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Abstract

Model-based trees are used to find subgroups in data which differ with respect to model
parameters. In some applications it is natural to keep some parameters fixed globally for
all observations while asking if and how other parameters vary across subgroups. Existing
implementations of model-based trees can only deal with the scenario where all parameters
depend on the subgroups. We propose partially additive linear model trees (PALM trees)
as an extension of (generalised) linear model trees (LM and GLM trees, respectively), in
which the model parameters are specified a priori to be estimated either globally from
all observations or locally from the observations within the subgroups determined by
the tree. Simulations show that the method has high power for detecting subgroups in
the presence of global effects and reliably recovers the true parameters. Furthermore,
treatment-subgroup differences are detected in an empirical application of the method to
data from a mathematics exam: the PALM tree is able to detect a small subgroup of
students that had a disadvantage in an exam with two versions while adjusting for overall
ability effects.

Keywords: subgroup analysis, model-based recursive partitioning, GLM, tree.

1. Introduction

Model-based recursive partitioning (Zeileis, Hothorn, and Hornik 2008) is used to partition
data into groups that differ in terms of the parameters in the model. The method can be
applied, for example, to find subgroups in a clinical trial which differ in terms of treatment
effect on a health score (e.g. Seibold, Zeileis, and Hothorn 2016) or areas in a city which differ
in terms of the influence of square metres on the rent price. Sometimes there are parameters in
the model that one wants to fix for all groups, e.g. the effect of smoking on the health outcome
in the clinical trial or the effect of inflation/deflation on rent prices. This, however, is not
possible in model-based recursive partitioning as described in Zeileis et al (2008). Here we
propose an algorithm called PALM tree that is similar to model-based recursive partitioning
but allows fixing parameters over all groups, i.e. only some parameters depend on the tree
structure.

There have been several developments in the past years toward the direction of combining
models and trees, where one part of the model follows a tree structure and one part does
not. The Simultaneous Threshold Interaction Modeling Algorithm (STIMA, Dusseldorp,
Conversano, and Van Os 2010) starts off with a main effects model and adds interactions
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2 Generalised Linear Model Trees with Global Additive Effects

based on a tree. Fokkema, Smits, Zeileis, Hothorn, and Kelderman (2017) proposed GLMM
tree, a method that is similar to PALM tree, but is used to fix random effects in a generalised
linear mixed-effects model (GLMM) instead of – as in PALM tree – further fixed effects.
Other approaches going in the direction of GLMM tree are RE-EM tree (Sela and Simonoff
2012) and MERT (Hajjem, Bellavance, and Larocque 2011).

In the literature on subgroup analyses for the estimation of treatment effects, special tree-
based procedures have been proposed (see, e.g. Doove, Dusseldorp, Van Deun, and Van Meche-
len 2014). These methods are commonly used in the analysis of clinical trials, but are equally
relevant in contexts such as marketing studies evaluating different marketing strategies or
studies on website user behaviour, where users are randomly served one of two website ver-
sions (A/B testing). Sies and Van Mechelen (2017) review some of the methods in a setting
where there are some model covariates with fixed parameters across all subgroups and varying
treamtent effect. One promising method in this review is a method by Zhang, Tsiatis, Da-
vidian, Zhang, and Laber (2012) which estimates rules of optimal treatment for each patient
subgroup (optimal treatment regimes).

The following sections unfold as follows: In Section 2 we will first describe GLMs and GLM
trees as the basics needed for PALM trees and then go into how PALM trees are computed.
Furthermore we will show how model-based trees (LM trees, GLM trees and PALM trees)
can be used for finding subgroups with differential treatment effects. In Section 3 we will
show the results of a simulation study in which we compare LM tree, PALM tree, STIMA
and the optimal treatment regime method by Zhang et al (2012). In Section 4 we will apply
the PALM tree to data of a mathematics exam, where the endpoint is performance in the
exam, the “treatment” is the student group (early morning or late group) and the known
prognostic factor is the performance in online tests the students participate in during the
semester. Finally we will discuss strengths and limitations of model-based trees in general
and PALM trees in particular.

2. Methods

In this section we first describe the basics needed for PALM trees – GLMs and GLM trees –
and then introduce PALM trees and how GLMs and GLM trees are used in the PALM tree
algorithm. We focus on GLMs since LMs are a special case of GLMs.

2.1. Basics: GLMs and GLM trees

GLMs

GLMs model the expected response µ = E(y) given the covariates x. To fix notation we write
the GLM as g(µ) = x>β where g denotes the link function and x>β the linear predictor with
coefficient vector β. The coefficients are estimated by maximising the log-likelihood. The
observation-wise log-likelihood contributions are denoted by l((y,x)i,β) with i = 1, . . . , n
indexing the i-th observation and l is defined depending on the appropriate exponential family
chosen for the GLM (Gaussian, Poisson, etc.).

In the following we will make use of two refinements commonly used in GLMs: (a) interac-
tions and (b) offsets. Interactions are effects combinding two or more covariates and can be
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β2 β3

Figure 1: Example of a model-based tree.

employed to establish subgroup-specific coefficient vectors in a single model:

g(µ) = x̃>β̃ = I(subgroup1) · x>β1 + I(subgroup2) · x>β2 + . . . (1)

where I(subgroupj) equals 1 for observations in the j-th subgroup and 0 for others. The

combined coefficient vector is simply β̃ = β>1 ,β
>
2 , . . . )

>

Offsets in GLMs are useful for incorporating additional terms whose effects are known or fixed
into the linear predictor :

g(µ) = x>β + offset. (2)

Thus, the offset behaves like an additional regressor whose coefficient is not estimated but
fixed, e.g. to 1. A prominent example for offsets in GLMs is the modeling of rates in Poisson
regression, where offset = 1 · log(exposure).

