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Abstract

In this article, we propose two classes of semiparametric mixture regression

models with single-index for model based clustering. Unlike many semipara-

metric/nonparametric mixture regression models that can only be applied to

low dimensional predictors, the new semiparametric models can easily incor-

porate high dimensional predictors into the nonparametric components. The

proposed models are very general, and many of the recently proposed semi-

parametric/nonparametric mixture regression models are indeed special cases

of the new models. Backfitting estimates and the corresponding modified EM

algorithms are proposed to achieve optimal convergence rates for both para-

metric and nonparametric parts. We establish the identifiability results of the

proposed two models and investigate the asymptotic properties of the proposed

estimation procedures. Simulation studies are conducted to demonstrate the

finite sample performance of the proposed models. An application of NBA data

by new models reveals some new findings.
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1 Introduction

Mixtures of regression models are commonly used as model based clustering methods

to reveal the relationship among interested variables if the whole population is inho-

mogeneous and consists of several homogeneous subgroups. They have been widely

used in many areas such as econometrics, biology, and epidemiology. For a general

account of traditional parametric mixture models, please see, for example, Lindsay

(1995), Böhning (1999), McLachlan and Peel (2000), and Frühwirth-Schnatter (2006).

However, the traditional mixture of regression models requires strong parametric as-

sumption: liner component regression functions, constant component variance, and

constant component proportions. The fully parametric hierarchical mixtures of ex-

perts model (Jordan and Jacobs, 1994) has been proposed to allow the component

proportions to depend on the covariates in machine learning. Recently, many semi-

parametric and nonparametric mixture regression models have been proposed to relax

the parametric assumption of mixture regression models. See, for example, Young

and Hunter (2010); Huang and Yao (2012); Cao and Yao (2012); Huang et al. (2013,

2014), among others. However, most of those existing semparametirc or nonpara-

metric mixture regressions can only be applied for low dimensional predictors due to

“curse of dimensionality”. It will be desirable to be able to relax parametric assump-

tions of traditional mixtures of regression models when the dimension of predictors

is high.

In this article, we propose a mixture of single-index models (MSIM) and a mixture

of regression models with varying single-index proportions (MRSIP) to reduce the
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dimension of high dimensional predictors before modeling them nonparametrically.

Many existing popular models can be considered as special cases of the proposed

two models. Huang et al. (2013) proposed the nonparametric mixture of regression

models

Y |X=x ∼
k∑
j=1

πj(x)φ(Yi|mj(x), σ2
j (x)),

where πj(x),mj(x), and σ2
j (x) are unknown smoothing functions, and φ(y|µ, σ2) is

the normal density with mean µ and variance σ2. Their proposed model can drasti-

cally reduce the modelling bias when the strong parametric assumption of traditional

mixture of linear regression models does not hold. However, the above model is not

applicable to high dimensional predictors due to the kernel estimation used for non-

parametric parts. To solve the above problem, we propose a mixture of single-index

models

Y |x ∼
k∑
j=1

πj(α
Tx)φ(Yi|mj(α

Tx), σ2
j (α

Tx)), (1.1)

in which the single index αTx transfers the high dimensional nonparametric problem

to a univariate nonparametric problem. When k = 1, model (1.1) reduces to a single

index model (Ichimura, 1993; Hardle et al., 1993). If x is a scalar, then model (1.1)

reduces to the nonparametric mixture of regression model proposed by Huang et al.

(2013). Peng (2012) also applied the single index idea to the component means and

variance and assumed that component proportions do not depend on the predictor

x. However, Peng (2012) did not give any theoretical properties of their proposed

estimates.

Young and Hunter (2010) and Huang and Yao (2012) proposed a semiparametric
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mixture of regression models

Y |X=x ∼
k∑
j=1

πj(x)φ(Yi|xTβj, σ2
j ),

where πj(x) is an unknown smoothing function, to combine nice properties of both

nonparametric mixture regression models and traditional parametric mixture regres-

sion models. Their semiparametric mixture models assume that component pro-

portions depend on covariates nonparametrically to reduce the modelling bias while

component regression functions are still assumed to be linear to have better model

interpretation. However, their estimation procedures cannot be applied if the dimen-

sion of predictors x is high due to kernel estimation used for πj(x). We propose a

mixture of regression models with varying single-index proportions

Y |X=x ∼
k∑
j=1

πj(α
Tx)φ(Yi|xTβj, σ2

j ), (1.2)

which uses the idea of single index to model the nonparametric effect of predictors

on component proportions, while allowing easy interpretation of linear component

regression functions. When k = 1, model (1.2) reduces to the traditional linear

regression model. If x is a scalar, then model (1.2) reduces to the semiparametric

mixture models considered by Young and Hunter (2010) and Huang and Yao (2012).

