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Abstract

Visualising data as diagrams using visual attributes such as colour, shape, size, and
orientation is challenging. In particular, large data sets demand graphical display as
an essential step in the analysis. In order to achieve comprehension often different
attributes need to be displayed simultaneously. In this work a comprehensible bivariate,
perceptually optimised visualisation scheme for high-dimensional data is proposed and
evaluated. It can be used to show fold changes together with confidence values within a
single diagram. The visualisation scheme consists of two parts: a uniform, symmetric,
two-sided colour scale and a patch grid representation. Evaluation of uniformity and
symmetry of the two-sided colour scale was performed in comparison to a standard
RGB scale by twenty-five observers. Furthermore, the readability of the generated
map was validated and compared to a bivariate heat map scheme.
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1 Introduction

Bioinformatics is a field with a broad range of applications and challenges (Augen
2005; Baldi and Brunak 2001). Based on the analysis of high-dimensional data (e.g.
gene expression profiles etc.) it can lead to a deeper understanding of fundamental
mechanisms of oncogenesis, tumour progression, and metastasis with the potential to
generate new hypotheses for diagnosis and therapeutics (Kim et al. 2012). Besides a
plethora of different statistical and heuristic approaches, the inspection of visual data
maps is often conducted as an important and typically first step in the analysis of data
of this kind.

In these investigations a common scenario is the comparison of gene expression pro-
files from two different populations such as carcinoma versus inflammation (Buchholz
et al. 2005). In such an instance the two populations are characterised by the difference
in their gene expression levels. A basic method of describing the change of expression
is using their logarithmized ratio, commonly called fold change in this context. Bilban
et al. (2002) indicated that gene expression ratios are no reliable markers alone. Fold
change scores can be enriched with a measure of confidence (Fensterer et al. 2004).
Hence, the ultimate goal of this paper is to present a bivariate visualisation tool that
encompasses both the fold changes and their standard errors.

Traditionally gene expression fold changes are visualised as red and green patches
for positive and negative fold changes (see Fig. 1a). The commonly used red-green
colour palette is usually generated by uniformly sampling two channels of the standard
RGB space (Eisen et al. 1998). The logarithmized fold changes are then linearly
mapped onto the chosen colour palette.

The standard RGB space was designed as a colour mapping to control signals for
technical devices such as computer monitors (Foley et al. 1997). It is rooted in the
trichromatic colour theory (by Young and von Helmholtz (Young 1802)) which was
originally based on the human ability to perceive any colour due to our photoreceptor
sensitivity. The horseshoe like CIE xy chromaticity diagram, representing perceivable
colours, does not show isotropic colour difference sensitivities, but depends on colour
and location is this space (Lee 2005). Uniformly sampling such a colour space does
therefore not result in perceptually equidistant stimuli in terms of just noticeable differ-
ences (JNDs) (Newman 1933), but rather a nonlinear mapping is necessary to achieve
this. Certain values may become over- or underemphasised alone by choosing the
wrong colour scale. As an example Fig. 2 shows two equally sampled red-green palettes
with different perceptual properties: a standard RGB and a perceptually optimised
scale (OPTIM). The commonly used bright tones of the standard RGB palette show a
lower contrast to adjacent colours when compared to dark tones. This suggests the non-
uniformness of the scale. Furthermore, the green half-scale appears much brighter than
the red half-scale of the standard RGB palette indicating the non-symmetry of the scale.

The colour scale in Fig. 2b was computed by the OPT-SCALE algorithm (Kestler
et al. 2006). Here, the corresponding colours of the red and the green half-scale reflect
equal quantitative stimuli and neither of them shows a dominant effect. In each half-
scale, the different colour tones are perceived as almost perfectly equidistant.

