
ar
X

iv
:1

90
1.

09
56

7v
1 

 [
cs

.L
G

] 
 2

8 
Ja

n 
20

19

From-Below Boolean Matrix Factorization

Algorithm Based on MDL

Tatiana Makhalova1,2 and Martin Trnecka3

National Research University Higher School of Economics, Moscow, Russia, LORIA,
(CNRS – Inria – University of Lorraine), Vandœuvre-lès-Nancy, France
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Abstract. During the past few years Boolean matrix factorization (BMF)
has become an important direction in data analysis. The minimum de-
scription length principle (MDL) was successfully adapted in BMF for
the model order selection. Nevertheless, an BMF algorithm performing
good results from the standpoint of standard measures in BMF is miss-
ing. In this paper, we propose a novel from-below Boolean matrix factor-
ization algorithm based on formal concept analysis. The algorithm uti-
lizes the MDL principle as a criterion for the factor selection. On various
experiments we show that the proposed algorithm outperforms—from
different standpoints—existing state-of-the-art BMF algorithms.

1 Introduction

Boolean matrix factorization (BMF), also known as Boolean matrix decompo-
sition, is a powerful and widely used data mining tool. Like a classical matrix
factorization methods, e.g. non-negative matrix factorization (NNMF) or sin-
gular value decomposition (SVD), BMF provides a different description (see
Section 3.2) of Boolean data, via new, more fundamental variables called fac-
tors.

In BMF a given input data matrix is approximated by a product of so-called
object-factor and factor-attribute matrices. All matrices contain zeros and ones
only. The quality of the factorization—i.e. the quality of factors themselves—
is usually measured by standard measures in BMF, namely by the number of
factors and by the coverage (how large is the portion of data is described by
factors, see Section 3). Both can be easily implemented—in fact each susscefull
BMF algorithm already utilized them—in an arbitrary BMF algorithm. More-
over, both are very important in the evaluation of the factorization quality [1].
On the other hand, other aspects of the quality of factors, e.g. the interpretabil-
ity, that are often neglected in the factor evaluation, are also an important parts
of the matrix factorization.

By now, various approaches to assessment of the quality of factors were devel-
oped [1, 12]. One of the most fundamental—but surprisingly not often used—is
based on the well-known minimum description length principle (MDL). In terms
of MDL, the best factorization is the factorization with the minimal description.
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Due to the MDL principle, such factorization is useful and easily interpretable.
Neverthless, it was many times shown (see, e.g. [1, 2]) that mixing MDL and
BMF produces a poor results with respect to the BMF standard error mea-
sures (the number of factors and the coverage). More details will be provided in
Section 3.

Recent results [13] in the field of formal concept analysis (FCA)—which is
related to the BMF (see Section 3.3)—involving the minimum description length
(MDL) motivate us to revise the use of MDL in BMF.

We propose a new heuristic BMF algorithm for from-below matrix factor-
ization that outperforms existing state-of-the-art algorithms and produces very
good result w.r.t. the standard BMF measures. The algorithm utilizes formal
concept analysis and the MDL principle. Additionally, we present an extensive
experimental evaluation of factors delivered by the proposed algorithm and its
comparison with some already existing algorithms.

The rest of the paper is organized as follows. In the following Section 2 we
provide a brief overview of the related work. Then, in Section 3, a notation used
in the paper, a short introduction to BMF and MDL, and a background of the
paper are presented. Section 4 describes a design of our algorithm. The algorithm
is experimentally evaluated in Section 5. Section 6 draws a conclusion and future
research directions.

2 Related Work

In the last decade, many BMF methods were developed [12, 2, 14, 3, 11, 19]. It
was shown [18] that applying existing non Boolean methods (e.g. NNMF, SVD)
on Boolean data is inappropriate, especially from the interpretation standpoint.

A good overview of BMF and related topics can be found e.g. in [1, 2, 14].
In general, BMF and BMF algorithms are addressed in various papers involving
formal concept analysis [3, 8], role mining [4], binary databases [6] or bipartite
graphs [16].

In many application of BMF, instead of a general Boolean factorization—
which can be computed for instance by well-known Asso algorithm—only a
certain class of factorization, so-called from-below matrix factorization [2], is
considered (see Section 3).

