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Abstract

Many clustering algorithms when the data are curves or functions have been recently proposed.
However, the presence of contamination in the sample of curves can influence the performance of
most of them. In this work we propose a robust, model-based clustering method based on an
approximation to the “density function” for functional data. The robustness results from the joint
application of trimming, for reducing the effect of contaminated observations, and constraints on the
variances, for avoiding spurious clusters in the solution. The proposed method has been evaluated
through a simulation study. Finally, an application to a real data problem is given.

Keyworks: Functional data analysis · clustering · robustness · functional principal components
analysis.

1 Introduction

Recent technological advances have provided more precise instruments, which make possible the
recording of large numbers of subsequent measurements in such a way that data can be considered as
realizations of random continuous functions. In this context, Functional Data Analysis (Ramsay and
Silverman, 2005; Ferraty and Vieu, 2006) has received increasing attention in recent years. Cluster
analysis consists of identifying homogeneous groups within a data set and there is also a need for
appropriate clustering methods for this new type of functional data sets.

There are many methods to perform cluster analysis for traditional multivariate data among which
stand several based on probabilistic models (model-based clustering). The use of the EM algorithm is
quite common in order to solve the likelihood maximization involved in all these approaches (Fraley
and Raftery, 2002). Posterior probabilities are used to estimate the probabilities of membership of
an observation to a specific group.

Several clustering methods for functional data have been recently proposed. A first approximation
is known as raw-data clustering, which consists of using the discretization of the functions and
directly applying traditional multivariate clustering techniques. A second approximation is based
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on a reconstruction of the functional form of the data through the use of basis of functions such
as B-splines, Wavelets, Fourier series, etc. (Ramsay and Silverman, 2005). in this case, usual
clustering techniques are applied to the fitted coefficients for the functional representation of each
curve. Another approach is based on probabilistic models, where a probability distribution for those
coefficients is assumed as, for instance in James and Sugar (2003) and more recently Jacques and
Preda (2013), who employ an approximation to the “density function” for functional data proposed
in (Delaigle and Hall, 2010).

However, the determination of an appropriate clustering technique is even more difficult under
the possible presence of outlying curves. One possibility to robustify clustering algorithms is through
the application of trimming tools (Cuesta-Albertos et al. (1997), Gallegos (2002), Gallegos (2002)).
In Garćıa-Escudero et al. (2008), Garćıa-Escudero et al. (2014), Garćıa-Escudero et al. (2015) and
Fritz et al. (2013), restrictions on the matrices of dispersion of the groups are also introduced to
avoid the detection of spurious clusters.

Trimming techniques have been already applied as a robust functional clustering tool (Garćıa-
Escudero and Gordaliza (2005) and Cuesta-Albertos and Fraiman (2007)). This work provides an
extension of these principles but in a more model-based approach.

The outline for the rest of this work is as follows. In Section 2, we give a brief description of
the approximation to the “density” for functional data that will be applied later. A model-based
clustering for functional data is presented in Section 3. Our proposal for robust functional clustering
(RFC) and a feasible algorithm for it are described in Section 4. Sections 5 and 6 present a simulation
study and real data example to illustrate the performance of the proposed methodology. Finally, we
give our conclusions in Section 7.

2 Approximation to the “density function” for functional

data

Let L2([0, T ]) be a Hilbert space of functions with inner product given by 〈f, g〉 =
∫

f(t)g(t) dt and
norm || · || = 〈·, ·〉1/2. Suppose X is a random function in L2([0, T ]). Assume the process X has mean
µ(t) = E{X(t)} and covariance Γ(s, t) = cov{X(s), X(t)} which are smooth continuous functions.
Consider the Karhunen-Loève (K-L) expansion:

X(t) = µ(t) +
∞
∑

j=1

Cj(X)ψj(t)

where the eigenfunctions ψj form an orthonormal system and are associated with the covariance
operator Γ by means of the corresponding eigenvalues λj so that 〈Γ(·, t), ψj〉 = λjψj(t). The eigen-
functions are orthogonal, i.e. they satisfy 〈ψl, ψk〉 = δlk, where δlk is the Kronecker delta with 1 if
l = k and 0 otherwise. The eigenvalues are assumed to be in decreasing order, λ1 ≥ λ2 ≥ · · · , with
∑∞

j=1 λj < ∞. The coefficients Cj(X), j = 1, 2, ..., better known as principal components or scores
of the stochastic process X , are uncorrelated random variables with zero mean and variance λj , such
that Cj(X) = 〈X − µ, ψj〉 is the projection of X − µ on the j-th eigenfunction ψj .
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Let X(p) be the approximation of X based on the p first terms in the K-L expansion, this is

X(p)(t) = µ(t) +

p
∑

j=1

Cj(X)ψj(t). (1)

It can be seen that E(||X −X(p)||2) =
∑

j≥p+1 λj and ||X −X(p)|| m.s.−−→ 0 when p→ ∞.
The notion of density for functional data is not well defined, but there exist some approximations

to the density function in the literature. For example, Ferraty and Vieu (2006) have developed
extensions of the multivariate case in the nonparametric context.