Modeling component proportions nonparametrically can reduce the modelling bias

and better cluster the data when the traditional parametric assumptions of component

proportions do not hold (Young and Hunter, 2010; Huang and Yao, 2012).

We prove the identifiability results of proposed two models under some mild con-

ditions. We propose a modified EM algorithm by combining the ideas of backfitting

algorithm, kernel estimation, and local likelihood to estimate global parameters and
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nonparametric functions. In addition, the asymptotic properties of the proposed

estimation procedures are also investigated. Simulation studies are conducted to

demonstrate the finite sample performance of the proposed models. An application

of NBA data by new models reveals some new interesting findings.

The rest of the paper is organized as follows. In Section 2, we introduce the

MSIM and study its identifiability result. A one-step and a fully-iterated backfitting

estimate are proposed, and their asymptotic properties are also studied. In Section

3, we introduce the MRSIP. The identifiability result and asymptotic properties of

the proposed estimates are given. In Section 4 and Section 5, we use Monte Carlo

studies and a real data example to demonstrate the finite sample performance of the

proposed two models. A discussion section is given in Section 6 and we defer the

technical conditions and proofs in the supplemental material.

2 Mixtures of Single-index Models

2.1 Model Definition and Identifiability

Assume that {(xi, Yi), i = 1, ..., n} is a random sample from the population (x, Y ),

where x is p-dimensional and Y is univariate. Let C be a latent variable, and has a

discrete distribution P (C = j|x) = πj(α
Tx) for j = 1, ..., k. Conditional on C = j

and x, Y follows a normal distribution with mean mj(α
Tx) and variance σ2

j (α
Tx).

Without observing C, the conditional distribution of Y given x can be written as:

Y |x ∼
k∑
j=1

πj(α
Tx)φ(Yi|mj(α

Tx), σ2
j (α

Tx)).

The above model is the proposed mixture of single-index models. Throughout the

paper, we assume that k is fixed, and refer to model (1.1) as a finite semiparametric
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mixture of regression models, since πj(·), mj(·) and σ2
j (·) are all nonparametric. In

the model (1.1), we use the same index α for all components. But our proposed

estimation procedure and asymptotic results can be easily extended to the cases

where components have different index α.

Compared to Huang et al. (2013), the appeal of the proposed MSIM is that by

using an index αTx, the so-called “curse of dimensionality” in fitting multivariate

nonparametric regression functions is avoided. It is of dimension-reduction structure

in the sense that, given the estimate of α, denoted by α̂, we can use the univari-

ate α̂Tx as the covariate and simplify the model (1.1) to the nonparametric mixture

regression model proposed by Huang et al. (2013). Therefore, model (1.1) is a rea-

sonable compromise between fully parametric and fully nonparametric modeling.

Identifiability is a major concern for most mixture models. Some well known

identifiability results of finite mixture models include: mixture of univariate normals is

identifiable up to relabeling (Titterington et al., 1985) and finite mixture of regression

models is identifiable up to relabeling provided that covariates have a certain level

of variability (Henning, 2000). The following theorem establishes the identifiability

result of the model (1.1) and its proof is given in the supplemental material.

Theorem 2.1. Assume that

1. πj(z), mj(z), and σ2
j (z) are differentiable and not constant on the support of

αTx, j = 1, ..., k;

2. The x are continuously distributed random variables that have a joint probability

density function;

3. The support of x is not contained in any proper linear subspace of Rp;

4. ‖α‖ = 1 and the first nonzero element of α is positive;

6



5. For any 1 ≤ i 6= j ≤ k,

1∑
l=0

‖m(l)
i (z)−m(l)

j (z)‖2 +
1∑
l=0

‖σ(l)
i (z)− σ(l)

j (z)‖2 6= 0,

for any z where g(l) is the lth derivative of g and equal to g if l = 0.

Then, model (1.1) is identifiable.

2.2 Estimation Procedure

In this subsection, we propose a one-step estimation procedure and a backfitting

algorithm to estimate the nonparametric functions and the single index of the model

(1.1).

Let `∗(1)(π,m,σ2,α) be the log-likelihood of the collected data {(xi, Yi), i =

1, ..., n} from the model (1.1). That is:

`∗(1)(π,m,σ2,α) =
n∑
i=1

log{
k∑
j=1

πj(α
Txi)φ(Yi|mj(α

Txi), σ
2
j (α

Txi))}, (2.1)

where π(·) = {π1(·), ..., πk−1(·)}T ,m(·) = {m1(·), ...,mk(·)}T , and σ2(·) = {σ2
1(·), ..., σ2

k(·)}T .

Since π(·), m(·) and σ2(·) consist of nonparametric functions, (2.1) is not ready for

maximization.