It was shown in Ware (Ware 2004, p. 136) that bi-variate colour scales for encoding
two dimensions are difficult to read. Based on these observations we propose the use
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(a) (b)

Fig. 1 The figure shows a random data set being rendered by three different maps: a the standard RGB
representation showing only fold changes without confidences, b a bivariate heat map using the HSV colour
space for encoding ratios and confidences into a single colour, and ¢ the colour patch approach using an
optimised red-green colour scale (encoding the fold changes) together with the modulation of patch sizes
(confidence values). All three maps represent the same input data set. Rows and columns were ordered
according to the ratios using a complete linkage hierarchical clustering algorithm applied to rows and
columns independently. Distance metrics was the Ly norm applied to the log ratios of columns and rows.
Please also see the online supplement for colour reproductions of the figures (color figure online)

(a) (b)

Fig.2 Red-green scales showing 8 levels: a standard RGB: equidistant levels within the sSRGB space, and
b OPTIM: perceptually equidistant levels (color figure online)

of perceptually separable visual dimensions (Carswell and Wickens 1990): colour and
size for encoding both values to achieve improved readability and the reduction of
mapping artefacts in accordance with (Carswell and Wickens 1990).

2 Methods
2.1 Fold changes and their confidence measures

The definition of fold changes and confidence values depend on the specific application
area. A fold change r is usually defined as a factor of change of a measurement value
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466 A. Mdiller et al.

between two conditions (e.g., values at different times of a process or measurements
among different environmental conditions). It could be defined by gains or losses in
stock exchange relative to a basic level A representing such as

A > 0. (D

An associated confidence measure ¢ may originate from a statistical model or be the
total magnitude of the measurements, e.g., the basic level @ = A or the mean mea-
surements a = (A 4+ B)/2. In the analysis of gene expression data fold changes are
commonly defined as log ratios M = log, R/G and confidences as average log inten-
sities A = %logz(R - G) often displayed as MA plot (Dudoit et al. 2002) to shown
intensity dependencies of singular fold changes. Here R and G can be intensity mea-
surements within a microarray of a sample (e.g., tumour material) versus a control
condition (healthy tissue) among multiple genes. Before rendering the dimensionality
of data sets must be reduced. Feature selection methods try to omit attributes carrying
no interesting information content such as those having no variation among all sam-
ples (Lausser et al. 2017; Miissel et al. 2016; Schirra et al. 2016; Volkel et al. 2015;
Kraus et al. 2015; Lausser et al. 2013) or having low confidences over all samples
(noise would dominate the signal in this case).

In the following we assume the existence of fold changes 7;; € R and associated
confidences a; i € R(J)r with features (such as, e.g., different genes) in the rows i =
1...m and samples (e.g., tissue probes of different subjects or probes at different
times) in the columns j = 1...xn.

2.1.1 Dynamics reduction

In practice the dynamics of the raw fold changes 7;; and confidences a;; needs to be
limited and scaled to ranges [—1, 1] and [0, 1], respectively, before further rendering.
Otherwise outliers could dominate the map. Hence the following thresholded scaling
functions are proposed:

ajj = Yo,1 <—> (2)
Oa
f..
rij = W_1,1 (ﬁ) 3)
r

with cutoff values 6, > 0 and 6, > 0 and hard thresholding function
a forx <a
V,p(x)=1{x fora<x<b. 4
b forx>b

Soft thresholding functions (e.g., sigmoids) can be used instead of Eq (4) as well.
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2.2 Optimal colour scales

We previously described the OPT-SCALE algorithm (Kestler et al. 2006) (an extension
of the linear optimal scale algorithm of Levkowitz (Levkowitz 1997, pp.141)) which
we briefly outline here. The procedure (see Alg 1) creates a bi-coloured palette

- - + +
c=<cn...cl,co,cl...cn) %)
comprising n colours ¢~ representing negative log ratios (green tones), n colours ¢

representing positive log ratios (red tones), and one central colour cg (usually neutral
dark grey or black) representing a log ratio of 0 in order to create a symmetric palette.

Algorithm 1
procedure OPT- SCALE(&',¢7,n)
Calculate colour distance A = minge(4 _yd (élf, éﬁi) /(n—1)
for h € {+, —} do
Select a set ¢/ of n different colours from &” that
minimizes |d (c;_1, &) — A|Viefl, ..., n—1}
and contains c{‘
end for
return (¢, ct)
end procedure

Hence a much larger perceptually ordered input palette (i.e. a rank can be assigned
by the values)