Without loss of generality, let us suppose that X is a zero mean stochastic process, i.e. µ(t) = 0
for every t ∈ [0, T ] which can be approximated by X(p) as in (1). According to Delaigle and Hall
(2010), it is possible to approximate the “density function” for functional data X , when functions are
considered in the space determined by the eigenfunctions of the principal components. The notion
of small ball probability has an important role in the development of the approximation. Based on
the K-L expansion X(p), Delaigle and Hall (2010) show that the probability that X belongs to a ball
of radius h centred in x ∈ L2[0, T ] can be written as

logP (||X − x|| ≤ h) =

p
∑

j=1

log fCj
(cj(x)) + ξ(h, ρ(h)) + o(ρ(h))

where ||X−x|| denotes the L2 distance between X and x, fCj
corresponds to the probability density

of Cj and cj(x) = 〈x, ψj〉L2 is the j-th principal component or score of x. ρ and ξ are functions
such that ρ increases to infinity when h decreases to zero. Note that logP (||X − x|| ≤ h) depends
on x through the term

∑p
j=1 log fCj

(cj(x)). This term captures the first-order effect that x has on
logP (||X − x|| ≤ h). Therefore, it serves to describe the main differences in sizes of small-ball
probabilities for different values of x since the notion of probability density in the finite dimensional
case can be seen as the limit of P (||X − x|| ≤ h)/h when h tends to zero. Moreover, as seen in
Jacques and Preda (2013), it can be observed that for every h > 0 and x ∈ L2([0, T ]),

P (||X(p) − x|| ≤ h− ||X −X(p)||) ≤ P (||X − x|| ≤ h) ≤ P (||X(p) − x|| ≤ h+ ||X −X(p)||). (2)

Hence, the probability P (||X − x|| ≤ h) can be approximated by P (||X(p) − x|| ≤ h). If f
(p)
X is the

joint density function of C(p) = (C1, ..., Cp) and x =
∑

j≥1 cj(x)ψj then

P (||X(p) − x|| ≤ h) =

∫

D
(p)
x

f
(p)
X (y) dy,

with x(p) =
∑p

j=1 cj(x)ψj and D(p)
x =

{

y ∈ R
p : ||y − x(p)||Rp ≤

√

h2 −
∑

j≥p+1 c
2
j (x)

}

. In this way,

the density of f
(p)
X can be seen as an approximation of the density of X .

Finally, we can also take into account that the principal components Cj are independent Gaussian

random variables when X corresponds to a Gaussian process. In this particular case, f
(p)
X is given by

f
(p)
X (x) =

p
∏

j=1

fCj
(cj(x))

where fCj
is a Gaussian density function with zero mean and variance λj .
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3 Model-based clustering for functional data

In a clustering framework, we will consider K different models, one for each group. Conditional on
the group g, let us consider K-L expansions with p terms and the density function approximation
as reviewed in Section 2, such that the density of the principal components in groups are assumed
uncorrelated Gaussian variables with zero mean. Moreover, in order to simplify the largely pa-
rameterized problem appearing in these clustering frameworks, we consider that the first qg terms
have no restrictions, as in Jacques and Preda (2013), while the remaining p − qg are constrained
in such a way that their corresponding principal components have equal variances, as done in Bou-
veyron and Jacques (2011). In other words, we assume that scores in each group can be approxi-
mated by means of uncorrelated random Gaussian variables with zero mean and covariance matrix
Σg = diag(a1g, ..., aqgg, bg, ..., bg) with ajg > bg. This means that the main variances of the g-th group
are modeled by a1g,..., aqgg while bg serves to model the variance of the noise of the residual process.
If Zg is a random indicator variable designating membership to group g, for g = 1, 2, .., K, then we
assume

f
qg
X|Zg=1(x) =

qg
∏

j=1

fCj |Zg=1(cjg(x); ajg)

p
∏

j=qg+1

fCj |Zg=1(cjg(x); bg).

Note that when qg = p we have the model proposed by Jacques and Preda (2013).
Assume now that Z = (Z1, ..., ZK) have a multinomial distribution M(π1, ..., πK), where π1, ..., πK

are the mixture probabilities weights (with
∑K

g=1 πg = 1). In this way, the unconditional “approxi-

mated functional density” of X at x ∈ L2([0, T ]) is given by

fX(x; θ) =
K
∑

g=1

πg





qg
∏

j=1

fCj |Zg=1(cjg(x); aj,g)

p
∏

j=qg+1

fCj |Zg=1(cjg(x); bg)



 ,

where θ denotes all the parameters that need to be estimated in that expression. Notice that, to
start, we are assuming that (q1, ..., qK) are known in advance dimensions.