Note that for the model (1.1), the space spanned by the single index α is in fact

the central mean subspace of Y |x (Cook and Li, 2002) in the literature of sufficient

dimension reduction. Therefore, we can employ existing sufficient dimension reduc-

tion methods to find an initial estimate of α. Please see, for example, Li (1991); Li,

Zha, and Chiaromonte (2005); Wang and Xia (2008); Luo, Wang, and Tsai (2009);

Ma and Zhu (2012a,b). In this article, we will simply employ sliced inverse regression

(Li, 1991) to obtain an initial estimate of α, denoted by α̃.
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Given the estimated single index α̃, the nonparametric functions π(z), m(z) and

σ2(z) can then be estimated by maximizing the following local log-likelihood function:

`
(1)
1 (π,m,σ2) =

n∑
i=1

log{
k∑
j=1

πj(α̃
Txi)φ(Yi|mj(α̃

Txi), σ
2
j (α̃

Txi))}Kh(α̃
Txi − z),

(2.2)

where Kh(z) = 1
h
K( z

h
), K(·) is a kernel density function, and h is a tuning parameter.

Let π̂(·), m̂(·) and σ̂2(·) be the estimates that maximize (2.2). The above estimates

are the proposed one-step estimate.

We propose a modified EM-type algorithm to maximize `
(1)
1 . In practice, we

usually want to evaluate unknown functions at a set of grid points, which in this

case, requires us to maximize local log-likelihood functions at a set of grid points.

If we simply employ the EM algorithm separately for each grid point, the labels in

the EM algorithm may change at different grid points, and we may not be able to

get smoothed estimated curves (Huang and Yao, 2012). Therefore, we propose the

following modified EM-type algorithm, which estimates the nonparametric functions

simultaneously at a set of grid points, say {ut, t = 1, ..., N}, and provides a unified

label of each observation across all grid points.

Algorithm 2.1. Modified EM-type algorithm to maximize (2.2) given the single index

estimate α̃.

E-step: Calculate the expectations of component labels based on estimates from lth

iteration:

p
(l+1)
ij =

π
(l)
j (α̃Txi)φ(Yi|m(l)

j (α̃Txi), σ
2(l)
j (α̃Txi))∑k

j=1 π
(l)
j (α̃Txi)φ(Yi|m(l)

j (α̃Txi), σ
2(l)
j (α̃Txi))

, (2.3)

where i = 1, . . . , n, j = 1, . . . , k.
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M-step: Update the estimates

π
(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij Kh(α̃

Txi − z)∑n
i=1Kh(α̃

Txi − z)
, (2.4)

m
(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij YiKh(α̃

Txi − z)∑n
i=1 p

(l+1)
ij Kh(α̃

Txi − z)
, (2.5)

σ
2(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij (Yi −m(l+1)

j (z))2Kh(α̃
Txi − z)∑n

i=1 p
(l+1)
ij Kh(α̃

Txi − z)
, (2.6)

for z ∈ {ut, t = 1, ..., N} and j = 1, . . . , k. We then update π
(l+1)
j (α̃Txi),

m
(l+1)
j (α̃Txi) and σ

2(l+1)
j (α̃Txi), i = 1, ..., n, by linear interpolating π

(l+1)
j (ut),

m
(l+1)
j (ut) and σ

2(l+1)
j (ut), t = 1, ..., N , respectively.

Note that in the M-step, the nonparametric functions are estimated simultane-

ously at a set of grid points, and therefore, the classification probabilities in the the E-

step can be estimated globally to avoid the label switching problem (Yao and Lindsay,

2009). If the sample size n is not too large, one can also take all {α̃Txi, i = 1, . . . , n}

as grid points for z in the M-step.

The initial estimate α̃ by SIR does not make use of the mixture information and

thus is not efficient. Given one step estimate π̂(·), m̂(·) and σ̂2(·), we can further

improve the estimate of α by maximizing

`
(1)
2 (α) =

n∑
i=1

log{
k∑
j=1

π̂j(α
Txi)φ(Yi|m̂j(α

Txi), σ̂
2
j (α

Txi))}, (2.7)

with respect to α. The proposed fully iterative backfitting estimator of α, denoted

by α̂, iterates the above two steps until convergence.

Algorithm 2.2. Fully iterative backfitting estimator (FIB)

Step 1: Apply sliced inverse regression (SIR) to obtain an initial estimate of the
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single index parameter α, denoted by α̃.

Step 2: Given α̃, apply the modified EM-algorithm (2.3)—(2.6) to maximize `
(1)
1 in

(2.2) to obtain the estimates π̂(·), m̂(·), and σ̂2(·).

Step 3: Given π̂(·), m̂(·), and σ̂2(·) from Step 2, update the estimate of α by max-

imizing `
(1)
2 in (2.7).

Step 4: Iterate Steps 2 - 3 until convergence.