GLM trees

Tree algorithms generally split the data recursively into disjoint subgroups (also called nodes)
starting from the so-called root node containing all data and employing certain split points in
the so-called split variables. In case of GLM trees, the idea is to (1) estimate the parameters
in a GLM using the current sample (starting with the full data set), (2) assess whether the
parameters are stable over the split variables considered, (3) split the sample along the variable
associated with the highest parameter instability, (4) repeat the previous steps recursively until
some stopping criterion is met (e.g., with respect to the size of the sample or the instability
of the parameters). Various algorithms have been suggested that can be employed for such
GLM-based recursive partitioning, including GUIDE (Loh 2002), CTree (Hothorn, Hornik,
and Zeileis 2006), or MOB (Zeileis et al 2008) where the latter is used subsequently and
explained in more detail in Section 2.2.1.
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4 Generalised Linear Model Trees with Global Additive Effects

Figure 1 shows an example tree structure that could be found by a GLM tree with

β(z) =


β1 if z1 ≤ 0

β2 if (z1 > 0) ∧ (z2 ≤ 0)

β3 if (z1 > 0) ∧ (z2 > 0).

(3)

The parameters β1, β2, and β3 can be estimated by three separate models for the three
subgroups or by using interaction terms as in Equation 1 (I(subgroup1) = I(z1 ≤ 0) etc.).
To make the role of the split variables more explicit we from now on write x>β(z) instead
of x̃>β̃. β(z) is the interaction effect between covariates x and the subgroups defined by the
split variables z.

2.2. Extension: PALM trees

GLM trees assume that all parameters are subgroup specific. This does not necessarily have
to be the case. PALM trees address this issue and offer a compromise between GLM trees
and GLMs by having one part in which the parameters depend on subgroups (these are
again denoted by β(z)) and another part in which the parameters are the same for all sub-
jects/subgroups (denoted by γ).

Going from GLMs via GLM trees to PALM trees can be viewed as an evolutionary process
where one method evolves from the other. The goal of all three is to appropriately estimate
the effect of covariates x on an outcome y. The main difference between the three methods is
the structure of the linear predictor. While the effects β are linear in a GLM, the effects β(z)
are linear and constant within each subgroup but vary between subgroups, i.e. are subgroup-
wise linear. A PALM tree contains globally fixed linear effects γ for some covariates xF and
subgroup-wise varying linear effects β(z) for other covariates xV . Mathematically this can
be expressed as follows:

GLM g(µ) = x>β (4)

GLM tree g(µ) = x>β(z) (5)

PALM tree g(µ) = x>V β(z) + x>Fγ. (6)

In PALM trees the variables xF with a global effect γ have to be defined a priori. Usually xV
and xF and z do not overlap although this is, in principle, possible. Note that if the subgroup
structure were known, models 5 and 6 could both be estimated as GLMs. Only the fact that
it is unknown and has to be detected makes GLM trees and PALM trees necessary. Also, if
the global parameter vector γ were known, model 6 could be estimated as GLM tree with
x>Fγ as offset (as in equation 2). These connections between the methods are leveraged in
the PALM tree algorithm.

Algorithm

We now describe the detailed GLM tree and PALM tree algorithms, starting with GLM
trees as the PALM tree algorithm uses GLM trees in the estimation process. The GLM tree
algorithm is not new and has been explained in depth by Zeileis et al (2008). The following
description of the algorithm focuses on the parts that are necessary in order to demonstrate the
full concept of the PALM tree algorithm. Note that to notationally distinguish the parameters
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in the subgroups (e.g. parameter vector in first subgroup β1) from parameters in the models
(e.g. first model parameter β(1)) we use parentheses. GLM trees are grown as follows, starting
with the root node containing all observations:

1. Compute model (4), or equivalently model (5) with a single subgroup (β(z) = β), in
the given node.

2. Test for instability in the model parameters with respect to each of the possible subgroup
defining variables Z1, . . . , ZJ :

• Compute the score contributions

s(k)

(
(y,x)i, β̂

)
=
∂l ((y,x)i,β)

∂β(k)

∣∣∣∣
β̂

as the partial derivatives of the log-likelihood contributions of each observation i
(i = 1, . . . , n) with respect to the model parameters β(1), . . . , β(K) evaluated at the

estimated parameters β̂ = (β̂(1), . . . , β̂(K))
>.

• Test if the scores fluctuate randomly around zero for each variable Zj (j = 1, . . . , J)
, i.e.

H
β(k),j

0 : S(k)

(
(Y,X), β̂

)
⊥ Zj

using M-fluctuation tests (Zeileis and Hornik 2007).

3. If the overall test is significant (usually multiplicity adjustment using Bonferroni cor-
rection is used here), choose variable Zj corresponding to the lowest p-value as the split
variable. In the following, we will use 5% as the global significance level.

4. Choose as split point the point in the split variable which maximizes the sum of likeli-
hoods in the emerging subgroups.

5. Iterate steps 1 to 4 until H
β(k),j

0 ∀k, j cannot be rejected or some other stop criterion
(e.g. minimum subgroup size is reached) is fulfilled.