Suppose now that {x1, ..., xn} is a set of curves being the realization from an independent, iden-
tically distributed (i.i.d.) sample from X ∈ L2([0, T ]). We define the mixture-loglikelihood function
as

lp(θ; x1, ..., xn) =
n

∑

i=1

log





K
∑

g=1

πg





qg
∏

j=1

1
√

2πajg
exp

(−c2ijg
2ajg

) p
∏

j=qg+1

1
√

2πbg
exp

(−c2ijg
2bg

)







 ,

where cijg = cjg(xi) corresponds to the j-th principal component of the curve xi in group g.

4 Robust functional clustering based on trimming and con-

straints

Garćıa-Escudero et al. (2014) and Ritter (2015) provide a methodology for robust mixture modeling
in a multivariate real-valued context. This methodology proposes using trimming and scatter con-
straints to remove the contamination in the data and simultaneously avoid spurious clusters. The
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methodology is also based on a particular type of trimming which is determined by the dataset itself.
To be more precise, if {x1, ..., xn} is a random sample in R

p, the idea is to maximize the trimmed
mixture likelihood defined as

n
∑

i=1

η(xi) log

[

K
∑

g=1

πgφ(xi; θg)

]

, (3)

where φ(·; θg) stands for the p-dimensional Gaussian density with parameters θg = (µg,Σg). The
indicator function η(·) serves to designate whether the observation xi has been trimmed (when
η(xi) = 0) or not (when η(xi) = 1). A proportion α of observations is trimmed, so that

∑n
i=1 η(xi) =

[n(1−α)]. Constraints on the eigenvalues of the scatter matrices are also applied in order to make the
maximization problem well defined and to avoid the detection of non-interesting spurious solutions
(Garćıa-Escudero et al. (2008)). Then, it is proposed to maximize (3) subject to the restriction

maxg,j λj(Σg)

ming,j λj(Σg)
≤ d,

where {λj(Σg)}pj=1 is the eigenvalue set for matrix Σg and d ≥ 1 is a fixed constant. In the most
constrained case (d = 1), we are searching for homoscedastic and spherical clusters.

In a similar fashion, we can adapt this methodology for functional data by considering a trimmed
and constrained version of the model-based clustering approach presented in Section 3. Let {x1, ..., xn}
be a realization from a i.i.d. sample of the process X ∈ L2[0, T ]. A trimmed loglikelihood can be
defined in this functional setting as

lpα(θ; x1, ..., xn) =

n
∑

i=1

η(xi) log





K
∑

g=1

πg





qg
∏

j=1

1
√

2πajg
exp

(−c2ijg
2ajg

) p
∏

j=qg+1

1
√

2πbg
exp

(−c2ijg
2bg

)









(4)

where cijg = cjg(xi) is the j-th principal component corresponding to curve xi in group g and, again,
∑n

i=1 η(xi) = [n(1 − α)]. To avoid spurious solutions, we set two constants d1 and d2, both greater
or equal than 1, and impose the following constraints on the scatter parameters:

maxg=1,...,K;j=1,...,qj ajg

ming=1,...,K;j=1,...,qj ajg
≤ d1

and
maxg=1,...,K bg
ming=1,...,K bg

≤ d2.

4.1 Proposed algorithm

Of course, the maximization of the trimmed log-likelihood in (4) may not be an easy task from a
computational point of view. A classical way of maximizing mixture model likelihoods is to use the
EM algorithm. The algorithm proposed here is based on the traditional EM algorithm incorporating
some additional steps. In a so-called T-step (Trimming step) we temporally discard those observations
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with smallest contributions to the likelihood (to increase as much as possible the trimmed log-
likelihood). We also consider, in the M-step, a final refinement where the required constraints on the
scatter matrices are imposed on the scatter parameters.

The proposed algorithm may be described as follows, where θ(l) are the values of parameters at
stage l of the iterative process:

1. Initialization: The algorithm is randomly initialized nstart times by selecting different starting
θ(0) parameters. With this idea in mind, we simply propose to randomly select K×h subindexes
{ig1, ig2, ..., igh}Kg=1 ⊂ {1, 2, ..., n} where h is the minimum number of observations needed to
computationally carry out a functional principal component analysis for these observations.
We then apply the procedure that will be latter described in Step 2 of this algorithm with
weights τig1g = τig2g = .... = τighg = 1, g = 1, ..., K, and weights τig = 0 for all the remaining
(i, g) pairs. The smaller the h the more likely is that these K × h observations could be free of
outliers (or at least with not so many within) in any of those random initializations.

2. Trimmed EM steps: The following steps are alternatively executed until convergence (i.e.
θ(l+1) = θ(l)) or a maximum number of iterations iter.max is reached.