¢=(6,...60,co.¢f...&%), m>n (6)

is sub-sampled, thereby conserving the ordering. The input palette ¢ is usually percep-

tually non-uniform. In the sample coding scheme shown here we used an 128-times

oversampling i.e. m = 128 - n (we used n = 64). The colours for the sub-scale are

chosen according to a perceptual distance measure d) such that all adjacent colours
have approximately constant distance A:

d(cé',-_l),clh)%A i=2...n he{+, -}. (7
2.2.1 Perceptual distance measures

Distance measures (e.g. £2) between RGB coordinates do not correspond to perceptual
differences between two stimuli. The Commission Internationale de I’Eclairage (CIE)
proposed psychophysical derived colour spaces such as the CIE LUV and CIE LAB
space in order to approximate a perceptually uniform colour space (CIE 2004). The
benefit of these colour spaces is, that the ¢> distance between two colour coordinates
is nearly proportional to the perceptual stimulus difference i.e. for a difference within
the (L*, a*, b*) coordinate space: AEY, = V(AL")? + (Aa*)? + (Ab*)2. Here L*

a
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is the lightness value of a colour. The pairs of values (a*, b*) ((u*, v*) for the LUV
space) are the colour’s coordinates of the corresponding colour space. If a colour scale
¢ is taken from one of these colour spaces, a subsampled scale ¢ built by OPT-SCALE
has the following properties:

— Uniformity: Two adjacent colours cf‘_l, cf‘ within same half-scale h € {4, —}

should always have similar perceptual distances: i.e. d(cfl_l, cfl) ~ AVi €
{2, ..., n} with a constant A > (. Uniformity is necessary in order to map fold
changes as linearly as possible to visual stimuli.

— Symmetry: The absolute intensity of a stimulus originating from the negative
half-scale ¢; shall be similar to that of the corresponding positive stimulus e
According to the central colour ¢g in palette ¢ the stimulus difference d (co, ¢

and d (co, ¢ ) should correspond in their magnitude, so that |d (co, cl+)| ~

|d (co,ci_)| Viel...n.

Symmetry is necessary in order to let negative log ratios appear with similar inten-

sity as positive log ratios of the same magnitude.

+~

2.3 Bivariate heat maps

One approach for visualising fold changes together with confidence values is the use
of a bivariate colour scale mapping of both attributes onto a single colour tone (cf.
Figs. 1b and 5). As baseline and as a means of comparison for the proposed visual-
isation scheme a bivariate heat map based on the hue-saturation-value (HSV) colour
space (Gonzalez and Woods 2002) is used. Here the hue value H is modulated by the
fold-changes (ranging from green to red - a traditional colour scale for gene expres-
sions). The confidence is encoded as brightness V. Saturation S was kept constant at
its maximum. More reliable entities are represented by brighter colours than those of
lower confidence.

2.4 The patch grid visualisation approach

A further possibility for showing log ratios together with confidences is the patch grid
visualisation approach which we describe here and which is experimentally compared
to the bivariate heat map described in the last section (see Figs. 1c and 4). The main
idea behind this approach is the use of two (nearly) perceptually independent visual
channels (size and colour) in order to optimise the perceived information content.

In the patch grid visualisation approach each entity (fold change r;; together with
confidence a;;) is represented by a square patch of size s;; > 0 (edge length) repre-
senting the confidence filled by a colour ¢;; encoding for the fold change. The squares
(patches) are arranged as regular grid thereby showing the features (e.g., genes) in
the rows and the samples in the columns. The background colour was chosen to be
neutral dark grey. Spatial effects - i.e. the influence of adjacent stimuli - are not con-
sidered in this work as then the comparability to a common legend would have been
lost (Robertson and O’Callaghan 1986, p. 30).
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The patch colour ¢;; is taken from the previously described OPT-SCALE colour
palette by a lookup of r;; and a linear interpolation of the colour coordinates. The
patch sizes s;; were chosen according to Weber’s law (Weber 1905; Stuart et al. 1993)
describing the threshold of perception of two physical stimuli 7 and 7 + AT

k= AI/I = const. (8)

For a range of [syin, Smax] C Rt a sequence of edge lengths s;, 1 € {1,...,n}is
constructed that fulfils (s; — s;—1)/s; = k foralll > 1

1= spin - (1401 with k= n1fSmex ©
Smin

where s1 = sy, and s, = Spax-
2.4.1 Ordering

For enhancing the perceptual continuity of the generated visual maps the order of rows
and columns can be rearranged. For this a plethora of different methods is available
such as the leaf ordering of hierarchical clusterings (e.g., single, average, complete
linkage clusterings) (Jain and Dubes 1988) as well as the application of traveling
salesman problem (TSP) rearrangements (Climer and Zhang 2006). In contrast to
clustering algorithms the TSP optimises the sum of all adjacent distances thereby
creating a slightly different arrangement.