The resulting groups differ with respect to at least one of the model parameters β. In practice,
however, all parameters vary slightly between subgroups due to the refitting of the model in
each node, i.e. for each group of observed subjects. If in reality some covariates influence the
response linearly (for all observations), this leads to an overly complex model. The PALM
tree algorithm eliminates this downside by introducing the possibility to build models where
some parameters are kept stable across subgroups. This is achieved by starting the estimation
of model (6) with a single subgroup, i.e. β(z) = β, and then iterating the tree growing process
between

(a) estimating γ for a given tree structure and

(b) estimating the tree structure for a given γ̂ (steps 1.-5.).

In (a) we estimate the full model (6) for the known subgroup × covariate (xV ) interactions
(as in equation 1) and get estimates for β̃ and γ. In (b) we treat the estimated γ̂ as fixed and
include x>V γ̂ in the model as an offset. By preventing γ from being estimated, we exclude it
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6 Generalised Linear Model Trees with Global Additive Effects

from the score function and can grow a standard GLM tree (as in steps 1.-5.) for the remaining
parameters. At the same time we want to account for the effects of xV which is obtained by
including x>V γ̂ as offset. The iterative process stops when no (or very little) improvement in
terms of log-likelihood can be achieved (typically when the tree structure does not change
anymore). Iterating between (a) and (b) simplifies estimation by only having one unknown:
either γ or the tree structure. β(z) is estimated in both steps: In (a) by estimating the model
with the known subgroup × covariate interactions, and in (b) by estimating a separate model
for each subgroup.

PALM trees inherit many of their theoretical properties from the methods used as building
blocks (model-based trees and parametric models), provided that the model is well specified:
Given that the group structure is correctly detected by the tree, the (G)LM can consistently
estimate all coefficients (grouped and global). Conversely, given that the global coefficients
are estimated consistently, the (G)LM tree uses a group detection based on locally consistent
tests (Zeileis and Hornik 2007) and the usual locally optimal greedy forward selection in
recursive partitioning (see e.g. Breiman, Friedman, Stone, and Olshen 1984). To the best of
our knowledge, there is no formal proof that alternating between (a) and (b) will converge
to an “optimal” solution so that the strengths of both components are guaranteed to be
effective. However, our simulation results (see Section 3 and Appendix A) show that PALM
trees typically converge quickly and reliably. This was also found for RE-EM trees (Sela
and Simonoff 2012). While there is no guarantee that this is always the case, we have not
experienced any convergence issues thus far.

2.3. Special application: Treatment effects

One common application of model-based trees is for subgroup analyses in clinical trials (Lip-
kovich, Dmitrienko, and D’Agostino 2016; Seibold et al 2016; Doove et al 2014). In the
simplest case one is interested in a treatment effect of a new treatment versus standard of
care or no treatment, i.e. x or xV = (1, xA) with xAi = I(patient i received new treatment).
In this setting one differentiates between prognostic and predictive factors (Italiano 2011).
Prognostic factors are patient characteristics (measured before treatment start) which di-
rectly impact the response, e.g. a health score. Predictive factors are patient characteristics
which impact the efficacy of the treatment. In the PALM tree framework, predictive factors
should be included in the split variables z and prognostic factors, if known in advance, can
be included in xF . In fact, prognostic factors are often known in advance based on previous
research about the disease.

In subgroup analyses for treatment effects the term optimal treatment regime is commonly
mentioned. An optimal treatment regime is a rule which indicates which treatment is better
in which subgroup. Treatment regimes only check the sign of the treatment effect in each
subgroup. If they differ between subgroups, the treatment effects are called qualitative; if one
treatment is better than the other in all subgroups, they are called quantitative. As this
application is very common, the remainder of this manuscript will deal with scenarios where
the partitionable parameters are the intercept and the effect of a binary covariate.

2.4. Comparison to other approaches

GLMM trees (Fokkema et al 2017) are closely related to PALM trees, as the algorithm also
builds on the GLM tree algorithm and like PALM tree keeps parts of the model stable. The
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major difference is the fact that GLMM trees focus, as the name says, on generalised mixed
effects models and the part that is being kept stable across subgroups are the random effects.

STIMA (Dusseldorp et al 2010) is a tree algorithm where the first split is made in an a priori
specified variable, which in the treatment case is the treatment indicator. All further splits are
found by an exhaustive search and finally a cross-validation based pruning procedure is run
to find the optimal tree. STIMA is similar to PALM tree in the sense that it starts off with
a main effects model and new splits are selected based on a measure of variance-accounted-
for. The main effects of the model are kept stable across groups and additional effects are
added to the model based on the tree structure. A very similar approach is called partially
linear tree-based regression model (PLTR, Chen, Yu, Hsing, and Therneau 2007; Mbogning
and Toussile 2015), which was initially invented to analyse gene-gene and gene-environment
effects.

The approach by Zhang et al (2012) aims to estimate optimal treatment regimes and is only
used in the treatment effect application. In the following we will use the term OTR (optimal
treatment regimes) for this method. OTR is not as closely related to PALM tree as the
previously mentioned methods, but has shown good performance in settings in which PALM
trees are appropriate (Sies and Van Mechelen 2017). OTR does not target estimating the
treatment effect itself but targets learning which treatment is superior for certain groups of
patients. OTR starts off with the so-called outcome model, which includes main effects and
treatment × patient characteristics interactions. After estimating the model the algorithm
proceeds as follows:

1. For all patients in the training data predict the response under treatment µ̂1 and under
control µ̂0 from the outcome model. Determine the difference µ̂1− µ̂0 between the two.

