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Abstract
With the recent growth in data availability and complexity, and the associated outburst
of elaborate modelling approaches, model selection tools have become a lifeline, pro-
viding objective criteria to deal with this increasingly challenging landscape. In fact,
basing predictions and inference on a single model may be limiting if not harm-
ful; ensemble approaches, which combine different models, have been proposed to
overcome the selection step, and proven fruitful especially in the supervised learn-
ing framework. Conversely, these approaches have been scantily explored in the
unsupervised setting. In this work we focus on the model-based clustering formu-
lation, where a plethora of mixture models, with different number of components and
parametrizations, is typically estimated. We propose an ensemble clustering approach
that circumvents the single best model paradigm, while improving stability and robust-
ness of the partitions. A new density estimator, being a convex linear combination of
the density estimates in the ensemble, is introduced and exploited for group assign-
ment. As opposed to the standard case, where clusters are typically associated to the
components of the selected mixture model, we define partitions by borrowing the
modal, or nonparametric, formulation of the clustering problem, where groups are
linked with high-density regions. Staying in the density-based realm we thus show
how blending together parametric and nonparametric approaches may be beneficial
from a clustering perspective.
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1 Introduction

In virtually any scientific domain we are witnessing an explosion in the availability
of the data, coupled with a tremendous growth in their complexity. As a straight-
forward consequence, the number of choices that we have to make is increasing as
well as the number of sophisticated modelling strategies proposed to deal with such
newly introduced challenges. These choices are practically involved in any phase of
the modelling process, spanning a wide landscape of possible options: from choosing
a class of models or an appropriate approach to analyze a set of data, to more specific
decisions as the selection of subsets of relevant variables or suitable parametrizations.
Therefore, nowadays model selection steps, helping to formally extricate ourselves
from the labyrinth of all these possible alternatives, are ubiquitous in any data anal-
ysis routine. Some commonly considered ways forward hence consist in estimating
a set of different models and then selecting the best one according to some criterion
(Claeskens and Hjort 2008), or resorting to penalization schemes aimed at balancing
fit and complexity (see Tibshirani et al. 2015, for an introduction).

Nevertheless basing predictions and inference on a single model could turn out
to be sub-optimal. Hence, in order to propose viable alternatives to this paradigm,
model averaging and ensemble techniques have been thoroughly studied in literature.
Even if these two approaches focus on different phases of the modelling process,
respectively estimation and prediction, they share the same founding rationale as they
aim to improve performances of the base models by combining their strengths and
simultaneously relieving their limits. For this reason the two expressions will be used
interchangeably in the rest of the paper. With inferential goals in mind, model aver-
aging approaches have been proposed, intended to estimate quantities by computing
weighted averages of different estimates. Such strategies may lead to improvements
in the estimation process by accounting for model uncertainty. Similarly, from a pre-
dictive point of view, ensemble techniques have shown remarkable performances in a
lot of different applications by building predictions as combinations of the ones given
by a set of different models. Well established methods as bagging, stacking, boosting
or the random forests (see Friedman et al. 2001, for a review) have become the state
of the art in the supervised learning framework.

While extensively studied in the classification context, ensemble techniques have
been scarcely pursued in the clustering one. A possible explanation can be found in
the unsupervised nature of the problem itself; the absence of a response variable intro-
duces relevant issues in evaluating the quality of a model and of the corresponding
partition. As a consequence, weighting models in order to combine them turns out to
be an awkward problem. Nonetheless mixing different partitions in a final one could
in principle allows combining clustering techniques based on different focuses to give
a multiresolution view of the data and possibly improves the stability and the robust-
ness of the solutions. In this direction Fern and Brodley (2003) exploit the concept
of similarity matrix in order to aggregate partitions obtained on multiple random pro-
jections, and a similar approach is followed by Kuncheva and Hadjitodorov (2004)
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to study the concept of diversity among partitions. Monti et al. (2003) consider again
a similarity matrix in order to evaluate the robustness of a discovered cluster under
random resampling. In turn, the work by Strehl and Ghosh (2002) introduces three
different solutions to the ensemble problem in the unsupervised setting by exploiting
hypergraph representations of the partitions.