2.3 Asymptotic Properties

The asymptotic properties of the proposed estimates are investigated below. Let

θ(z) = (πT (z),mT (z), (σ2)T (z))T . Define

`(θ(z), y) = log
k∑
j=1

πj(z)φ{y|mj(z), σ2
j (z)},

q1(z) =
∂`(θ(z), y)

∂θ
,

q2(z) =
∂2`(θ(z), y)

∂θ∂θT
,

I(1)θ (z) = −E[q2(Z)|Z = z],

Λ1(u|z) = E[q1(z)|Z = u].

Under further conditions defined in the supplemental material, the asymptotic

properties of the one-step estimates π̂(·), m̂(·), and σ̂2(·) are given in the following

theorem.

Theorem 2.2. Assume that conditions (C1)-(C7) in the supplemental material hold.
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Then, as n→∞, h→ 0 and nh→∞, we have

√
nh{θ̂(z)− θ(z)− B1 + op(h

2)} D→ N{0, ν0f−1(z)I(1)θ (z)}, (2.8)

where

B1(z) = I(1)−1θ

{
f ′(z)Λ

′
1(z|z)

f(z)
+

1

2
Λ

′′

1(z|z)

}
κ2h

2,

with f(·) the marginal density function of αTx, κl =
∫
tlK(t)dt and νl =

∫
tlK2(t)dt.

Note that the asymptotic variance of θ̂(z) is the same as those given in Huang

et al. (2013). Thus, the nonparametric functions can be estimated with the same

accuracy as it would have if the single index αTx were known. This is expected

since the single index α can be estimated at a root n convergence rate which is much

faster than θ̂(z). In addition, note that the one-step estimates of θ(z) have the same

asymptotic variance (up to the first order) as the full iterative backfitting algorithm

but with much less computations. Our simulation results in Section 4 further confirm

this result.

The next theorem gives the asymptotic results of the α̂ given by full iterative

backfitting algorithm.

Theorem 2.3. Assume that conditions (C1)-(C8) in the supplemental material hold.

Then, as n→∞, nh4 → 0, and nh2/ log(1/h)→∞,

√
n(α̂−α)

D→ N(0,Q−11 ), (2.9)

where

Q1 = E
[
{xθ′(Z)}q2(Z){xθ′(Z)}T − xθ′(Z)q2(Z)I(1)−1θ (Z)E{q2(Z)[xθ′(Z)]T |Z}

]
.
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3 Mixtures of Regression Models with Varying Single-

Index Proportions

3.1 Model Definition and Identifiability

The MRSIP assumes that P (C = j|x) = πj(α
Tx) for j = 1, ..., k, and conditional on

C = j and x, Y follows a normal distribution with mean xTβj and variance σ2
j . That

is,

Y |x ∼
k∑
j=1

πj(α
Tx)N(xTβj, σ

2
j ).

Since πj(·)’s are nonparametric, model (1.2) is also a finite semiparametric mixture

of regression models. The linear component regression functions xTβj enjoy simple

interpretation, while nonparametric functions πj(α
Tx) can incorporate the effects of

predictors on component proportions more flexibly to reduce the modeling bias. See

Young and Hunter (2010); Huang et al. (2013) for more information. We first prove

the identifiability result of the model (1.2) in the following theorem and its proof is

given in the supplemental material.

Theorem 3.1. Assume that

1. πj(z) > 0 are differentiable and not constant on the support of αTx, j = 1, ..., k;

2. The component of x are continuously distributed random variables that have a

joint probability density function;

3. The support of x contains an open set in Rp and is not contained in any proper

linear subspace of Rp;

4. ‖α‖ = 1 and the first nonzero element of α is positive;
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5. (βj, σ
2
j ), j = 1, ..., k, are distinct pairs.

Then, model (1.2) is identifiable.

3.2 Estimation Procedure

The log-likelihood of the collected data for the model (1.2) is:

`∗(2)(π,σ2,α,β) =
n∑
i=1

log{
k∑
j=1

πj(α
Txi)φ(Yi|xTi βj, σ2

j )}, (3.1)

where π(·) = {π1(·), ..., πk−1(·)}T , σ2 = {σ2
1, ..., σ

2
k}T , and β = {β1, ...,βk}T . Since

π(·) consists of nonparametric functions, (3.1) is not ready for maximization. We pro-

pose a backfitting algorithm to iterate between estimating the parameters (α,β,σ2)

and the nonparametric functions π(·).

Given the estimates of (α,β,σ2), say (α̂, β̂, σ̂2), then π(·) can be estimated

locally by maximizing the following local log-likelihood function:

`
(2)
1 (π) =

n∑
i=1

log{
k∑
j=1

πj(α̂
Txi)φ(Yi|xTi β̂j, σ̂2

j )}Kh(α̂
Txi − z). (3.2)

Let π̂(·) be the estimate that maximizes (3.2). We can then further update the

estimate of (α,β,σ2) by maximizing

`
(2)
2 (α,β,σ2) =

n∑
i=1

log{
k∑
j=1

π̂j(α
Txi)φ(Yi|xTi βj, σ2

j )}. (3.3)

The backfitting algorithm by iterating the above two steps can be summarized as

follows.