2. Compute a classification algorithm using I(µ̂1 − µ̂0 > 0) as response and |µ̂1 − µ̂0| as
weights.

Any classification method that can deal with (non-integer) weights could be used in step 2.

For further tree-based approaches that allow doing analyses similar to model-based trees see
Doove et al (2014).

3. Simulation study

We compare the performance of PALM trees, LM trees, the trees grown based on the algorithm
proposed by Zhang et al (2012) (OTR) and STIMA in the treatment effect setting. We
chose OTR as competitor because it showed good perfomance in scenarios where PALM
trees should perform well (Sies and Van Mechelen 2017) and we chose STIMA because it
is a natural competitor due to the similarity of the resulting model. Note that while the
setup of the simulation study is motivated by treatment effect studies, the insights are of
broader interest due to its general structure. The aim is to evaluate the methods with
respect to (1) finding the correct subgroups (Section 3.1), (2) not splitting when there are
no subgroups (Section 3.2), (3) finding the optimal treatment regime (Section 3.3), and (4)
correctly estimating the treatment effect (Section 3.4). Note that evaluations (1) and (2)
are connected in the sense that they both evaluate the ability to find the correct subgroups.
Furthermore, (3) and (4) are connected in the sense that both evaluate the ability to give
good treatment recommendations.
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8 Generalised Linear Model Trees with Global Additive Effects

Simulation variable Default Variation # Values

Difference in treatment effects ∆β 0.5 0.1–1.5 8
Number of observations n 300 100–900 5

Qualitative treatment × subgroup interaction Yes Yes/No 2
Number of patient characteristics m 30 10–70 4

Number of predictive factors p 2 1–4, 0 4, 1
Number of prognostic factors q 2 1–4 4

Table 1: Simulation settings. For each scenario one simulation variable is varied and the rest
are kept to the standard value. The value p = 0 is only used for the assessment of the type 1
error rate (Section 3.2).

We simulate a binary variable (treatment indicator) XA which is either 1 or 0, each with
probability 0.5, and m correlated variables (patient characteristics)

Z ∼ Nm(0,Σ) (7)

with

Σ =


1 0.2 · · · 0.2

0.2 1 · · · 0.2
...

...
. . .

...
0.2 0.2 · · · 1

 . (8)

We define the first p variables Z1, . . . , Zp to be the true predictive factors, i.e. the patient
characteristics that actually interact with the treatment and thus pose relevant split variables.
The cutpoint is always at Zj = 0 and the subsequent split is always in the subgroup with Zj >
0, i.e. on the right side of the tree when visualised as in Figure 1. We define the consecutive
q variables XF = (Zp+1, . . . , Zp+q) to be the true and known prognostic factors. All further
patient characteristics Zp+q+1, . . . , Zm are noise variables. We simulate the outcome variable
Y with

Y = XAβ(Z) +XFγ + U (9)

where U ∼ N (0, 1.5) is the error term.

The effect of the prognostic factors is set to γ = 1. The treatment effect β(Z) follows a tree
structure, which is visualised in Figure 1 for the scenarios with p = 2. The mathematical
representation is as in Equation (3) with a fixed difference between the effects in the subgroups
∆β. We define a default simulation scenario, which is shown in the second column of Table 1.
In this default scenario ∆β = 0.5 and

β(Z) =


−0.375 = β1 if Z1 ≤ 0

0.125 = β2 = β1 + ∆β if Z1 > 0 ∧ Z2 ≤ 0
0.625 = β3 = β2 + ∆β if Z1 > 0 ∧ Z2 > 0.

(10)

To obtain a diverse set of simulation scenarios which are comparable, we fix all but one of
the simulation variables to the default. The range of variation of each simulation variable is
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given in the third column of Table 1 alongside the number of equidistant values considered
(# Values). From this we get all necessary information about the simulation, e.g. q takes 4
different values 1, 2, 3, 4. For each distinct simulation setting we simulate 150 data sets. Note
that just for the assessment of the type 1 error rate (Section 3.2) the number of predictive
factors is set to zero. For the simulation scenarios where p 6= 2 and thus less/more than three
true subgroups exist, β(Z) follows the same logic as in Equation (10), i.e. βb = βb−1 + ∆β

for b = 2, . . . , (p+ 1). The value of β1 depends on whether the first split is qualitative or not
and on ∆β. If the first split is not qualitative then β(1) = 0.5. If the first split is qualitative
β(1) = −3/4 ·∆β. This also means that any consecutive splits after the first are quantitative.
This simulation study is limited due to the fact that we only change one simulation variable
at a time. Section A in the Appendix shows selected results from a full factorial simulation
study. Using the simulated data we compare the following methods:

PALM tree with xV = (1,xA) and xF = (zp+1, . . . , zp+q). The only way we could have
specified this algorithm better for the given data generating process would have been to
add the intercept to xF , but in real application one would usually allow the intercept
to vary to account for unknown prognostic factors contained in z.

LM tree 1 with x = (1,xA). This algorithm is of interest to see how well a misspecified
model-based tree behaves. LM tree 1 has to approximate x>Fγ using step functions and
thus cannot give good results in terms of most measures used below. However, we are
interested in how well it can do in terms of estimating the correct treatment regime.