2.5 Perceptual threshold detection

Techniques for detecting a perceptual threshold reach back to Fechner (1860), (Palmer
1999, Appendix A) and include methods of adjustment, limits, and constant stimuli.
Here, the best PEST method - a constant stimulus method with adaptive step size - was
used (Pentland 1980; Lieberman and Pentland 1982; Treutwein 1995). The algorithm
tries to find an optimum perceptual threshold by maximum likelihood estimation of
a sensitivity function W giving a relationship between stimulus X € R and a subject
response Z € {0, 1}:

Pr(Z =1|1X) = V(X). (10)
The logistic function

W, (x) = (1+e/°)7" (11)
was chosen with a fixed . The 50% decision point 6* is sought where the probability
of a positive or negative response is equal. The subject’s response defines the random

variable Z € {0, 1} to find the perceptual threshold denoted by

Pr(Z|6*) = 0.5. (12)
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The likelihood function is defined as
LO|x1...xy) =17, LO]x;). (13)

with stimulus level x; € R and subject response z; € {0, 1} attriali = 1...n. The
likelihood of a single stimulus is £(0]x;) = W (x; — 0|z;) with

Wl — :\I/(x) ifz=1 "

1 —W(x) otherwise.

The best PEST estimator shows at step n the stimulus being most likely the sought
threshold value within range [a, b]:

Xpp1 = max I W(x; — 0]z;). (15)
O€la,b]

The first presented stimulusis x; = (a+b)/2 and should be far enough from the sought
threshold 6. For numeric stabilisation Eq. (13) is logarithmized. As this transformation
is strictly monotone the location of the maximum is not changed. For an implemen-
tation the interval [a, b] is equally sampled at N pointsa = u| < --- < uy = b and
a vector containing the current log likelihood function is generated (Lieberman and
Pentland 1982).

3 Results

The following properties of the visualisation method were evaluated:

E1 Uniformity of the colour scale: the perceptual error is independent of the position
within the scale.

E2 Symmetry of the colour scale: both parts of the bi-coloured scale are balanced.

E3 Readability of the visualisation scheme: visual entities can be matched with a
legend at low error.

The experiments for properties E1 and E2 were performed for the standard RGB scale
and the optimised red-green scale (OPTIM scale). The optimised scale was calculated
by OPT-SCALE using CIE LAB coordinates. Property E3 is compared for the described
bivariate HSV scale and the patch grid method.

3.1 Evaluation and viewing conditions

The visualisation scheme was evaluated by 25 knowledgeable potential users from Ulm
University (students, (8), staff personnel (2), research assistants (15), female/male =
6/19), age: 22-39 years (female), 24—37 years (male)) with an educational background
of mathematics/computer science (19) and medicine/biology (6). All had normal or
corrected to normal visual abilities. None of the participants had a dyschromatop-
sia. A 20 inch monitor was used. The viewing distance was about 70 cm. Colours
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(@) (b)
(c) (d)

Fig. 3 Setup of the evaluations E1 (left pair of diagrams panels a and ¢) and E2 (right pair of diagrams,
panels b and d). The target stimulus is always on the left side of each pair whereas the right stimulus is
adaptable (+/—) via the keyboard (color figure online)

were equalised using a calibration device (Bits++, Cambridge Research Systems) in
combination with a colorimeter (ColorCAL, Cambridge Research Systems).

3.2 Uniformity (E1) and symmetry (E2)

The described best PEST scheme was used. In these evaluations two square shaped
stimuli are shown (see Fig. 3): one fixed reference (target) stimulus on the left side and
one adaptable stimulus on the right side. The observers’ task is to adjust the brightness
of the right stimulus until it matches the brightness of the left stimulus. For E1 both
stimuli were selected from the same side of the scale (green or red) whereas for E2 the
stimuli were selected from opposite sides in order to match the brightness of a green
colour tone with those of a red colour tone.