2.1. T- and E-steps: Let us use the notation

Dg(xi, θ) = πg

qg
∏

j=1

1
√

2πajg
exp

(−c2ijg
2ajg

) p
∏

j=qg+1

1
√

2πbg
exp

(−c2ijg
2bg

)

and

D(xi, θ) =
K
∑

g=1

Dg(xi, θ).

If we consider D(x(1); θ
(l)) ≤ D(x(2); θ

(l)) ≤ .... ≤ D(x(n); θ
(l)), the observations with

indexes in
I = {i : D(xi; θ

(l)) ≤ D(x([nα]); θ
(l))} (5)

are those which are tentatively discarded in this iteration of the algorithm.

As in other mixture fitting EM algorithms, we compute posterior probabilities by using
the well-known Bayes rule as

τg(xi; θ
(l)) = Dg(xi; θ

(l))/D(xi; θ
(l)), for i = 1, ..., n.

However, unlike standard EM algorithms, the τg(xi; θ
(l)) values for the discarded observa-

tions are modified as

τg(xi; θ
(l)) = 0, for all g = 1, ..., K, when i ∈ I.

Notice that the way that trimming is done is similar to that in Garćıa-Escudero et al.
(2014).

2.2. M-step: This step consists of three stages:
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2.2.1 Weights update: Weights are updated as

π(l+1)
g =

n
∑

i=1

τg(xi; θ
(l))/[n(1− α)]

2.2.2 Principal component update: Consider a basis of functions Φ = {φ1, ..., φp}. If xi
admits an approximate reconstruction in this basis as xi(t) ≃

∑p
j=1 γijφj(t) then let Γ

be the n×p matrix of coefficients γij used in that reconstruction. LetW be the matrix

of the inner products between the basis functionsWjl =
∫ T

0
φj(t)φl(t)dt (1 ≤ j, l ≤ p).

The updating of the principal components is carried out by weighting the importance
of the untrimmed xi(t) curves by the conditional probability T

(l)
g = diag(τ

(l)
1,g, ..., τ

(l)
n,g).

The first step is to center the curve xi(t) in group g, by subtracting the weighted

pointwise sample mean calculated with τ
(l)
i,g weights. The expansion coefficients of

the centered curves are given by Γ
(l)
g = (In − 1n(τ

(l)
1,g, ..., τ

(l)
n,g))Γ, where In is the n× n

identity matrix and 1n = (1, 1, ..., 1) is the unit vector. Note that the weighted sample
covariance function is then given by

v(l+1)(s, t) =
1

n
(l)
g

n
∑

i=1

τ
(l)
ig xi(s)xi(t), (6)

where n
(l)
g =

∑n
i=1 τ

(l)
ig . Consider also that the j-th eigenfunction can be written as

ψj(s) = βT
j φ(s) with φ(t) = (φ1(t), ..., φp(t))

′. Substituting the above expressions into
(6) one obtains

v(l+1)(s, t) = (n(l)
g )−1φT (s)ΓT (l)

g T (l)
g Γ(l)

g φ(t),

and one gets the eigenequation

(n(l)
g )−1φT (s)ΓT

g T
(l)
g Γg

(
∫

φ(t)φT (t)dt

)

βj = λφT (s)βj.

By using the W matrix of the inner products, the previous equation can be written
as

(n(l)
g )−1φT (s)ΓT (l)

g T (l)
g Γ(l)

g Wβj = λφT (s)βj.

Observing that the previous expression is valid for all values of s, one gets

(n(l)
g )−1ΓT (l)

g T (l)
g Γ(l)

g Wβj = λβj ,

with the additional constraint ‖ψj‖2 = 1 that turns into βTWβ = 1. Let us define
uj = W 1/2βj and, then, the following eigenequation is finally obtained:

(n(l)
g )−1W 1/2ΓT (l)

g T (l)
g Γ(l)

g W
1/2uj = λuj

subject to uTuj = ‖uj‖2 = 1. From this equation we can compute the eigenvalues λj
and the vector of coefficients βj =W−1/2uj, with which we calculate the eigenfunctions

ψj(s) and the principal component scores C
(l+1)
jg are given by C

(l+1)
jg = Γ

(l)
g Wβj.
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2.2.3 Scatter parameters update: The parameters a1,g, ..., aqg,g and bg are initially estimated

as â
(l+1)
j,g = λj for the qg first eigenvalues of the W 1/2Γ

T (l)
g T

(l)
g Γ

(l)
g W 1/2 matrix and

b(l+1)
g =

1

p− qg

[

trace
(

W 1/2ΓT (l)
g T (l)

g Γ(l)
g W

1/2
)

−
qg
∑

j=1

â
(l+1)
jg

]

.

Recall that the scatter parameters so obtained do not necessarily satisfy the required
constraints for the given d1 and d2 constants. In case that these constraints do not
hold, following Fritz et al. (2013), we define their truncated versions as:

am1
jg =











ajg if ajg ∈ [m1, d1m1],

m1 if ajg < m1,

d1m1 if ajg > d1m1,

and

bm2
g =











bg if bg ∈ [m2, d2m2],

m2 if bg < m2,

d2m2 if bg > d2m2.