In the recent years, the minimum description length principle [7] has been
applied in BMF. It was used mostly to solve the model order selection prob-
lem [15]—i.e. separation of global structure from noise—or as a factor selection
criteria in BMF algorithms, e.g. in the state-of-the-art algorithm PaNDa+ [12]
(an improvement and generalized version of PaNDa algorithm [11]). As a special
case of application of MDL in BMF Hyper [19] algorithm can be considered, its
objective is to minimize the description of factors instead of the minimization of
the description length (for more details see [12]).

Another related work is [13], where a set of formal concepts with MDL is
considered for the classification task. Our algorithm can be used for simillar
tasks. Instead of [13] our algorithm does not require computing the whole set



of formal concepts, that makes it applicable in practice. Moreover we used a
different approach to MDL measuring.

This paper is, to the best of the author’s knowledge, the first to address the
from-below decomposition based on the MDL.

3 Background and Basic Definitions

3.1 Notation

Through the paper we use a matrix terminology and in some convenient places
a relational terminology. Matrices are denoted by upper-case bold letters (I). Iij
denotes the entry corresponding to the row i and the column j of I. The set of
all m×n Boolean (binary) matrices is denoted by {0, 1}m×n. The number of 1s
in Boolean matrix I is denoted by ‖I‖, i.e ‖I‖ =

∑

i,j Iij .

We interpret input data I ∈ {0, 1}m×n primarily as an object-attribute inci-
dence matrix, i.e. a relation between the set of objects and the set of attributes.
That is, the entry Iij is either 1 or 0, indicating that the object i does or does
not have the attribute j.

If A ∈ {0, 1}m×n and B ∈ {0, 1}m×n, we have the following element-wise
matrix operations. The Boolean sum A ⊕ B which is the normal matrix sum
where 1 + 1 = 1. The Boolean subtraction A ⊖ B which is the normal matrix
subtraction, where 0− 1 = 0.

3.2 Boolean Matrix Factorization

A general aim in BMF is for a given Boolean matrix I ∈ {0, 1}m×n to find
matrices A ∈ {0, 1}m×k and B ∈ {0, 1}k×n for which

I ≈ A ◦B (1)

where ◦ is Boolean matrix multiplication, i.e. (A ◦B)ij = maxkl=1 min(Ail,Blj),
and ≈ represents approximate equality assessed by || · ||. The corresponding
metric E is defined for matrices I ∈ {0, 1}m×n,A ∈ {0, 1}m×k andB ∈ {0, 1}k×n

by

E(I,A ◦B) = ||I⊖ (A ◦B)||. (2)

A decomposition of I into A◦B may be interpreted as a discovery of k factors
that exactly or approximately explain the data: interpreting I, A, and B as the
object–attribute, object–factor, and factor–attribute matrices, the model (1) has
the following interpretation: the object i has the attribute j, i.e. Iij = 1, if and
only if there exists factor l such that l applies to i and j is one of the particular
manifestations of l.

Note also an important geometric view of BMF: a decomposition I ≈ A ◦B
with k factors represents a coverage of the 1s in I by k rectangular areas in I

full of 1s, the lth rectangle is the Boolean sum of the lth column in A and the
lth row in B. For more details see, e.g. [9].



If the rectangular areas cover only non zero elements in the matrix I, the
A ◦ B is called the from-below matrix decomposition [2]. An example of the
from-below BMF follows.

Example 1. Let us consider Boolean matrix with rows 1, . . . , 8 and columns
a, . . . , h depicted in Figure 1. The Boolean matrix is given in the shape of table,
where nonzero entries are marked by crosses. Two different factorizations of the
data are shown in Figure 2.

a b c d e f g h

1 × × × × ×
2 × × × × ×
3 × × × ×
4 × × × × ×
5 × × × ×
6 × × × × ×
7 × × × × × × ×
8 × × × ×

Fig. 1. Example data.

3.3 BMF with Help of Formal Concept Analysis

Formal concept analysis (FCA) [5] provides a basic framework for dealing with
factors. The main notion of FCA is formal context, which is usually represented
as a Boolean matrix, it is defined as a triple 〈X ,Y, I〉, where X is a nonempty set
of objects , Y is a nonempty set of attributes and I is a binary relation between
X and Y. Hence the formal context 〈X ,Y, I〉 with m objects and n attributes
is a Booolean matrix I ∈ {0, 1}m×n.