Six colour stimuli were equidistantly chosen from the interval [0.1, 0.7]. All stimulus
values were scaled to [0, 1]. Each stimulus was shown twice, once for the RGB scale
and once for the OPTIM scale (LAB space). At most 40 PEST adjustment steps had
to be performed for each experiment. The 56 experiments (i.e. 14 colour tones x 2
colour scale x 2 experimental types - uniformity/symmetry) were randomly permuted
for each evaluator. The target stimuli were chosen from the range [0.1, 0.7] for 6
identically spaced steps (it is assumed that the maximum stimulus range is defined by
the interval [0, 1]). In each experiment a stimulus was shown twice, once for the RGB
scale and once for the OPTIM scale. An observer had to do 28 adjustments for each
experiment. All 56 single evaluations were shown in sequence, which was randomly
permuted for each observer.

3.2.1 Initialization

The best PEST procedure is initialised such that the first presented stimulus x; is far
enough from the target stimulus x* to be always detected as different. As the initial
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Table 1 Best PEST parameters for experiments 1 and 2

Parameter Value Description

N 1000 Resolution of the probability vector

Nyrials 40 Number of adaptations

A 2 Range of scale

o 1/5 Reciprocal steepness of the psychophysical function

Table 2 Results of the uniformity test E1 (RGB)

O Ax(z —x) Stimulus x
-0.7 -0.6 —0.5 -04 -0.3 -0.2 —-0.1 0.1 02 03 04 05 06 07 X

>2 0 0 0 0 0 1 1 0 0 0 0 1 2 0 5

1 4 2 4 1 0 0 0 0 2 6 3 2 7 1 32
0 4 17 17 19 22 23 24 23 21 18 19 21 15 19 272
—1 5 6 4 5 3 1 0 0 0 0 2 1 1 5 33
<=2 2 0 0 0 0 0 0 2 2 1 1 0o 0 0 8

Accuracy 0.56 0.68 0.68 0.76 0.88 0.92 0.96 0.92 0.84 0.72 0.76 0.84 0.60 0.76 0.76

The count of observations falling in the given quantisation group are shown. On the bottom right the median
accuracy is shown. Correct responses are shown in bold

stimulus for the best PEST procedure is in the center m = a+ A /2 of the defined range
[a, a+ A), a was adapted such thatm+20 < x* <m+4corm—40 < x* <m—20
uniformly distributed with equal probability. The used parameters for E1 and E2 are
summarised in Table 1.

For analysing the results it is of interest if a subject categorised a colour square x erro-
neously to a response z 3> x or z < x. To be more rigorous we define a quantisation
function

|l 1 16
Oax(u) = {A—X'FEJ (16)

mapping response failures Q o, (z — x) to an integer k. The quantisation resolution
matches the stimuli distance Ax = 0.1. So k¥ = 0 means that the colour patch was
correctly classified, k = +1 or k = —1 means that the adjacent bin was erroneously
found.

Tables 2 (RGB) and 3 (OPTIM) categorise the response errors into the five classes
<-2,-1,0, 1, > 2 for each stimuli s. There are the correct responses Q = 0 and the
responses of the two adjacent stimuli Q = —1 or Q = 1, and those which are more
than two stimuli steps away: Q < —2 or Q > 2. For both scales the median number
of correct matches is very similar 76% (RGB) versus 84% (OPTIM). In stimuli with
higher magnitude |s |, more confusions between s and its neighbours can be seen for the
RGB scale than for the OPTIM scale. The improvement was not significant (p-value
0.1722) using a one-sided paired Wilcoxon rank sum test.
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Table 3 Results of the uniformity test E1 (OPTIM)

O Ay (z —x) Stimulus x
-0.7 —0.6 —0.5 —0.4 —03 —02 —0.1 0.1 02 03 04 05 06 07 %

>2 1 1 1 0 0 3 0 0 2 0 0o 0 0 1 9

1 2 4 0 2 5 2 3 4 1 1 1 2 2 1 30
0 21 20 23 23 18 17 21 16 22 20 24 21 22 23 291
-1 1 0 1 0 2 3 1 2 0 2 0 2 1 0 15
<=2 0 0 0 0 0 0 0 3 0 2 0o 0 0 0 5