LM tree 2 with x = (1,xA,xF ). This tree is expected to behave better than LM tree 1,
since it contains the correct covariates in the model, but worse than PALM tree since it
may split with respect to instabilities in the parameters for xF plus it is overly complex
due to the fitting of separate xF -parameters in each subgroup.

OTR with outcome model g(µ) = (1,xA,xF )>γ + (xA : z)>β (with xA : z interaction
between xA and z) and pruned CARTs (Classification and Regression Trees, Breiman
et al 1984) as classification method. OTR was invented to find optimal treatment
regimes and thus is expected to be good at finding the right treatment. OTR is not
intended to find quantitative interactions and thus can not be good at this.

STIMA with a forced first split in the treatment and the maximum number of splits fixed
to six.

3.1. Are the correct subgroups found?

To investigate whether the correct subgroups are captured by the different methods, we looked
at the number of subgroups found as well as the adjusted Rand index (ARI, Hubert and Arabie
1985; Milligan and Cooper 1986). The ARI measures how well the retrieved subgroups fit with
the true underlying subgroups. If the subgroups found are similar to the true subgroups the
ARI will have a value up to 1. If the subgroups are only as good as a random group assignment
the ARI is 0. If there is systematic missclassification, the ARI can also be negative.

The first row of Figure 2 shows the mean number of selected subgroups over the 150 simulated
data sets and their corresponding trees for differing distances between treatment effects ∆β

and differing numbers of observations n. This means we are looking at the case where all

Copyright © 2018 Springer-Verlag



10 Generalised Linear Model Trees with Global Additive Effects

●
●

●

●

●

●
●

●

● ● ●
●

● ● ● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

●

●
●

● ● ●

●

● ●
●

●

● ●
● ● ●

●

●

●

●

●

●
●

●

● ● ● ●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

2.5

5.0

7.5

10.0

12.5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 100 300 500 700 900

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 100 300 500 700 900

∆β n

∆β n

# 
su

bg
ro

up
s

# 
su

bg
ro

up
s

A
R

I

A
R

I

PALM tree LM tree 1 LM tree 2 OTR STIMA

Figure 2: Mean number of subgroups and mean ARI for varying ∆β and number of observa-
tions (Question 3.1).
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12 Generalised Linear Model Trees with Global Additive Effects

variables are kept at the standard value except ∆β or n respectively. The second row shows
the corresponding ARI. The similarity between the PALM tree and LM tree 2 algorithms is
obvious. For both the number of subgroups and the ARI the results are very similar, although
PALM tree is slightly better. Both algorithms get steadily closer to the optimal solution with
increasing ∆β as well as with increasing number of observations. LM tree 1 performs badly
because it approximates the linear relation between the prognostic factors and the response
with splits in the data. This is also the reason why with increasing n the number of subgroups
increases. This effect muffles the grouping with respect to the treatment effect, even if it gets
less with increasing ∆β. The number of subgroups found for OTR is on average greater than
the actual number of subgroups (3 for the given scenarios in Figure 2). The variability of
the number of subgroups for OTR is very high (with a maximum of 20 subgroups). The true
subgroups are not captured as well as with PALM tree and LM tree 2. The ARI for OTR
is lower than the ARI of PALM tree and LM tree 2 except for very low values of ∆β and n,
which can be explained by the fact that the model-based trees use statistical significance tests
and CART does not. Even though the pattern of STIMA in terms of the average number of
subgroups appears similar to PALM tree and LM tree 2, on average the ARI is considerably
lower, except for very large differences in treatment effects (∆β).

Figure 3 shows the mean number of subgroups for the remaining simulation scenarios. The
model-based trees and STIMA are not affected by the type of subgroup. OTR, however, is
designed to find only qualitative subgroups and thus on average finds fewer groups when there
are only quantitatively differing subgroups. For increasing number of patient characteristics,
the model-based trees become more conservative and find slightly less subgroups, which is due
to the correction for multiple testing (Bonferroni correction). OTR and STIMA do not change
much in terms of average number of subgroups when the number of patient characteristics
increases. With increasing number of predictive factors the number of subgroups should
increase. The true number of subgroups is always the number of predictive factors + 1. The
lower left panel of Figure 3 shows that this is not the case for any of the algorithms. The
reason for this is the way of how we simulated the data. With an increasing number of
predictive factors the subgroups get smaller and thus there is less power to find splits. The
only algorithm that is strongly affected by the number of prognostic factors is LM tree 1,
which corresponds to the fact that there are more linear terms to approximate through the
tree structure.

3.2. How often are subgroups found even though there are none?

To investigate the type 1 error rate, i.e. the probability that subgroups are found even though
there are none, we simulated data as above, but with no predictive factors. This means the
treatment effect is the same for all patients. Figure 4 shows the behaviour of the methods with
changing number of observations. LM tree 1 and OTR have a constant value of 1 here and
are not visualised. Since LM tree 1 finds subgroups that have to do with the prognostic factors
the “bad” performace exists by design. PALM tree is close to the expected 5% significance
level, as is LM tree 2. STIMA goes down to 0% for 700 and 900 observations.