Algorithm 3.1. Backfitting algorithm to estimate the model (1.2).
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Step 1: Obtain an initial estimate of (α,β,σ2).

Step 2: Given (α̂, β̂, σ̂2), use the following modified EM-type algorithm to maximize

`
(2)
1 in (3.2).

E-step: Calculate the expectations of component labels based on estimates from

lth iteration:

p
(l+1)
ij =

π
(l)
j (α̂Txi)φ(Yi|xTi β̂j, σ̂2

j )∑k
j=1 π

(l)
j (α̂Txi)φ(Yi|xTi β̂j, σ̂2

j )
, (3.4)

where i = 1, . . . , n, j = 1, ..., k. M-step: Update the estimate

π
(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij Kh(α̂

Txi − z)∑n
i=1Kh(α̂

Txi − z)
(3.5)

for z ∈ {ut, t = 1, ..., N}. We then update π
(l+1)
j (α̂Txi), i = 1, ..., n by linear

interpolating π
(l+1)
j (ut), t = 1, ..., N .

Step 3: Given π̂(·) from Step 2, update (α̂, β̂, σ̂2) by maximizing (3.3). We propose

to iterate between updating α and (β,σ).

Step 3.1: Given α̂, update (β,σ2).

E-step: Calculate the classification probabilities:

p
(l+1)
ij =

π̂j(α̂
Txi)φ(Yi|xTi β

(l)
j , σ

2(l)
j )∑k

j=1 π̂j(α̂
Txi)φ(Yi|xTi β

(l)
j , σ

2(l)
j )

, j = 1, ..., k. (3.6)

M-step: Update β and σ2:

β
(l+1)
j = (STR

(l+1)
j S)−1STR

(l+1)
j y, (3.7)

σ
2(l+1)
j =

∑n
i=1 p

(l+1)
ij (Yi − xTi β

(l+1)
j )2∑n

i=1 p
(l+1)
ij

, (3.8)
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where j = 1, ..., k, R
(l+1)
j = diag{p(l+1)

ij , ..., p
(l+1)
nj }, and S = (x1, ...,xn)T .

Step 3.2: Given (β̂, σ̂2), update α by maximizing the following log-likelihood

`
(2)
3 (α) =

n∑
i=1

log{
k∑
j=1

π̂j(α
Txi)φ(Yi|xTi β̂j, σ̂2

j )}.

Step 3.3: Iterate Steps 3.1-3.2 until convergence.

Step 4: Iterate Steps 2-3 until convergence.

There are many ways to obtain an initial estimate of (α,β,σ2). In our numerical

studies, we get an initial estimate of (β,σ2) by fitting traditional mixtures of linear

regression models. Using resulting hard-clustering results as new response variable,

we apply SIR to get an initial estimate of α.

3.3 Asymptotic Properties

Let (π̂(z), α̂, β̂, σ̂2) be the resulting estimate of backfitting Algorithm 3.1. In this

section, we investigate their asymptotic properties. Let η = (βT , (σ2)T )T and λ =

(αT ,ηT )T . Define

`(π(z),λ,x, y) = log
k∑
j=1

πj(z)φ{y|xTβj, σ2
j},

qπ(z) =
∂`(π(z), λ, x, y)

∂π
,

qππ(z) =
∂2`(π(z), λ, x, y)

∂π∂πT
.

Similarly, define qλ, qλλ, and qπη. Denote I(2)π (z) = −E[qππ(Z)|Z = z] and Λ2(u|z) =

E[qπ(z)|Z = u].
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Under some regularity conditions, the asymptotic properties of π̂(z) are given in

the following theorem and its proof is given in the supplemental material.

Theorem 3.2. Assume that conditions (C1)-(C4) and (C9)-(C11) in the supplemen-

tal material hold. Then, as n→∞, h→ 0 and nh→∞, we have

√
nh{π̂(z)− π(z)− B2(z) + op(h

2)} D→ N{0, ν0f−1(z)I(2)π (z)}, (3.9)

where

B2(z) = I(2)−1π

{
f ′(z)Λ′2(z|z)

f(z)
+

1

2
Λ′′2(z|z)

}
κ2h

2.

The asymptotic property of the parametric estimate λ̂ is given in the following

theorem and its proof is given in the supplemental material.

Theorem 3.3. Assume that conditions (C1)-(C4) and (C9)-(C12) in the supplemen-

tal material hold. Then, as n→∞, nh4 → 0, and nh2/ log(1/h)→∞,

√
n(λ̂− λ)

D→ N(0,Q−12 ),

where,

Q2 = E

qππ(Z)

xπ′(Z)

I



xπ′(Z)

I

−
I(2)−1π (Z)E{qππ(Z)(xπ′(Z))T |Z}

I(2)−1π (Z)E{qπη(Z)|Z}



T .