To every Boolean matrix I ∈ {0, 1}n×m, one might associate the pair 〈↑, ↓〉
of operators (in FCA well known as the arrow operators) assigning to sets C ⊆
X = {1, . . . ,m} and D ⊆ Y = {1, . . . , n} the sets C↑ ⊆ Y and D↓ ⊆ X defined
by

C↑ = {j ∈ Y | ∀i ∈ C : Iij = 1},

D↓ = {i ∈ X | ∀j ∈ D : Iij = 1},

where C↑ is the set of all attributes (columns) shared by all objects (rows)
in C and D↓ is the set of all objects sharing all attributes in D.

The pair 〈C,D〉 for which C↑ = D andD↓ = C is called the formal concept. C
and D are called the extent and the intent of formal concept 〈C,D〉, respectively.
The concepts are partially ordered as follows: 〈A,B〉 ≤ 〈C,D〉 iff A ⊆ C (or



f1 f2 f3 f4
1 ×
2 ×
3 ×
4 ×
5 ×
6 × ×
7 × × ×
8 ×

◦

a b c d e f g h

f1 × × × × ×
f2 × × ×
f3 × × × × ×
f4 × × × ×

=

a b c d e f g h

1 × × × × ×
2 × × × × ×
3 × × ×
4 × × ×
5 × × ×
6 × × × × ×
7 × × × × × × ×
8 × × × ×

f1 f2
1 ×
2 ×
3 ×
4 ×
5 ×
6 ×
7 × ×
8 ×

◦
a b c d e f g h

f1 × ×
f2 × × ×

=

a b c d e f g h

1 × ×
2 × ×
3 × × ×
4 × × ×
5 × × ×
6 × × ×
7 × × × × ×
8 × ×

Fig. 2. Two examples of data factorization.

D ⊆ B), a pair 〈A,B〉 is a subconcept of 〈C,D〉, while 〈C,D〉 is a superconcept
of 〈A,B〉. The set of all formal concepts we denote by

B(I) = {〈C,D〉 | C ⊆ X , D ⊆ Y, C↑ = D,D↓ = C}.

The whole set of partially ordered formal concepts is called the concept lattice
of I.

Given a set F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(I) (with a fixed indexing of
the formal concepts 〈Cl, Dl〉), induces the m×k and k×n Boolean matrices AF

and BF by

(AF )il =

{

1, if i ∈ Cl,
0, if i 6∈ Cl,

(3)

and

(BF )lj =

{

1, if j ∈ Dl,
0, if j 6∈ Dl,

(4)

for l = 1, . . . , k. That is, the lth column and lth row of AF and BF are the
characteristic vectors of Cl and Dl, respectively. The set F is also called a set of
factor concepts. Clearly, AF ◦BF is the from-below matrix decomposition.



Example 2. Let us considered two factorizations depicted in Figure 2. The first
one corresponds to the set

F = {〈{1, 2}, {a, b, c, g, h}〉, 〈{3, 4, 5, 6, 7}, {b, c, d}〉,

〈{6, 7}, {b, c, d, e, f}〉, 〈{7, 8}, {e, f, g, h}〉}.

The second one corresponds to the set

F = {〈{1, 2, 7, 8}, {g, h}〉, 〈{3, 4, 5, 6, 7}, {b, c, d}〉}.

For more details how formal concept analysis is utilized in BMF and the
advantages of such approach see the pioneer work [3].

3.4 A Brief Introduction to MDL

The minimum description length (MDL) principle, which is a computable version
of Kolmogorov complexity [7], is a formalization of the law of parsimony, well
known as Occam’s razor. In terms of MDL, it is formulated as follows: the best
model is the model that ensures the best compression of the given data.

More formally, for a given set of models M and data (in our case represented
via Boolean matrix I) the best model M ∈ M is the one that minimizes the
following cost function:

L(M) + L(I |M), (5)

where L(M) is the encoding length of M in bits and L(I |M) is the encoding
length in bits of the data I encoded with M .

In general, we are only interested in the length of the encoding, and not in
the coding itself, i.e. we do not have to materialize the codes themselves.

Note that MDL requires the compression to be lossless in order to allow for
a fair comparison between different models.