The scatter parameters are finally updated as {amopt1
1,g , ..., a

mopt1
qg,g , b

mopt2
g , ..., b

mopt2
g } where

mopt1 minimizes

m1 7→
K
∑

g=1

ng

qg
∑

j=1

(

log(am1
jg ) +

ajg
am1
jg

)

,

and, mopt2 minimizes

m2 7→
K
∑

g=1

ng(p− qg)

(

log(bm2
g ) +

bg
bm2
g

)

where ng =
∑n

i=1 τig. These are indeed two real-valued functions that can be easily
minimized (see Fritz et al. (2013)).

3. Evaluate target function: After applying the trimmed EM steps, the associated value of the
target function (4) is computed (we set η(xi) = 0 if i ∈ I and η(xi) = 1 if i /∈ I for I defined as
in (5) with the final iteration parameters). The set of parameters yielding the highest value of
this target function and the associated trimmed indicator function η are returned as the final
algorithm’s output.

4.2 Estimation of dimensions

As in Bouveyron and Jacques (2011) and Jacques and Preda (2013), the estimation of the dimensions
per group, qg, g = 1, ..., K in the K-L expansion is not an easy task and still an open problem. In
the previously mentioned works, the authors used the “Cattell” procedure (Cattell, 1966) and show
that, by using an appropriate threshold, K sensible values can be obtained. However, the application
of the “Cattell” threshold within the EM algorithm may create increments and decrements of the
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target function between two successive iterations. In this work, we prefer solving the maximization
of the target function for fixed combinations of dimension and, later, choose the dimensions yielding
the better value of a penalized likelihood for fixed values of trimming levels α and constraints d1 and
d2. To be more precise, we choose the dimensions minimizing the Bayesian Information Criterion
(BIC) defined as

BIC = −2lpα(θ̂; x1, ..., xn) + κ log(n)

where lpα(θ̂) corresponds to the trimmed log-likelihood function valued at the estimated optimal
parameters θ̂, n is the number of observations and κ corresponds to the number of free parameters
to be estimated. We have κ = ρ+ ν+2K+Q, where ρ = (Kp+K− 1) is the number of parameters
needed to estimate means and mixture proportions, ν =

∑K
g=1 qg[p− (qg + 1)/2] corresponds to the

number of parameters needed to estimate the ψj eigenfunctions and Q =
∑K

g=1 qg.
To illustrate the use of BIC in the selection of the dimensions q in the K-L expansion, we simulate

a data set from the simulation scheme called Scenario 1 (q1 = 2 and q2 = 3) with 10% contamination
of type iii) as will be fully described in the Section 5). Figure 1 shows that simulated dataset. Figure
2 (right panel) shows the BIC values for several dimension combinations when d1 = d2 = 10 and
α = 0.1. After, testing those combinations, it was observed that the minimum value for the BIC
corresponds to dimension q1 = 2 and q2 = 3. Moreover, as can be seen in Figure 2 (left panel), we
note that the minimum value of the BIC corresponds to one of the best solutions of the algorithm
in terms of correct classification rate (CCR).

0.0 0.2 0.4 0.6 0.8 1.0

−
1
0
0

−
5
0

0
5
0

1
0
0

t

Figure 1: A simulated data set with K = 2 groups from “Scenario 1 and contamination scheme (iii)”
(as described in Section 5). The subspace dimensions in this example are q1 = 2 and q2 = 3.
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Figure 2: Selection of the dimensions by means of BIC for the data set in Figure 1 when d1 = d2 = 10
and α = 0.1. Different combinations of dimensions are represented in the x-axis, BIC values are
presented in the right panel while the corresponding correct classification rates are in the left panel.

5 Simulation study

In order to evaluate the performance of the methodology proposed, we simulated different scenarios
and contamination types.

For the “good” observations arranged in K = 2 clusters, we consider the following scheme of
simulation based on the K-L expansion:

xi(t) = µg(t) +

qg
∑

j=1

a
1/2
jg ziψj(t) +

p
∑

j=qg+1

b1/2g ziψj(t) t ∈ [0, 1], (7)

where zi are independent and N(0, 1)-distributed, µg are the group mean function, ajg corresponds
to the main variances and bg corresponds to the residual variability. In this simulation, we consider
that the eigenfunctions ψj are the first 21 Fourier basis functions that are defined as

ψj(t) =











ψ0(t) = 1,

ψ2j−1(t) =
√
2 sin(j2πt)

ψ2j(t) =
√
2 cos(j2πt)

,

for j = 1, 2, ..., p. We assume that the first i = 1, ..., 100 observations are generated when g = 1 in (7)
and the second group of observations with indices i = 101, ..., 200 are generated when g = 2 in (7).
We have two different main scenarios for the “good” part of data depending on the mean functions
and chosen variances:

Scenario 1: The groups have the same mean µ1(t) = µ2(t) = cos(t) and dimensions q1 = 2 and
q2 = 3. The variances for the first group are (a11, a21) = (60, 30) and b1 = 0.5. For the second
group, the variances are (a12, a22, a32) = (170, 140, 120) and b2 = 1.