4 Simulation Studies

In this section, we conduct simulation studies to test the performance of the proposed

models and estimation procedures.

The performance of the estimates of the mean functions mj(·)’s in the model (1.1)
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is measured by the square root of the average square errors (RASE)

RASE2
m = N−1

k∑
j=1

N∑
t=1

[m̂j(ut)−mj(ut)]
2.

In our simulation, we set N = 100. Similarly, we can define the RASE for variance

functions σ2
j (·)’s and proportion functions πj(·)’s, denoted by RASEσ2 and RASEπ,

respectively.

Example 1: We conduct a simulation for a two-component MSIM:

π1(z) = 0.5 + 0.3 sin(πz) and π2(z) = 1− π1(z),

m1(z) = 3− sin(2πz/
√

3) and m2(z) = cos(
√

3πz),

σ1(z) = 0.7 + sin(3πz)/15 and σ2(z) = 0.3 + cos(1.3πz)/10.

where zi = αTxi, xi are trivariate with independent uniform (0,1) components, and

the direction parameter is α = (1, 1, 1)/
√

3. The sample sizes n = 200, n = 400, and

n = 800 are conducted over 500 repetitions. To estimate α, we use sliced inverse

regression (SIR) and the fully iterative backfitting estimate (FIB). To estimate the

nonparametric functions, we apply the one-step estimate (OS) and FIB. For FIB, we

use both true value (T) and SIR (S) as the initial values.

We first select a proper bandwidth for estimating π(·), m(·) and σ2(·). Based on

Theorem 2.2, one can calculate theoretical optimal bandwidth by minimizing asymp-

totic mean squared errors. However, the theoretical optimal bandwidth depends on

many unknown quantities, which are not easy to estimate in practice. In our ex-

amples, we propose to use the following cross-validation (CV) method to choose the

bandwidth. Let D be the full data set, and divide D into a training set Rl and a test

set Tl. That is, Rl ∪ Tl = D for l = 1, ..., L. We use the training set Rl to obtain

the estimates {π̂(·), m̂(·), σ̂2(·), α̂}. We then evaluate π(·), m(·) and σ2(·) for the
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test data set. For each (xt, yt) ∈ Tl, we calculate the classification probability as

p̂tj =
π̂j(α̂

Txt)φ(yt|m̂j(α̂
Txt), σ̂

2
j (α̂

Txt))∑k
j=1 π̂j(α̂

Txt)φ(yt|m̂j(α̂
Txt), σ̂2

j (α̂
Txt))

, (4.1)

for j = 1, ..., k. We consider the regular CV , which is defined by

CV (h) =
L∑
l=1

∑
t∈Tl

(yt − ŷt)2,

where ŷt =
∑k

j=1 p̂tjm̂j(α̂
Txt). We also implemented the likelihood based cross vali-

dation to choose the bandwidth and the results are similar but with more computa-

tions.

We set L = 10 and randomly partition the data. We repeat the procedure 30

times, and take the average of the selected bandwidth as the optimal bandwidth,

denoted by ĥ. In the simulation, we consider three different bandwidths, ĥ× n−2/15,

ĥ and 1.5ĥ, which correspond to the under-smoothing, appropriate smoothing and

over-smoothing condition, respectively.

Table 1 reports the MSEs of α̂ (true value times 100) and Table 2 contains the

mean and standard deviation of RASEπ, RASEm, and RASEσ2 . Based on Table 1,

we can see that the proposed fully iterative backfitting estimates (FIB) give much

better results than SIR, which is reasonable since FIB makes use of mixture infor-

mation while SIR does not. Based on Table 2, we can see that OS provides close

estimates to FIB, although FIB generally provides slightly smaller RASEs than OS

for finite sample size. This verified the theoretical results stated in Section 2.3.

In addition, from Tables 1 and 2, we can see that the proposed bandwidth selec-

tion procedure based on cross validation works reasonably well since the appropriate

bandwidths chosen by CV usually provide the estimate that is or is close to the best
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one. Furthermore, FIB(S) provides similar results to FIB(T). Therefore, SIR provides

good initial values for the proposed fully iterative estimates.

Table 1: MSE of α̂ (true value times 100) for Example 1.