3.5 The Quality of Factorization

The quality of the obtained factorization (1) is usually evaluated via some vari-
ants of metric (2). From the BMF perspective there are two basic viewpoints,
emphasizing the role of the first k factors and the need to account for a pre-
scribed portion of data, respectively. They are known as the discrete basis prob-
lem (DBP) and the approximate factorization problem (AFP), see [14] and [3, 2].
Both of them emphasize the coverage of data, i.e. the geometric view of BMF.

In many applications of BMF, the interpretation of factors plays a crucial
role. It is reasonable instead of the coverage of the obtained factorization em-
pathize a different quality measures that access the interpretability of factors,
e.g. the MDL.

On the other hand, the geometric view of BMF is very important and an
interpretable factorization should reflect it.



In the next section, we propose a novel BMF algorithm which is based on
well-known GreConD algorithm [3]. The algorithm computes from-below fac-
torization via minimization of the cost function (5). The results of experiments
show that it preserves a lot of information from the original data w.r.t. the error
measure (2).

4 Design of Algorithm

4.1 MDL in From-below Matrix Factorization

For matrices AF ∈ {0, 1}m×k, BF ∈ {0, 1}k×m, and I ∈ {0, 1}m×n where I ≈
(AF ◦BF ) we define an error matrix E as follows:

I = (AF ◦BF )⊕E.

One may observe that matrix E can be easily computed via metric (2), i.e.
E = E(I,AF ◦BF). Hence, to provide a lossless compression of I it is sufficient
to encode the matrices AF ,BF and E, i.e. the MDL cost function (5) has the
following form

L(AF ◦BF ) + L(E). (6)

According to the MDL principle, the best factorization of I minimizes func-
tion (6). In the following we explain how to compute the length of the encoding
of matrices AF ,BF and E in bits. We use a similar approach as in [15] and we
modify it for the from-below matrix factorization.

More precisely, to use optimal prefix codes we need to encode the dimensions
of the matrices and the matrices themselves, i.e.

L(AF ◦BF) + L(E) = L(m) + L(n) + L(k) +

+ L(AF ) + L(BF ) + L(E).

For the sake of simplicity we may encode the dimensions m,n, k with block-
encoding, which give us L(m) = L(n) = L(k) = log(max(m,n, k)).

To not introduce some influencing between factors, these are encoded per
factor, i.e. we encode AF per column and BF per row.

In order to use optimal prefix code, we need to first encode the probability of
encountering 1 in a particular column or row respectively, i.e. we need logm bits
for each extent in set F and logn bits for each F intent in set F , respectively.

For simplicity, extent C and intent D of factor concept 〈C,D〉 can be seen
as characteristic vectors, i.e. C ∈ {0, 1}m×1 and D ∈ {0, 1}1×n. We need to
encode all ones and zeros. The length of optimal code is determined by Shannon
entropy. This gives us the number of bits required for the encoding of matrices
AF and BF :



L(AF) =
∑

〈C,D〉∈F

logm− (||C|| · log
||C||

m
+

+ (m− ||C||) · log
m− ||C||

m
),

L(BF ) =
∑

〈C,D〉∈F

logn− (||D|| · log
||D||

n
+

+ (n− ||D||) · log
n− ||D||

n
).

In a similar way we can compute the number of bits required for the encoding
of matrix E:

L(E) = logmn− (||E|| · log
||E||

mn
+

+ (mn− ||E||) · log
mn− ||E||

mn
).

Note, we can encode matrix E element-by-element without any influence,
because these elements are clearly independent.

4.2 Algorithm

In this section we propose a BMF algorithm, called MDLGreConD1, that uses
the above described MDL cost function. The algorithm is a modified version—it
utilizes a similar search strategy—of the GreConD2 algorithm [3], which is one
of the most successful from-below matrix decomposition algorithms (see e.g. [1]).

Pseudocode of MDLGreConD is depicted in Algorithm 1. The algorithm
works as follows.

The algorithm computes a candidate 〈C,D〉 to a factor concept that mini-
mizes the cost function (6) stored in variable total cost. This is done via searching
of a promising column j that is not included in D (lines 8–21). Note that the
adding of j to D is realized via ↑ and ↓ operators mentioned in Section 3.3. Only
the best column j is considered (lines 16–20). If a new column is added to 〈C,D〉,
i.e. the 〈C,D〉 is changed, the modified 〈C,D〉 is used as a new candidate and
another promising column is searched for. If there is no column that reduce the
cost function (line 6), already computed candidate is added to the output set F
of factor concepts. The algorithm ends if there is no candidate that allows for
reduction of the cost function.