In this workwe focusmainly on the parametric, or model-based, approach to cluster
analysis where a one-to-one correspondence between clusters and components of an
appropriate mixture model is drawn. Here the usual working routine is based on the
single best model paradigm, i.e. a set of models is fitted and only the best one is chosen
and considered to obtain a partition. Our aim is to go beyond this paradigm by intro-
ducing a model averaging methodology to give partitions resulting from an ensemble
of models, thus possibly achieving a greater accuracy and robustness. Averaging is
pursued directly on the estimated mixture densities in order to build a new and more
accurate estimate. Clustering is then addressed, building on the resulting estimate,
within a density-based formulation, yet with a shift to a modal, or nonparametric
approach, where clusters are associated to the domains of attraction of the density
modes. We turn out with a partition where cluster shapes are not constrained by some
distributional assumption, as in the model-based framework, but having arbitrary, pos-
sibly non-convex and skewed shapes. Therefore, by combining the strengths of the
parametric and nonparametric frameworks, our proposal results in a hybrid method
which enjoys the advantages of both.

The rest of the paper is structured as follows. In Sect. 2 we outline the proposed
methodology and describe in details the estimation procedure. In Sect. 3 we discuss
some specific aspects of our proposal and highlight connections with other models.
Lastly in Sect. 4 we show the performances of our method on both simulated and real
datasets, and compare itwith some competitorswhile Sect. 5 presents some concluding
remarks.

2 Model averaging inmodel-based clustering

2.1 Framework andmodel specification

The goal of partitioning a set of data into some groups, diffusely known as clustering,
has been pursued by proposing a lot of techniques with different rationales behind.
Whilemost of themare based on a vague notion of clusters, associated to somemeasure
of similarity, an attempt to obtain a precise formalization of the problem is given
by the so called density-based approach. Here the concept of cluster finds a formal
definition by linking it to some specific features of the density f : Rd → R assumed to
underlie the dataX = {x1, . . . , xn} and consequently inducing a partition of the whole
sample space. Furthermore this assumption allows framing the clustering problem in
a standard inferential context where, having a “ground truth” to aim at, several tools
can be used in order to evaluate and compare alternative clustering configurations.

The idea behind density-based clustering has been developed by taking two distinct
paths. In the modal, or nonparametric, clustering formulation, clusters are defined as
the “domains of attraction” of the modes of the density f (Stuetzle 2003) usually
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estimated bymeans of some nonparametric density estimator (see, for a recent account,
Chacón and Duong 2018). The operational identification of the modal regions can be
addressed following different routes (for a comprehensive review readers can refer to
Menardi 2016) where the most common one consists in finding explicitly the local
maxima of the density by exploiting numerical optimization methods. Most of these
methods can be seen as refinements or slight modifications of themean-shift algorithm
(Fukunaga and Hostetler 1975) that, starting from a generic point, shifts it recursively
along the steepest ascend path of the gradient of the density estimate until converging
to a mode; the final partition of the data is then obtained by grouping together those
observations ascending to the same mode.

On the other hand the model-based, or parametric, approach (Banfield and Raftery
1993; Fraley and Raftery 2002) represents the other, more widespread, formulation of
density-based clustering. In this framework f is assumed to be adequately described
by means of finite mixture models. Therefore the density of a generic observation
xi ∈ R

d is written as

f (xi |Ψ ) =
K∑

k=1

πkϕk(xi |θk) ,

where K is the number of mixture components, ϕk(·) the kth component density, while
Ψ = (π1, . . . , πK−1, θ1, . . . , θK ) is the vector of parameters where πk are the mixing
proportionswithπk > 0, ∀k = 1, . . . , K and

∑K
k=1 πk = 1.WhenGaussian densities

are employed as mixture components, wemay write ϕk(·) = φk(·) and θk = {μk,Σk}.
The concept of cluster here is definedbydrawing aone-to-one correspondencebetween
the group itself and a component of the mixture. Operationally, after having estimated
the model, usually via maximum likelihood by means of the EM algorithm (Dempster
et al. 1977), the allocation is obtained via maximum a posteriori (MAP) classification
by assigning the i th observation to cluster k∗ if

k∗ = arg max
k

π̂kϕk(xi |θ̂k)∑K
k=1 π̂kϕk(xi |θ̂k)

.