3.3. Is the correct treatment predicted to be better?

The next measure we wanted to look at is the proportion of patients for which the better
treatment is correctly identified. This is what OTR was designed to be good at and especially
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Figure 4: Proportion of trees with more than one subgroup for varying number of observations
(Question 3.2). Black line at 0.05.
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Figure 5: Proportion of observations in all trees where better treatment is correctly identified
(Question 3.3).
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Figure 6: Mean absolute difference between true and estimated treatment effect (mean abso-
lute error, MAE; Question 3.4).

due to the way we simulated data (with a simple interaction) OTR can be expected to perform
well. Figure 5 shows the proportion of patients for which the better treatment is correctly
identified for the scenarios with varying difference between treatment effects ∆β and varying
number of predictive factors. When the difference between treatment effects ∆β is small it is
difficult for all methods to predict the correct treatment regime. For ∆β = 0.1 it is close to
random guessing. With increasing ∆β all methods get better. The performance of PALM
tree, LM tree 2, OTR and STIMA is similar. The four methods also behave similarly with a
changing number of predictive factors. The treatment regime prediction is globally worst on
average when there is one predictive factor. This results from the fact that often no split is
found in this case (see Figure 3). In cases where the methods decide not to split at all, this
leads by simulation design to a proportion of 50% correctly-defined treatment regimes. The
proportion of patients for which the correct treatment is predicted to be the better treatment
improves in cases of two or three predictive factors and gets worse with four predictive factors.
With more complex and smaller subgroups it becomes more difficult for the algorithms to
retrieve the correct subgroup structure and to estimate the treatment effect. Note, however,
that shape of the shape of the curves in the right panel of Figure 5 is very specific for the
simulation settings here. Figure 9 shows the results for other scenarios. For example, for
∆β = 1.5 and 300 observations in a setting with qualitative treatment differences, the best
performace of PALM tree is with only one predictive factor and decreases from there. The
performance of all algorithms is well in quantitative settings. OTR is the only algorithm that
goes down to only 80% correctly defined treatment regimes in settings with 100 observations.

3.4. How good is the treatment effect estimate?

Estimating or even predicting the correct treatment effect is the most essential part of sub-
group analysis. Even if one treatment is better than the other, clinicians need to know if the
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difference is relevant. The evaluation of the treatment effect estimate can only be done for
the model-based recursive partitioning methods and STIMA since OTR is only designed to
produce binary decision rules. The measure used to evaluate the treatment effect estimate
is the mean absolute difference between true and estimated treatment effect (mean absolute
error, MAE). Figure 6 shows the MAE for the scenarios of varying ∆β and varying number of
predictive factors. The error is smallest for all three methods when the difference in treatment
effect is lowest (∆β = 0.1), because even if the chosen subgroups are wrong, the estimated
treatment effect will likely be close to the true and very similar treatment effects. In this
sense it is not a disadvantage that PALM tree, LM tree 2 and STIMA often do not split into
subgroups at all. In fact, it may even be an advantage, as the treatment effect estimate is
then calculated based on a larger data set and is less affected by random variability. The
effect of the small treatment difference gets less as the difference increases. However, as the it
increases, finding the correct subgroups becomes easier and the error decreases. At the same
time finding the correct subgroups becomes easier and slowly the error decreases again for
PALM tree, LM tree 2 and STIMA. For this effect to be visible for LM tree 1, one would have
to have larger treatment effects, fewer prognostic factors and/or more observations, given
the large effect of the prognostic factor (see Figure 11 in the Appedix). With an increasing
number of predictive factors the mean absolute error in treatment effect increases. The shape
of the curve in Figure 6 looks very different to the one in Figure 5, even though they address
similar questions, but the more true predictive factors exist in the given simulation scenario
the harder it is for the methods to predict the treatment effect. This suggests that simply
knowing the more effective treatment does not tell the whole story. This is supported across
simulation scenarios (compare Figures 9 and 10).

4. Illustration: Treatment differences in mathematics exam

The Mathematics 101 course for first-year business and economics students at Universität
Innsbruck gives an introduction to mathematical analysis, linear algebra, financial mathe-
matics, and probability calculus. Students are assessed by biweekly online tests during the
semester and a written exam at the end. The exam consists of 13 single-choice questions with
5 answer alternatives, one of which is correct. Students who answer more than 60 percent
of the questions correctly pass the course. The percentage of successful online tests captures
math ability of the students and is a known predictor for success in the final exam.

The data contains the exam results of 729 students (out of 941 who originally registered
for the course) for the fall semester in 2014/15. Due to limited availability of seats in the
exam room, the students were asked to select a group, where the first group wrote the exam
in the morning and the second group right after the first group finished. The two groups
received slightly different questions on the same topics covering the scope of the course. We
are interested in whether the exam is fair in the sense that it is on average equally hard or
difficult for the two groups. In other words we want to find out whether there is a “treatment
effect” with the different selection of exam questions in the two groups corresponding to the
“treatments”. As a first rather naive check we consider a simple one-way regression model
for the percentage of correct answers by group, as reported in the first column of Table 2.
This yields an expected percentage of 57.6 for a student in group 1 and a difference of 2.33
percentage points for students in group 2. Thus, the model finds only a small drop in the
percentage of correctly solved answers and the corresponding confidence interval includes a
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zero change.

However, in this first model we have neglected the influence of the students’ ability which is
particularly relevant here because the students could freely choose their exam group. There-
fore, there might have been self-selection of more (or less) able students into the first (or
second) group. To account for such ability effects in the model we include the percentage of
points from the previous online tests that captures the students’ ability and preparation. As
shown in the second column of Table 2 this variable is indeed strongly associated with the
exam results, where one additional percentage point in the online tests leads to additional 0.86
expected percentage points in the written exam. More importantly, the group effect increases
to 4.37 and the corresponding confidence interval does not include zero anymore. Despite
the increase in the group effect, the absolute size of the group difference is still moderate
corresponding to about half an exercise out of 13.