Accuracy 0.84 080 092 092 0.72 0.68 0.84 0.64 0.88 0.80 0.96 0.84 0.88 0.92 0.84

The count of observations falling in the given quantisation group are shown. On the bottom right the median
accuracy is shown. Correct responses are shown in bold

Table 4 Results of the symmetry test E2 (RGB)

O Ax(z —x) Stimulus x
-0.7 -0.6 -0.5 —-04 -0.3 -0.2 —-0.1 0.1 02 03 04 05 06 07 X

>2 1 2 1 0 1 1 0 1 0 0 o0 1 1 10
1 0 0 0 0 1 0 0 4 0 0 0 1 0 7
0 0 0 0 4 2 1 1 1 2 3 0o 0 2 0 26
—1 0 0 2 1 5 2 6 9 17 5 2 3 0 4 56
< -2 24 23 22 20 16 21 18 0 4 17 23 22 21 20 251

Accuracy 0.00 0.00 0.00 0.16 0.08 0.04 0.04 0.44 0.08 0.12 0.00 0.00 0.08 0.00 0.04

The count of observations falling in the given quantisation group are shown. On the bottom right the median
accuracy is shown. Correct responses are shown in bold

Tables 4 and 5 show the number of correct matches and the adjacent matches
for the RGB and OPTIM scales. For the RGB scale the responses tend to be higher
than the original stimulus. 26 examples (of 350) have been classified correctly. Only
few responses are classified as neighbouring stimuli (63). For the optimised scale the
responses are more centred. More stimuli have been categorised correctly (82). Of
the misclassified examples 126 are categorised as adjacent stimuli. Comparing the
accuracies with a one-sided paired Wilcoxon rank sum test showed a significant better
accuracy of the OPTIM scale with p-value 0.001652.

3.3 Readability (E3)

The readability of the patch grid visualisation scheme was investigated by presenting
a random patch grid with a marked patch. Colour and size of the patch had to be
matched independently to a legend at the side (see Fig. 4).

In the HSV colouring scheme the user had to match the selected value with a
bivariate colour scale (see Fig. 5).

A set of 12 colour tones and 8 different patch sizes was used. The colours were
chosen from a red-green palette by using the OPT-SCALE algorithm within the LAB
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Table 5 Results of the symmetry test E2 (OPTIM)

O Ay (z —x) Stimulus x
-0.7 —0.6 —0.5 —0.4 —03 —02 —0.1 0.1 02 03 04 05 06 07 %

>2 8 8 3 5 3 2 3 0 4 5 9 4 4 65
1 4 5 2 2 0 2 1 3 7 1 3 4 37
0 8 7 10 4 6 5 3 10 8 2 4 3 6 6 82
-1 4 4 7 8 8 2 8 10 8 10 5 3 4 8 89
<=2 1 1 3 6 8 14 10 4 2 4 4 9 8 3 77

Accuracy 032 028 040 0.16 024 020 0.12 0.40 0.32 0.08 0.16 0.12 0.24 0.24 0.24

The count of observations falling in the given quantisation group are shown. On the bottom right the median
accuracy is shown. Correct responses are shown in bold

Fig. 4 Setup of experiments E3 for validating the readability of a patch grid. The evaluator had to match
colour and size of a selected patch on the left side with the legends on the right side (color figure online)

space. The resulting colour scale contained 6 red and 6 green colours. The colour tones
were equidistantly chosen within the range [0.05, 1.0] on both sides of the bi-coloured
scale. For each visualisation schemes 30 combinations were randomly drawn without
replacement from all possible 96 ratio/confidence combinations (independently for
each subject). The edge lengths (always quadratic patches) were subsampled from the
interval [0.2, 1.0]. A sequence of n = 8 edge lengths was constructed (Eq. 9).

The objective of the readability experiment was the matching of colour and patch
size on two legends (one for the colour tone and one for the patch size) for the patch
grid visualisation scheme. The bivariate colour map (HSV) had a two dimensional
legend showing ordered colour tones in the rows (ranging from green to red) and
varying brightness values among the columns.