10



Scenario 2: The groups have different means µ1(t) = cos(t) + 3 and µ2(t) = cos(t) + 1 and the
dimensions are q1 = 2 and q2 = 3. The variances are (a11, a21) = (a12, a22) = (60, 30), b1 = 0.5
and b2 = 1.

We also consider the possibility of adding another 22 curves (10% contamination level) to see
the effect of noise in clustering. In two out of the three contaminating schemes, each of these 22
contaminating curves xi are obtained by fitting a linear combination of the 21 first Fourier base
elements plus a global mean which interpolates 21 points in R

2 as

{(tl, ui + εi,l)}21l=1,

where {tl}21l=1 is an equispaced grid on [0, 1], {ui}22i=1 is the result of random sample from a uni-
form distribution in the [a, b] interval (to be specified latter) and {εi,l}21l=1, for i = 201, ..., 222, are
independent normally distributed error terms with variance σ2 = 10.

For both scenarios (Scenario 1 and 2) for the “good” part of data, we consider the following
contaminating schemes:

(i) No contamination (i.e., the total number of observations is n = 200).

(ii) Using the previously described contaminating scheme with [a, b] = [150, 180]. This means that
the contaminating curves are clearly far apart from the “good” curves.

(iii) Using the previously described contaminating scheme with

[a, b] =

[

min
i=1,...,200;t∈[0,1]

xi(t), max
i=1,...,200;t∈[0,1]

xi(t)

]

.

(iv) We use the scheme in (7) also for i = 201, ..., 222 but the normally distributed zij variables are
replaced by (heavier tailed) Cauchy distributed ones.

In order to test the performance of the methodology proposed here, we carry out a simulation
study using the scheme previously described and compare the results with those obtained by “Fun-
clust” (Jacques and Preda, 2013) and “FunHDDC” (Bouveyron and Jacques, 2011).

In this simulation study, it is important to note that we assume the qg dimensions to be unknown
parameters and that we use the BIC proposal described in section 4.2 to estimate them when applying
the proposed robust functional clustering (RFC). We use trimming levels α = 0 (untrimmed) and
α = 0.1, constraints d1 = d2 = 1, d1 = d2 = 10 and d1 = d2 = 1010 (i.e., almost unconstrained
in this last case). We always return the best solution in terms of the highest BIC value for each
combination of all those fixed values of trimming levels and constraints. We use niter= 100 random
initializations with iter.max= 20.

For the “Funclust” method we have used the library Funclustering (Soueidatt, 2014) in R where
the EM algorithm has been initialized with the best solutions out of 20 “short” EM algorithms with
only 20 iterations with values of ε = 0.001, 0.05, 0.1 in the Cattell test. In the case of the “FunHDDC”,
we use the library FunHDDC (Bouveyron and Jacques, 2014) in R with values of ε = 0.001, 0.05, 0.1 in
the Cattell test, moreover, the submodels AkjBkQkDk, AkBkQkDk, AkBQkDk, ABkQkDk, ABQkDk

are tested, see details in (Bouveyron and Jacques, 2011) and the best solution in terms of the highest
BIC value for all those submodels are returned.
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Figure 3 shows the results for datasets simulated according to Scenario 1, i.e. groups with
equal means. This figure is composed of a matrix of graphs, where the rows correspond to the
different contamination schemes (uncontaminated in the first row) while the columns correspond to
the methodologies tested. The first column corresponds to “Funclust”, the second to “FunHDCC”
and the third one shows the results for the robust functional clustering (RFC) procedure with the
two different trimming levels and the three constraints levels (we are assuming d1 = d2 to simplify
the simulation study). The x-axis corresponds to the threshold in the Cattell test for the first two
columns, and to the constraint level for RFC, while the y-axis corresponds to the correct classification
rate (CCR).

The results show that the joint use of trimming and constraints in RFC improve the CCR sub-
stantially. Results are very good for moderate (d1 = d2 = 10) and small (d1 = d2 = 1) values of the
constraint constants, while for high values the results are poor. Very high values for these constants
are equivalent to having unconstrained parameters. The use of trimming also turns out to be very
useful in all the contaminated case while it does not affect so much the results in the uncontaminated
case.

In most cases the results for “FunHDDC” and “Funclust” fall below those of RFC when applying
the α = 0.1 trimming and small/moderate values d1 and d2 for the variance parameters. The only case
where this is not so is “Funclust” with τ = 0.001 in the first row, corresponding to uncontaminated
data. However, this method requires the use of q1 = 20 and q2 = 8 terms in the K-L expansion for
groups 1 and 2 respectively.