To explore the size of the treatment effect for the group differences further, we consider the
possibility that this may vary across subgroups of students. Known student characteristics
that may lead to such subgroups here are gender, the number of semesters the student has
already been studying, the number of times the student has already attempted the exam,
the type of study (three year bachelor program vs. four year diploma program) and also
the ability/preparation as captured by percentage of successful exercises in the online tests.
Since the test results in the online tests during the semester are known to have an important
direct effect on the performance in the exam, the test parameter is included in the PALM
tree. Figure 7 shows the resulting PALM tree with the segmented local group effect while
adjusting for a global online tests effect. The strongest parameter instability is associated
with the number of attempts and the group of students in the first attempt are split a second
time by the percentage from the online tests. Two of the resulting subgroups (node 3 and 5)
exhibit only very small group differences but in node 4 the second group obtained clearly a
lower response percentage. This node is the smallest subgroup found and encompasses the
highly able students taking the course for the first time. For this subsample the treatment
effect is about 14 percentage points, which means that the students in the second batch solved
about two exercises less than those in the first batch.

Overall this clearly conveys the strength of the PALM tree method: Especially in situations
where the coefficient of interest is modest in a main-effects model and where further covariates
are available whose influence on the main model parameters is not obvious, the PALM tree is
an attractive option to globally control for certain variables while searching for local effects
in others. Note, however, that due to the forward selection of models/effects the resulting
confidence intervals in the terminal nodes (Table 2 and Figure 7) should not be used for
inference but interpreted as a measure of variability.

5. Discussion

Model-based trees are effective tools to identify subgroups in data which differ in terms of
model parameters. PALM trees are special model-based trees where some parameters can
be fixed globally for the entire sample and do not depend on the subgroup structure. Our
simulation study has shown that in cases where there are such specified factors with a direct
effect on the outcome, PALM trees reliably detect the correct subgroups while at the same
time having a low probability of detecting subgroups when there are none. STIMA is a
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Linear model 1

57.60
 [55.12, 60.08]

(Intercept)

Linear model 2

node3:(Intercept)

PALM tree

node4:(Intercept)

node5:(Intercept)

−2.33
 [−5.70, 1.03]

group2

node3:group2

node4:group2

node5:group2

tests

−5.85
 [−13.52, 1.83]

−4.37
 [−7.23, −1.50]

0.86
 [0.76, 0.95]

−7.09
 [−16.15, 1.97]

13.98
 [0.82, 27.14]

2.33
 [−6.32, 10.99]

−3.00
 [−6.97, 0.98]

−14.49
 [−22.92, −6.07]

−1.70
 [−5.97, 2.56]

0.79
 [0.67, 0.90]

Table 2: Three models for the mathematics exam data. The response variable is the percent-
age of correctly solved exercises and the main covariat of interest are the treatment differences
between the first and second exam group. Confidence intervals are given in brackets.

flexible and well performing competitor of model-based trees. The most important downside
of STIMA is that it is very slow with in some instances single trees taking hours to compute
(see Appendix B). Moreover, it has to be taken with a grain of salt that the R package
“stima” is not actively maintained on the Comprehensive R Archive Network. Although
optimal treatment regimes (OTR) perform comparably to PALM trees in terms of detecting
the best treatment option in the given simulation study, PALM trees are typically better
at recovering a parsimonious tree capturing the underlying subgroup structure. This makes
PALM tree results easier to interpret and to communicate to practitioners, which we believe is
an important advantage in many applications. Moreover, the simulation study clearly showed
the effect of misspecifications in global vs. local effects in PALM trees. While it is important
to correctly identify the variables with additive effects (LM tree 1 vs. LM tree 2 or PALM
tree), it is not so important to correctly identify whether these additive effects are global or
local (LM tree 2 vs. PALM tree). However, by reducing the number of tests in the split
procedure and focusing only on certain relevant model parameters, some power and efficiency
can be gained from selecting a suitable PALM tree.

PALM trees allow exploring and questioning results of (generalised) linear models. The PALM
tree analysis of the Mathematics 101 exam showed that a linear model regressing the per-
centage points of correct anwers on the group and earlier test results is too simple. Only
for a relatively small subgroup of students who attempted the exam for the first time and
who showed good performance during the semester it did make a difference whether they
attempted the exam in the first or second group.

Although large parts of this manuscript focus on subgroup analyses in clinical trials, PALM
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Figure 7: PALM tree for the percentage of correct answers explained by group differences
while globally adjusting for ability (i.e., percentage of points obtained in previous online
tests).

trees can also be applied in a wide range of other applications as well – e.g., in the social
sciences as shown in the mathematics exam application case study.

Computational details

Open-source implementations of the model-based tree algorithms LM tree and GLM tree
are available in the partykit package (Hothorn and Zeileis 2015, functions lmtree() and
glmtree()). The PALM tree algorithm is available in the palmtree package (Seibold,
Hothorn, and Zeileis 2017, function palmtree()). OTR is available in package DynTxRegime
(Holloway, Laber, Linn, Zhang, Davidian, and Tsiatis 2015). The STIMA implementation has
been archived on CRAN but can still be downloaded from https://cran.r-project.org/

src/contrib/Archive/stima/. Simulations were conducted using the batchtools package
(Lang, Bischl, and Surmann 2017).