1
MDLGreConD is an abbreviation of Minimum Description Length Greedy Concept
on Demand.

2
GreConD is an abbreviation of Greedy Concept on Demand.



Input: Boolean matrix I.
Output: Set F of factor concepts.

1 F ← ∅
2 total cost←∞
3 E← I⊖ (AF ◦BF )
4 while L(AF ◦BF ) + L(E) is decreasing do

5 〈C,D〉 ← 〈∅, ∅〉
6 while 〈C,D〉 is changing do

7 total cost′ ← total cost
8 foreach j /∈ D do

9 D′ ← (D ∪ {j})↓↑

10 C′ ← D′↓

11 if 〈C′, D′〉 ∈ F then

12 continue with next j
13 end

14 F ′ ← F ∪ 〈C′, D′〉
15 cost← L(AF′ ◦BF′) + L(I ⊖ (AF′ ◦BF′))
16 if cost < total cost’ then

17 total cost′ ← cost
18 C′′ ← C′

19 D′′ ← D′

20 end

21 end

22 total cost← total cost′

23 C ← C′′

24 D ← D′′

25 end

26 F ← F ∪ 〈C,D〉

27 end

28 return F
Algorithm 1: MDLGreConD algorithm

4.3 Computational Complexity

The Boolean matrix factorization problem is NP-hard [17] as well as the com-
putation of factorization that minimizes the cost function (6). The proposed
algorithm is heuristic. One may easily derive an exact algorithm with an expo-
nential time complexity. Such algorithm is inapplicable in practice.

We do not provide the time complexity analysis, since the time complexity
is not a main concern of Boolean matrix factorization. The presented algorithm
is only slightly slower than GreConD algorithm, which is, probably, the fastest
BMF algorithm (see e.g. [2]). Both of them are able to factorize, in order of
second, on ordinary PC, all the data presented in Section 5.



5 Experimental Evaluation

In this section, the results of an experimental comparison of BMF algorithms
with MDLGreConD are presented.

5.1 Datasets

We use 6 different real-world datasets, namely Breast, Ecoli, Iris and Mushroom

from UCI repository [10], and Domino and Emea from [4]. The characteristics of
the datasets are shown in Table 1. All of them are well known and widely used
as benchmark datasets in BMF.

Table 1. Datasets and their characteristics.

dataset size dens. I ||B(I)||
Breast 699×20 0.499 642
Domino 79×231 0.400 73
Ecoli 336×34 0.235 813
Emea 3046×35 0.068 780
Iris 150×19 0.263 164
Mushroom 8124×90 0.252 186332

5.2 Algorithms

GreConD [3] algorithm is based on the “on demand” greedy search for formal
concepts of I. It is designed to compute an exact from-below factorization. In-
stead of going through all formal concepts, which are the candidates for factor
concepts, it constructs the factor concepts by adding sequentially “promising
columns” to candidate 〈C,D〉 to factor concept. More formally, a new column j
that minimizes the error

E(I,AF∪〈(D∪j)↓,(D∪j)↓↑〉 ◦BF∪〈(D∪j)↓,(D∪j)↓↑〉)

is added to 〈C,D〉. This is repeated until no such columns exist. If there is no such
column, the 〈C,D〉 is added to the set F . The algorithm ends if E(I,AF ◦BF )
is smaller than the prescribed parameter ǫ or the prescribed number of factors is
reached. For more details see [2]. Note, that usually ǫ = 0, i.e. the whole matrix
I is covered by factors. Such setting was adopted in our experiments.

PaNDa+ [12] is an algorithmic framework based on PaNDa [11] algorithm.
The algorithm aims to extract a set F of pairs 〈C,D〉 that minimizes the cost
function:

∑

〈C,D〉∈F

(|C|+ |D|) + E(I,AF ◦BF ).