The results corresponding to Scenario 2 are presented in Figure 4. This scenario corresponds to
groups with different means. Again, it can be seen that the joint use of trimming and constraints
improve the results in terms of classification rates. The results in these cases, both for moderate
(d1 = d2 = 10) and small (d1 = d2 = 1) values of the constraint constants are quite good, while
the results are poor for very large d1 = d2 values. In this case the RFC method with appropriate
trimming and constraints always performs better than “FunHDDC” and “Funclust” in terms of clas-
sification accuracy.

In addition, it is worth mentioning that the results for RFC method for both simulation scenarios
are more consistent, in the sense that the correct classification rate (CCR) has a lower dispersion for
this method, which indicates another advantage of this proposal for robust clustering.

6 Real data example: NOx levels

The data set corresponds to daily curves of Nitrogen Oxides NOx emissions in the neighborhood
of the industrial area of Poblenou, Barcelona (Spain). NOx is one of the principal contaminant
agents and characterizing its behavior is useful to develop appropriate environmental policies. The
detection of outlying emission curves from any data source is meaningful because the explanation of
why these curves are observed may be helpful in order to forecast or anticipate them. In addition,
these outlying curves can also influence non-robust clustering methods leading to wrong conclusions
when searching for clusters of days with different types of emission patterns.

The data are available in the fda.usc library (Febrero-Bande and Oviedo de la Fuente, 2012)
in R. The measurements of NOx (in µg/m3) were taken hourly resulting in 115 days with complete
observations. This data set has been analyzed to test methodologies for the detection of outliers in
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Figure 3: Scenario 1 (equal mean functions): Correct classification rate (CCR) for the three methods
considered, represented in different columns. Rows correspond to the different contamination schemes
(i) to (iv), described previously in this section, starting with no contamination in the first row.
Constraint levels d1 = d2 = 1, 10 and 1010 and trimming levels α = 0 and 0.1 are used for the RFC
method and the proposed BIC to choose dimension. Threshold values ε = 0.001, 0.05 and 0.1 are
used for the “Cattell” procedure in “Funclust” and “FunHDDC”.
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Figure 4: Scenario 2 (unequal mean functions): Correct classification rate (CCR) for the three meth-
ods considered, represented in different columns. Rows correspond to the different contamination
schemes (i) to (iv), described previously in this section, starting with no contamination in the first
row. Constraint levels d1 = d2 = 1, 10 and 1010 and trimming levels α = 0 and 0.1 are used for the
RFC method and the proposed BIC to choose dimension. Threshold values ε = 0.001, 0.05 and 0.1
are used for the “Cattell” procedure in “Funclust” and “FunHDDC”.
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functional data in Febrero et al. (2008), Sguera et al. (2015) and Sawant et al. (2012).
Figure 5 shows the original daily curves of Nitrogen Oxides NOx emissions by using different

colors, red for the 76 “working days” and green for the 39 “non-working days”.
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Figure 5: Curves represent daily levels of NOx for 115 days, with 76 working day in red and 39
non-working days in green.

The RFC methodology is applied to this dataset and the results are compared to those obtained
using the “Funclust” and “FunHDCC” methodologies. Two clusters (K = 2) and a B-spline basis
of functions of order 3 with 15 basis elements (13 equispaced knots) are taken. For RFC, we use
trimming levels α = 0, 0.1 and 0.15, and constraints values d1 = d2 equal to 1, 10 and 1010 (nstart=
100 and niter= 20). For the “Funclust” and “FunHDCC” methods, we use the same strategy
as in the simulation study with values of ε = 0.001, 0.05 and 0.1 in the Cattell procedure. The
dimensions are estimated by using the BIC criterion for the RFC method and also when applying
the “FunHDDC” method.

Table 1 shows a summary of the results obtained for different combinations of input parameters.
The second column of the table shows the estimated qg dimensions by means of the BIC for RFC
method and the Cattell test for “Funclust” and “FunHDDC” methods. We also give the correct
classification rates (“CCR” column) assuming that the “true” clusters in data were only determined
by the type of day (working and non-working days). In this column, again, we are re-assigning the
trimmed observations according to their posterior probabilities of membership to clusters.