The manuscript including simulation study and application can be reproduced using the
supplementary online material.
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A. Full factorial simulation

The simulation study described in Section 3 takes a ceteris paribus approach and varies
one simulation variable at a time while keeping the others at a standard value. We did an
additional simulation study where we vary all variables, which leads to 8 · 5 · 2 · 4 · 4 · 4 = 5120
(see Table 1) different scenarios. For each scenario we simulated two data sets and ran all
algorithms on each. In the following we show a small selection of interesting graphics based on
the simulations. For the full results of the simulation studies we refer to the online material.

Figure 8 shows the marginal results of the ARI for ∆β, the number of predictive factors, the
number of observations and quantitative versus qualitative interactions. We average over the

Copyright © 2018 Springer-Verlag

http://dx.doi.org/10.21105/joss.00135
http://dx.doi.org/10.1002/sim.7064
http://dx.doi.org/10.1002/sim.7064
http://www.stat.sinica.edu.tw/statistica/oldpdf/a12n21.pdf
http://www.stat.sinica.edu.tw/statistica/oldpdf/a12n21.pdf
https://CRAN.R-project.org/package=GPLTR
http://dx.doi.org/10.1207/s15327906mbr2104_5
http://dx.doi.org/10.1207/s15327906mbr2104_5
http://dx.doi.org/10.1515/ijb-2015-0032
https://CRAN.R-project.org/package=palmtree
http://dx.doi.org/10.1007/s10994-011-5258-3
http://dx.doi.org/10.1515/ijb-2016-0068
http://dx.doi.org/10.1515/ijb-2016-0068
http://dx.doi.org/10.1111/j.1467-9574.2007.00371.x
http://dx.doi.org/10.1198/106186008X319331
http://dx.doi.org/10.1002/sta.411


Heidi Seibold, Torsten Hothorn, Achim Zeileis 21

other simulation variables and the two repetitions. For sake of easy visualisation, we restrict
the plotted variable to few levels. Similarly Figures 9 and 10 show the marginal results of the
proportion of correct treatment assignment and mean absolute error in estimated treatment
effect for the number of predictive factors, ∆β, the number of observations and quantitative
versus qualitative interactions. Figure 11 shows the results for the MAE for n = 900 and one
prognostic factor to show when LM tree 1 starts to improve (see Section 3.4).

Figure 8 shows that PALM tree can handle simple subgroups with one predictive factor even
when the number of observations is low, but the difference in treatment effects must be
reasonably high. All other algorithms perform worse, with LM tree 2 and STIMA being the
strongest competitors in the low-n-scenarios. OTR performs reasonably well if qualitative
subgroups are present. For n = 500 the performance of PALM tree rises already at lower
levels of ∆β. The performance of PALM tree and LM tree 2 is very similar and STIMA also
performs well. By design OTR ignores any non-qualitative subgroups.

When quantitative treatment subgroups exist, all methods are good at deciding the correct
treatment regime (see Figure 9), especially when the number of observations is reasonably
high (300). With n = 100 PALM tree, LM tree 2, STIMA and even LM tree 1 still perform
very well. OTR is the weakest competitor here. With low numbers of observations (n = 100),
low treatment effect differences (∆β = 0.5) and qualitative differences, the performance of all
algorithms is close to random guessing (0.5), irrespective of the number of predictive factors.
With higher ∆β PALM tree performs reasonably well, followed by LM tree 2, STIMA and
OTR (order depending on the number of predictive factors). For n = 300 and ∆β = 0.5
STIMA and LM tree 1 perform worst, but STIMA catches up with the other algorithms
when ∆β = 1.5, whereas LM tree 1 stays at the bottom. Section 3.3 discusses these results
in the context of the results in the star-like simulation study.

Section 3.4 already partly discussed Figures 10 and 11. Figure 10 shows that across different
scenarios the MAE increases with increasing number of predictive factors. PALM tree is
among the best performers everywhere. In comparison to the other algorithms it performs
particularly well in low-n-qualitative scenarios whith ∆β = 1.5.

B. Computation times

The computation times for all methods except STIMA are very reasonable in these applica-
tions. For a summary of computation times in the full factorial desing see Table 3. STIMA
reached a maximum of 17.4 hours and almost half the models took half an hour or longer.

Table 3: Quantiles of computation times per algorithm in seconds.

0% 25% 50% 75% 100%

PALM tree 0 0 1 2 7
LM tree 1 0 1 1 2 5
LM tree 2 0 0 1 1 4
OTR 0 0 1 1 2
STIMA 3 233.5 1941 8646.5 62512
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Figure 8: Mean ARI in the full factorial design with two simulated data sets per design
(Question 3.1).
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Figure 9: Proportion of observations in all trees where better treatment is correctly identified
in the full factorial design with two simulated data sets per design (Question 3.3).
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Figure 10: Mean absolute difference between true and estimated treatment effect (mean
absolute error, MAE) in the full factorial design with two simulated data sets per design
(Question 3.4).
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Figure 11: Mean absolute difference between true and estimated treatment effect (mean
absolute error, MAE) in the full factorial design with two simulated data sets per design
(Question 3.4). Limited data to scenarios with 900 observations and one prognostic factor.
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