Tables 6, 7, 8, and 9 summarise the results from the readability experiment as
cooccurrence matrices. The median accuracy over all shown fold changes was 0.91 for
the patch grid and 0.45 for the bivariate HSV colour map. A one-sided paired Wilcoxon
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Fig.5 Setup of experiment E3 for validating the readability of the HSV bivariate colouring scheme. Each
user had to match a marked colour square on the left side of the diagram with an entry on the right side of
the palette (color figure online)

rank sum test reveals a significant better accuracy for the patch grid system (p-value
0.002669). The confidence values could be read with median accuracy 0.905 in the
patch grid approach and 0.37 in the bivariate HSV colour map (p-value 0.007813).

4 Discussion

Heatmap-representations are a standard visualisation concept for a large variety of
high dimensional molecular high-throughput profiles. Their correct interpretation can
improve the analysis of mRNA or miRNA profiles as well as the analysis of methy-
lation or mutation patterns (Gress et al. 2017; Ogechukwu et al. 2017; Taudien et al.
2016; Gress et al. 2011). However, heatmaps also provide an overwhelming amount
of information. Ambiguous representations can blur the perception of existing infor-
mation and can therefore be misleading (Fig. 1). In this work we evaluate a novel
bivariate visualisation scheme which is mainly applied to gene expression data, but
not limited to this application, showing fold changes and confidence values within a
single diagram.

In a first step the used OPTIM colour scale (Kestler et al. 2006) was investigated
by comparing its uniformity (E1) and symmetry (E2) property to a standard RGB
scale commonly used in the rendering of gene expression data. Here uniformity is the
property of perceptual equidistance within a colour scale and symmetry is the property
of balancedness between two half-scales. As a consequence reddish and green colour
tones are matched by their brightness such that the encoded value is equally well
perceived independent of its sign. These are necessary prerequisites for a bicolour
visualisation that conveys meaning in the display of gene expression fold changes. The
uniformity experiments (E1) showed a slightly higher accuracy among all stimuli for
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Table 6 E3 using the OPTIM patch grid visualisation scheme: Stimuli and responses of the fold changes
encoded as colour hue from the OPTIM colour space are shown as a cooccurrence matrix

Response z ~ Stimulus x
-6 -5 -4 -3 -2 -1 1 2

w
~
W
=

—6 59 2 0 0 0 0 0 0 0 0 0 0

=5 3 66 6 0 0 0 0 0 0 0 0

—4 0 1 5 6 0 0 0 0 0 0 0 0

-3 0 0 9 61 2 0 0 0 0 0 0 0

-2 0 0 0 7 56 5 0 0 0 0 0 0

—1 0 1 0 0 5 59 2 0 0 0 0 0

1 0 0 0 0 0 2 61 6 0 0 0 0

2 0 0 0 0 0 0 0 60 4 0 0 0

3 0 0 0 0 0 0 0 1 60 O 0 0

4 0 0 0 0 0 0 0 0 1 69 9 0

5 0 0 0 0 0 0 0 0 0 2 64 1

6 0 0 0 0 0 0 1 0 0 0 4 66  Median
Accuracy 095 094 0.79 082 0.89 0.89 095 090 092 097 0.83 099 091

The columns represents the colour stimulus and the rows the corresponding answers of the evaluators. The
median total accuracy over all stimuli and its standard deviation are shown in the bottom right field. Correct
responses are shown in bold

Table 7 E3 using a HSV bicolour scale: Stimuli and responses of the fold changes encoded as colour hue
from the HSV colour space are shown as a cooccurrence matrix

Response z  Stimulus x

-6 -5 -4 -3 =2 -1 1 2 3 4 5 6
—6 45 21 0 0 0 0 0 0 0 0
-5 4 29 9 0 0 0 0 0 0 0 0 0
—4 2 20 25 16 1 0 0 0 0 0 0 0
-3 0 0 28 25 4 1 0 0 0 0 0 0
-2 0 0 3 28 22 1 0 0 0 0 0 0
—1 0 0 0 4 26 18 12 1 0 0 0 0
1 0 0 0 1 7 25 27 3 0 0 0 0
2 0 0 0 0 2 14 19 32 1 0 0 0
3 0 0 1 0 1 5 5 29 42 0 0 0
4 0 0 0 0 0 1 0 1 21 45 2 0
5 0 0 0 0 0 0 1 1 1 26 73 0
6 1 0 0 0 0 1 0 0 0 0 2 67  Median
Accuracy 0.73 041 036 034 035 027 042 048 065 0.63 095 1.00 045