One can see that the use of strong d1 = d2 = 1 constraints slightly increases the CCR (assuming
that the correct groups were determined by working and non-working days). In this case, the CCR
for RFC is 84.3% without trimming and 85% with a α = 0.1 and 84.3% with α = 0.15 while the
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qg α d1 d2 ε CCR
RFC 2,5 0 1 1 - 0.84

5,5 0 10 10 - 0.70
5,5 0 1010 1010 - 0.69
2,5 0.1 1 1 - 0.85
5,5 0.1 10 10 - 0.69
5,5 0.1 1010 1010 - 0.66
2,5 0.15 1 1 - 0.84
5,5 0.15 10 10 - 0.70
5,5 0.15 1010 1010 - 0.69

Funclust 14,13 - - - 0.001 0.84
4,5 - - - 0.05 0.66
3,3 - - - 0.1 0.66

FunHDDC 14,10 - - - 0.001 0.66
3,2 - - - 0.05 0.66
1,3 - - - 0.1 0.66

Table 1: Correct classification rate (CCR) and dimension estimated for different levels of trimming
α and constraints d1 and d2, for the RFC method and different vales of ε for the Cattell test in
“Funclust” and “FunHDDC”.

best CCR for “Funclust” is 84.3%. However, the RFC method has an additional advantage in that
it requires smaller dimensions than “Funclust” for achieving that level of CCR.

Another important point is that the RFC allows us to perform clustering and outlier detection
simultaneously while “Funclust” and “FunHDDC” do not. Even though the detected outliers are not
so extreme in this case as to completely deteriorate the clustering process, it is also interesting to
detect these outlying curves also taking the cluster structure in mind. In this direction, every trimmed
curve (trimming levels α = 0.1 and α = 0.15) corresponds to outliers already detected in previous
works in the literature that were also concerned with functional outlying detection as Febrero et al.
(2008)(DEPTH), Sguera et al. (2015)(KFSD) and Sawant et al. (2012)(BACONPCA). Two separated
data sets, considering only working days (W) and non-working days (NW), were considered when
applying Sguera et al. (2015)(KFSD) while the complete dataset, without differentiating between
working and non-working days (W-NW), is used when applying our RFC proposal and the other two
methods.

Figure 6 shows the RFC clustering results. We observe that the curves that are detected as
outliers (in black in the third column) exhibit different patterns from the rest of the curves.

7 Conclusions

A feasible methodology for robust model-based functional clustering has been proposed and illus-
trated. The key idea behind the algorithm presented is the use of an approximation of the “density”
for functional data together with the simultaneous use of trimming and constraints. This allows for
a robust model-based clustering approach.

The use of trimming tools protects the estimation of the parameters against the harmful effect
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KFSD BACONPCA DEPTH RFC α = 0.1 RFCα = 0.15
NW W W-NW W-NW W-NW W-NW

12/03/2005 09/03/2005 18/03/2005 11/03/2005 25/02/2005 25/02/2005
19/03/2005 11/03/2005 29/04/2005 18/03/2005 03/03/2005 03/03/2005
30/04/2005 15/03/2005 11/03/2005 29/04/2005 11/03/2005 09/03/2005
01/05/2005 16/03/2005 02/05/2005 02/05/2005 16/03/2005 11/03/2005

17/03/2005 09/03/2005 18/03/2005 16/03/2005
18/03/2005 25/04/2005 18/03/2005
29/04/2005 29/04/2005 18/04/2005
02/05/2005 02/05/2005 25/04/2005

18/05/2005 29/04/2005
27/05/2005 02/05/2005
23/06/2005 03/05/2005
15/05/2005 18/05/2005

27/05/2005
23/06/2005
19/03/2005
30/04/2005
15/05/2005

Table 2: Outliers detected when using Febrero et al. (2008)(DEPTH), Sguera et al. (2015)(KFSD),
Sawant et al. (2012)(BACONPCA) and the proposed RFC methodology with α = 0.1 and α = 0.15.
Separated data sets considering only working days (W) and non-working days (NW) were used by
Sguera et al. (2015)(KFSD) while the complete data set (W-NW) were used for the other methods.
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Figure 6: Clusters found (non-trimmed curves in green and red) when applying the RFC method
with K = 2 and d1 = d2 = 1. The trimmed curves appear in black while the non-trimmed ones in
gray. Top panels: Trimming level α = 0.1. Bottom panels: Trimming level α = 0.15.
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of (even a small amount of) outlying curves, while the constraints avoid the detection of spurious
clusters and improve the algorithm’s stability. The simulation study shows that the joint use of
constraints and trimming tools improve the performance of the clustering algorithm in comparison to
some other procedures for clustering functional data. The real data example shows that the trimmed
curves often correspond to outliers already detected by other specialized methods for outlier detection
in functional data analysis. In fact, we conclude that the proposed robust methodology can be a
useful tool to detected contamination and groups in a functional data set simultaneously.

However, some limitations of this methodology are the choice of level of trimming α and the
choice of the scatter constraints constants d1 and d2. These values are subjective and sometimes
depend on the final purpose of the cluster analysis. For this reason, we always recommend the use
of different values of trimming and constraint and monitoring the effect in the clustering partition of
these choices. The development of more automatized selection procedures for these values may be
considered as an open problem for future research.

Finally, an extension of our proposal for future work is the consideration of multivariate functional
data.
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