SIR FIB(T) FIB(S)

h = 0.054 h = 0.109 h = 0.164 h = 0.054 h = 0.109 h = 0.164

α1 0.881 0.099 0.126 0.128 0.287 0.130 0.147

n = 200 α2 0.829 0.113 0.144 0.124 0.324 0.144 0.137

α3 1.066 0.110 0.152 0.137 0.388 0.154 0.167

h = 0.045 h = 0.100 h = 0.149 h = 0.045 h = 0.100 h = 0.149

α1 0.435 0.066 0.046 0.046 0.125 0.050 0.045

n = 400 α2 0.447 0.063 0.054 0.051 0.121 0.055 0.052

α3 0.411 0.062 0.052 0.052 0.123 0.053 0.052

h = 0.037 h = 0.091 h = 0.137 h = 0.037 h = 0.091 h = 0.137

α1 0.215 0.047 0.022 0.029 0.063 0.035 0.024

n = 800 α2 0.256 0.034 0.035 0.040 0.044 0.029 0.027

α3 0.226 0.065 0.031 0.058 0.062 0.050 0.030

Example 2: We conduct a simulation for a two-component MRSIP:

π1(z) = 0.5− 0.35 sin(πz) and π2(z) = 1− π1(z),

m1(x) = 1 + 3x2 and m2(x) = −1 + 2x1 + 3x3,

σ2
1 = 0.7 and σ2

2 = 0.6,

where m1(x) and m2(x) are the regression functions for the first and second compo-

nents, respectively. Therefore, β1 = (1, 0, 3, 0) and β2 = (−1, 2, 0, 3). xi are trivari-

ate with independent uniform (0,1) components, and the single index parameter is

α = (1, 1, 1)/
√

3. MRSIP with true value (T) and SIR (S) as initial values are used

to fit the data, and the results are compared to the traditional mixture of linear

regression models (MixLinReg). The bandwidth for MRSIP is chosen based on the

cross validation similar to Example 1.
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Table 2: Mean and Standard Deviation of RASEs for Example 1.

OS FIB(T) FIB(S)

n=200 h = 0.125 h = 0.054 h = 0.109 h = 0.164 h = 0.054 h = 0.109 h = 0.164

π 0.044(0.017) 0.057(0.015) 0.043(0.016) 0.049(0.017) 0.058(0.015) 0.043(0.016) 0.049(0.017)

µ 0.227(0.063) 0.181(0.098) 0.176(0.046) 0.287(0.056) 0.178(0.086) 0.177(0.051) 0.288(0.059)

σ2 0.197(0.084) 0.175(0.169) 0.163(0.081) 0.246(0.071) 0.162(0.131) 0.164(0.095) 0.247(0.080)

n=400 h = 0.108 h = 0.045 h = 0.100 h = 0.149 h = 0.045 h = 0.100 h = 0.149

π 0.023(0.008) 0.032(0.008) 0.023(0.008) 0.027(0.009) 0.032(0.008) 0.023(0.008) 0.027(0.009)

µ 0.118(0.022) 0.093(0.045) 0.100(0.022) 0.169(0.020) 0.094(0.046) 0.100(0.022) 0.169(0.020)

σ2 0.104(0.035) 0.089(0.077) 0.093(0.045) 0.143(0.028) 0.089(0.077) 0.093(0.045) 0.143(0.028)

n=800 h = 0.094 h = 0.037 h = 0.091 h = 0.137 h = 0.037 h = 0.091 h = 0.137

π 0.013(0.004) 0.017(0.003) 0.012(0.004) 0.016(0.004) 0.017(0.003) 0.012(0.004) 0.016(0.004)

µ 0.062(0.010) 0.050(0.023) 0.056(0.010) 0.102(0.011) 0.050(0.023) 0.056(0.010) 0.101(0.010)

σ2 0.055(0.015) 0.049(0.046) 0.052(0.015) 0.086(0.010) 0.049(0.046) 0.051(0.012) 0.085(0.010)

Table 3 reports the MSEs of parameter estimates, and Table 4 contains the MSEs

of α̂ and the average of RASEπ. From Table 3, we can see that MRSIP works com-

parable to MixLinReg when the sample size is small, and outperforms MixLinReg

when sample size is large (such as n = 400 or 800). By reducing the modelling bias of

component proportions, MRSIP is able to better classify observations into two com-

ponents and thus provide better component regression parameters. Based on Table

4, it is clear that MRSIP provides better estimates of component proportions than

MixLinReg since the constant assumption of component proportions by MixLinReg

is violated. From both tables, we can see that MRSIP(S) provides similar results to

MRSIP(T), which demonstrates that SIR provides good initial values for MRSIP.
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Table 3: The MSEs of parameters (true value times 100) for Example 2.