Every 〈C,D〉 in F is computed in two stages. On the first stage the core of 〈C,D〉
is computed, on the second stage the core is extended. A core is a rectangle,
not necessarily a formal concept, contained in I and it is computed by adding
columns from a sorted list. Extension to 〈C,D〉 is performed by adding columns
and rows to a core while such an addition allows for reducing the cost. Note,
that PaNDa+ does not produce the from-below factorization. The computation
of PaNDa+ is driven by several parameters (see [12]). All of them are tuned for
each dataset. The best obtained results are reported.

Hyper [19] algorithm aims to extract a set F of pairs 〈C,D〉 that minimize
the cost function which is defined as follows:

∑

〈C,D〉∈F

(|C|+ |D|)/E(I,AF ◦BF ).

As candidates to factors the set of all formal concepts B(I) together with all single
attribute rectangles in data are considered. Each candidate is divided into a set
of single row rectangles that are sorted according to the number of uncovered
elements in I. Then the algorithm tries to add the single row rectangles back
to the candidate, until the above mentioned cost function decreases. After this,
the algorithm in each iteration selects the concept 〈C,D〉 from the modified
set of candidates that minimizes the cost function. Hyper algorithm produces
the from-below factorization. The size of B(I) can be exponentially large. In
such case Hyper has the exponential time complexity. To reduce computational
cost authors of [19] propose to use only frequent formal concepts (the frequency
is an additional parameter of the algorithm). Our experiments show that the
frequency affects highly the performance of the algorithm. In our experiments
we use the whole set of formal concepts B(I), (for the set sizes see the last column
of Table 1).

5.3 Evaluation

In our experiments we compare MDLGreConD algorithm with GreConD,
Hyper and PaNDa+. We study factors themselves and how well they cover the
analyzed datasets.

The number of factors One of the main characteristic of BMF algorithms
is the number of factors they produce. We measure not only the total number
of factors, but also how many non-trivial factors are computed. Under trivial
factors we mean the single-attribute ones. The results are shown in Table 2.

As it can be seen from the table, PaNDa
+ tends to produce only few factors

(w.r.t. the number of attributes, see Table 1).
Hyper returns the number of factors which is close to the number of at-

tributes. Moreover, more than a half of them are trivial. This is true on all
datasets with an exception of Breast and Mushroom data.

On average (see Figure 3), the number of non-trivial factors of GreConD is
better than the number in case of Hyper algorithm. MDLGreConD generates



Table 2. The number of factors.

no. of factors
dataset algorithm non-trivial trivial

Breast GreConD 15 4
Panda

+ 4 0
Hyper 36 0
MDLGreConD 6 1

Domino GreConD 13 8
Panda

+ 3 0
Hyper 10 132
MDLGreConD 7 3

Ecoli GreConD 38 3
Panda

+ 6 0
Hyper 35 30
MDLGreConD 8 1

Emea GreConD 9 33
Panda

+ 3 0
Hyper 3 35
MDLGreConD 7 2

Iris GreConD 8 12
Panda

+ 8 0
Hyper 13 15
MDLGreConD 7 0

Mushroom GreConD 98 3
Panda

+ 8 0
Hyper 89 2
MDLGreConD 50 0

a small set of factors, most of them are non-trivial. PaNDa+ tends to produce
the smallest number of factors. All of them are non-trivial.

However, considering only the number of factors might be insufficient, since
usually one wants to find not just the smallest number of factors, but the set of
factors that capture (coverage) a large part of data. Further we will show how
the algorithms capture the analyzed data.

Data coverage Another important characteristic of factors is how much infor-
mation from the analyzed dataset they retain. We measure it by coverage rate.
We differentiate data coverage and object coverage. Data coverage measures the
rate of “crosses” covered by factors in the dataset—this is a standard measure
in BMF, see e.g. [1]. However, data coverage might be an inappropriate mea-
sure in cases where a dataset contains a lot of redundant attributes. Taking into
consideration these cases, we measure the object coverage rate, i.e. how many
objects are covered at least by one factor. The following example explains how
the coverage measures are computed.



GreConD PaNDa+ Hyper MDLGreConD
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Fig. 3. The average number of factors.

