John
Wiley and Sons, Chichester

Theodosiou T, Kazanidis I, Valsamidis S, Kontogiannis S (2013) Courseware usage
archetyping. In: Proceedings of the 17th Panhellenic Conference on Informatics,
ACM, New York, NY, USA, PCI ’13, pp 243–249

Thøgersen JC, Mørup M, Damkiær S, Molin S, Jelsbak L (2013) Archetypal anal-
ysis of diverse pseudomonas aeruginosa transcriptomes reveals adaptation in
cystic fibrosis airways. BMC Bioinformatics 14:279

Thurau C, Kersting K, Wahabzada M, Bauckhage C (2012) Descriptive matrix
factorization for sustainability: Adopting the principle of opposites. Data Mining
and Knowledge Discovery 24(2):325–354

Tsanousa A, Laskaris N, Angelis L (2015) A novel single-trial methodology for
studying brain response variability based on archetypal analysis. Expert Systems
with Applications 42(22):8454 – 8462
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