The columns represents the colour hue stimulus and the rows the corresponding answers of the evaluators.
The median total accuracy over all stimuli and its standard deviation are shown in the bottom right field.
Correct responses are shown in bold
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Table8 E3 using the patch grid visualisation scheme: The cooccurrence matrix of confidence stimuli versus
responses coded as rectangle sizes is shown

Response z Stimulus x
1 2 3 4 5 6 7 8
1 98 5 0 0 0 0 0 0
2 15 95 2 0 0 0 0 0
3 0 9 88 8 1 1 0 0
4 0 1 4 87 8 0 0 0
5 0 0 0 1 83 8 0 0
6 0 0 0 1 7 105 7 0
7 0 0 0 0 0 1 87 1
8 0 1 0 0 1 0 0 91 Median
Accuracy 0.87 0.86 0.94 0.90 0.83 0.91 0.93 0.99 0.905

The median total accuracy over all stimuli and its standard deviation are shown in the bottom right field.
Correct responses are shown in bold

Table 9 E3 using the HSV visualisation scheme: The cooccurrence matrix of confidence stimuli versus
responses coded as HSV brightness value is shown

Response z Stimulus x
1 2 3 4 5 6 7 8
1 103 84 30 9 0 0 1 1
2 7 24 47 20 3 1 0 0
3 2 3 15 40 19 0 1 0
4 0 0 2 26 35 6 0 0
5 0 0 0 2 32 30 1 0
6 0 0 0 0 7 48 10 1
7 1 0 0 0 4 27 42 7
8 0 0 0 0 0 3 39 83 Median
Accuracy 0.91 0.22 0.16 0.27 0.32 0.42 0.45 0.90 0.37

The median total accuracy over all stimuli and its standard deviation are shown in the bottom right field.
Correct responses are shown in bold

the OPTIM scale (median accuracy: 0.84) compared to the standard RGB scale (mean
accuracy: 0.76). The symmetry experiments (E2) - the matching of the brightness of
reddish and green colour tones - revealed a strong imbalance within the RGB scale;
a red stimulus was matched with a considerable darker green (mean accuracy: 0.04).
The OPTIM scale showed a better balance and much more stimuli were categorised
correctly (mean accuracy: 0.24) and is therefore less likely to overemphasise positive
or negative fold changes of expression levels.

For an increasing magnitude the confusion of neighbouring stimuli increased for the
standard RGB scale. Here, the perceptual differences between single colours decrease,
which makes it harder to distinguish single stimuli. This effect was not observable in
the OPTIM scale experiments where colours were chosen perceptually equidistant. For
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small magnitudes the perceptual differences in the RGB scale are disproportionately
high. Here, more adjustments were registered for the RGB scale than for the OPTIM
scale. Considering the complete scale the confusion with adjacent stimuli is more
uniform for the OPTIM scale compared to the standard RGB colour scale. Overall the
OPTIM scale seems to be more appropriate for visualising quantitative information
than the standard RGB scale. Especially in a symmetry task the OPTIM scale is much
more useful than the RGB scale. The OPTIM scale therefore allows an improved
discrimination of different fold changes.

In a second step the readability (E3) of the proposed patch visualisation scheme
compared to a bivariate colour coding (using the HSV colour space) was evaluated.
Here, the ability of each observer for directly matching both encoded attributes as
a single visual entity with a legend was evaluated. In the patch grid approach the
readability showed a much higher accuracies on fold changes (median accuracy: 0.91)
and confidences (median accuracy 0.905) compared to the HSV visualisation: here
the fold changes (coded as colour hue) were categorised with a median accuracy of
0.45 and the confidences (coded as brightness value) of only 0.37.

The improved interpretability of the proposed patch grid visualisation approach
compared to a simple bivariate colour scale was demonstrated. The focus was here
to add a confidence value to a standard visualisation approach without disturbing
the readability of the so generated map by introducing a second attribute. Showing
confidences together with fold changes is important in rendering gene expressions
but may be of interest in other application areas as well, such application domains
include analysing economic growth rates or assessment of investment strategies; here,
the observed dimensions may include time and geographical region, business area, or
business strategy. Another example could be the analysis of the agricultural output of
different crops among different environmental conditions (soil, fertiliser, temperature,
humidity etc.).
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