Example 3. The factor set of the first factorization (Figure 2) covers almost all
crosses in data, while the second set covers around a half of crosses. The coverings
for both of them are given below. The crosses covered by one factor are light
gray, the crosses covered by more factors are colored with darker gray.

a b c d e f g h

1 × × × × ×
2 × × × × ×
3 × × × ×
4 × × × × ×
5 × × × ×
6 × × × × ×
7 × × × × × × ×
8 × × × ×

a b c d e f g h

1 × × × ×
2 × × × × ×
3 × × × ×
4 × × × × ×
5 × × × ×
6 × × × × ×
7 × × × × × × ×
8 × × × ×

Fig. 4. The covering with factors from the running examples.

Note, both factor sets cover all objects, i.e. every row in the dataset has at
least one colored cross, thus the object coverage rates is equal to 1 for both
factorizations.

For the first factorization, the cross coverage rate is 35/39 = 0.897. In the case
of the second factorization, the cross coverage rate is 23/39 = 0.589. Obviously,
the bigger value is better.

Average values of data coverage and object coverage rates over all datasets as
well as the minimal, maximal values and quantiles are shown in Figures 5 and 6
respectively. The average data coverage rate of non-trivial factors of MDLGre-



ConD is slightly lower than the analogous measure for GreConD and Hyper.
It is important to note that MDLGreConD provides more stable results, in
other words, the data coverage rate does not depend a lot on datasets, while
for Hyper algorithm, the data coverage rate changes from 0.2 to 1.0. PaNDa+

covers slightly more than a half of data by a small set of factors. Moreover, if
we take into account results regarding the number of factors from Section 5.3
MDLGreConD outperforms all remaining algorithms. Namely, it provides a
large coverage by a smaller number of factors.

GreConD PaNDa+ Hyper MDLGreConD

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 ra
te

Non-trivial
All

Fig. 5. The average data coverage rate.

Regarding the object coverage rate, all the algorithms have similar perfor-
mance, however a large number of non-trivial factors in Hyper ensures its high
coverage rate for all chosen datasets.

Redundancy of factors An important characteristic of a factor set is redun-
dancy. The factor set is redundant if it contains repetitive information, i.e. if it
contains some overlaps between factors. We measure redundancy by overlapping
rate (see Example 4), i.e. how many times the covered crosses are covered by
several factors.

Example 4. For the factor sets from Figure 2 the average overlapping rate is
computed as follows. We count the total area of factors area(〈C,D〉) = ||C|| ·
||D||. In the case of the first factorization we obtain area(f1) = 10, area(f2) =
15, area(f3) = 10 and area(f4) = 8. The total area is 43, the number of covered
crosses is 35, thus, the average overlapping rate is 43/35. The second factorization
is without overlapped crosses, thus its average overlapping rate is 1.
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Fig. 6. The average object coverage rate.

Averages values of overlapping rate are shown in Figure 7. Our experiments
show that factor sets with minimal redundancy are produced by Hyper algo-
rithm. It can be explained regarding the previous experiments (see Section 5.3),
where it was shown that Hyper algorithm tends to produce a large number of
trivial factors.PaNDa+ tends to produce a very small number of factors with low
coverage rate. As one may clearly observe, GreConD produces factorizations
with the largest overlapping rate. MDLGreConD generates a non-redundant
set.

5.4 Discussion

Let us summarize the experimental evaluation. GreConD and Hyper are both
able to explain the whole data. However, the quality of factorizations they pro-
duce is lower than the quality of MDLGreConD. More precisely, Hyper pro-
duces a large number of trivial factors. GreConD produce a less number of
trivial factors, but with a lot of overlappings between them.

The quality of factorization obtained via PaNDa+ algorithm is low as well.
The factors delivered by PaNDa+ cover only a small part of input data.

According to the experimental evaluation, MDLGreConD algorithm pro-
vide a factor set with well-balanced characteristics. The number of factors is
reasonably small, factors themselves explain a large portion of data and are not
redundant.

6 Conclusions

In this paper an MDL-based from-below factorization algorithm, which utilizes
formal concept analysis, has been proposed. It produces a small subset of formal
concepts having a low information loss rate.
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Fig. 7. The average overlapping rate.

The proposed algorithm does not require computing the whole set of formal
concepts, that makes it applicable in practice. More than that, it computes
factor sets that have better overall characteristics than factor sets computed by
the existing BMF algorithms. The MDLGreConD-generated factor sets are
small, contain few single-attribute factors and have a high coverage with low
overlapping rate.

An important direction of future work is application of the proposed method
under supervised settings, i.e. for dealing with classification tasks.
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