β10 β11 β12 β13 β20 β21 β22 β23 σ21 σ22

n = 200 MRSIP(S) 46.37 32.78 34.73 37.61 11.19 16.55 15.05 16.36 4.649 1.754

MRSIP(T) 51.91 33.62 39.01 37.25 11.10 16.56 15.07 16.04 4.584 1.649

h = 0.131 MixLinReg 50.87 33.67 42.53 34.68 12.03 12.66 18.84 12.30 4.250 1.265

n = 400 MRSIP(S) 13.83 11.89 14.19 11.47 5.541 6.332 6.767 7.165 1.631 0.721

MRSIP(T) 14.79 12.49 14.84 11.59 5.513 6.254 6.632 6.926 1.672 0.675

h = 0.103 MixLinReg 29.03 14.97 29.46 15.72 8.045 5.967 12.46 6.269 1.864 0.626

n = 800 MRSIP(S) 6.324 4.491 6.150 4.736 2.365 2.973 2.773 3.584 0.669 0.334

MRSIP(T) 6.788 4.614 6.820 4.922 2.301 2.829 2.718 3.348 0.691 0.307

h = 0.080 MixLinReg 21.89 6.866 21.84 8.223 5.413 3.163 8.775 3.640 0.848 0.352

5 Real Data Example

We illustrate the proposed methodology by an analysis of “The effectiveness of Na-

tional Basketball Association guards”. There are many ways to measure the (statis-

tical) performance of guards in the National Basket Association (NBA). Of interest

is how the height of the player (Height), minutes per game (MPG) and free throw

percentage (FTP) affect points per game (PPM) (Chatterjee et al., 1995).

The data set contains some descriptive statistics for all 105 guards for the 1992-

1993 season. Since players playing very few minutes are quite different from those

who play a sizable part of the season, we only look at those players playing 10 or more

minutes per game and appearing in 10 or more games. In addition, Michael Jordan

is an outlier, so we also omit him from our data analysis. These exclude 10 players

(Chatterjee et al., 1995). We divide each variable by its corresponding standard

deviation, so that they have comparable numerical scales. An optimal bandwidth

is selected at 0.344 by CV procedure. Figure 1(a) contains the estimated mean

functions and hard-clustering results, denoted by dots and squares, respectively. The

95% confidence interval for α̂ based on MSIM are (0.134,0.541), (0.715,0.949) and
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Table 4: The MSEs of single index parameter and the average of RASEπ (true value
times 100) for Example 2.

α1 α2 α3 RASEπ

n = 200 MRSIP(S) 5.709 19.30 5.996 18.87

MRSIP(T) 4.984 9.449 4.896 17.86

h = 0.131 MixLinReg - - - 28.98

n = 400 MRSIP(S) 2.682 6.968 3.029 13.74

MRSIP(T) 2.113 3.019 1.902 12.98

h = 0.103 MixLinReg - - - 28.23

n = 800 MRSIP(S) 0.980 2.527 1.585 10.35

MRSIP(T) 0.892 0.979 0.969 9.960

h = 0.080 MixLinReg - - - 28.04

(0.202,0.679). Therefore, MPG is the most influential factor on PPM. This might

be partly explained by that coaches tend to let good players with higher PPM play

longer minutes per game (i.e., higher MPG).

To evaluate the prediction performance of the proposed models and compared

them to linear regression model and mixture of linear regression models, we used

d-fold cross-validation with d=5, 10, and also Monte-Carlo cross-validation (MCCV)

(Shao, 1993). In MCCV, the data were partitioned 500 times into disjoint training

subsets (with size n− d) and test subsets (with size d). The mean squared prediction

error evaluated at the test data sets over 500 replications are reported as boxplots in

Figure 1(b). Apparently, the MSIM and the MRSIP have superior prediction power

than the linear regression model or the mixture of linear regression models, and MSIM

is more favorable than the MRSIP for this data set. The two groups of guards our

new models found might be explained by the difference between shooting guards and

passing guards.
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Figure 1: NBA data: (a) Estimated mean functions and a hard-clustering result; (b)
Prediction accuracy: 5-fold CV; 10-fold CV; MCCV d=10; MCCV d=20.

6 Discussion

In this paper, we propose two finite semiparametric mixture of regression models and

provide the modified EM algorithms to estimate them. We establish the identifiability

results of the new models and investigate the asymptotic properties of the proposed
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estimation procedures. Throughout the article, we assume that the number of com-

ponents is known and fixed, but it requires more research to select the number of

components for the proposed semiparametric mixture models. It will be interesting

to know whether the recently proposed EM test (Chen and Li, 2009; Li and Chen,

2010) can be extended to the proposed semiparametric mixture models. In addi-

tion, it is also interesting to build some formal model selection procedure to compare

different semiparametric mixture models. In the real data application, we use the

cross-validation criteria to compare different models. When the models are nested,

one might use generalized likelihood ratio statistic proposed by Fan et al. (2001) to

test any parametric assumption for the semiparametric models. Furthermore, the

assumption of fixed dimension of predictors can be relaxed and the proposed models

can be extended to the cases where the dimension of predictors p also diverges with

the sample size n. This might be done by using the idea of penalized local likelihood

if the sparsity assumption is added on the predictors.
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