When practically resorting to model-based clustering in order to obtain a parti-
tion, several choices have to be made as, for example, the number of groups K , the
parametric specification of the mixture components or a specific parsimony-inducing
parametrization of Σk in the Gaussian case. Since each combination of these possi-
bilities can be seen as a different model, it is clear how model selection steps play
an essential role in this framework. Indeed several different models corresponding to
such combinations are usually estimated, the best one is then chosen according to an
information criterion such as the BIC (Schwarz 1978) or the ICL (Biernacki et al.
2000) and successively used to obtain the final partition.

Theway of proceeding, usually referred to as the single best model paradigm, could
be sub-optimal especially when differences among values of the information criterion
across competing models are close. As an illustrative example we analyze the widely
known Iris dataset by employing Gaussian mixture models with K = 1, . . . , 9 with
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Fig. 1 Example on Iris data: on the left the partition induced by the best model according to the Bayesian
information criterion (BIC = −561.72). On the right the partition induced by the second best model
(BIC = −562.55)

all the possible parametrizations of the component covariance matrices available in
mclust package (see Scrucca et al. 2016 for further details). In Fig. 1 the results
obtained by the twobestmodels according to theBIC, obtained on the four dimensional
space, are shownon the subspace spannedby thevariables sepal length andpetal length.
Even if no formal criterion is available in order to check if the difference between the
values of the BIC is significant, they appear quite close. In fact, the true labels indicate
the presence of three classes, here adequately captured by the second best model. Even
if a proper quantification of the number of groups in these data is still controversial,
since the presence of three species does not necessarily imply the presence of three
groups, it seems natural to ask if, by discarding completely the second best model,
useful information on the data is thrown away.

In this setting combining competitive models together may lead to a gain in robust-
ness, stability and in the quality of the partition, as often witnessed in the supervised
framework.

In a parametric clustering framework the idea of combining different models has
been developed in order to obtain partitions based on an average of models rather than
on a single one. Both the works of Russell et al. (2015) and Wei and McNicholas
(2015) propose a Bayesian model averaging approach to postprocess the results of
model-based clustering. A key issue pointed out in both the proposals consists in the
need of selecting an invariant quantity, i.e. a quantity having the same meaning across
all the models in the ensemble, to average on. In parametric clustering this represents
a cumbersome problem since the models to mix together could possibly have different
number of groups as it happens, for example, if the ensemble is built with the two
models in Fig. 1; as a consequence, parameters spaces have different dimensions, thus
preventing the chance to average directly parameters estimates. Wei and McNicholas
(2015) overcome this issue by introducing a component merging step in the procedure.
Alternatively, Russell et al. (2015) consider a similaritymatrix as the invariant quantity,
built on the agreement of cluster assignment of pairs of observations. They obtain an
ensemble similarity matrix by averaging the candidate models ones. Afterwards the
resulting matrix, where the (i, j)th entry represents the averaged probability of xi
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and x j to belong to the same cluster, is considered to obtain partitions adopting a
hierarchical clustering approach.

In this work we take a different path with respect to the ones mentioned above. The
issue is tackled directly at its roots, by exploiting the essential role assumed by the
density in the considered framework. Therefore, recasting the problem to a density
estimation one, the density itself is chosen as the invariant quantity to be averaged.
Note that some promising results, from a density estimation perspective only, have
been obtained by Glodek et al. (2013) whose work shares some similarities with our
proposal.

Let { fm(·|Ψ̂m)}m=1,...,M be a set of estimated candidate mixture models. In this
section the number M of models to average is considered as given, and we refer the
reader to Sect. 3 for a discussion about this aspect. In the rest of the work we focus
specifically on mixtures of Gaussian densities. This choice is not binding for subse-
quent developments since, in principle, the ensemble may be populated by mixture
models with different parametric specifications for the component densities. A new
estimator, being a convex linear combination of the estimated densities fm(·|Ψ̂m), is
introduced:

f̃ (x;α) =
M∑

m=1

αm fm(x |Ψ̂m) , (1)

with αm > 0,
∑

m αm = 1, representing the weight assigned to the mth model for
all m = 1, . . . , M . A key aspect, as it will be discussed in Sect. 2.2, consists in
properly estimating the model weights in order to guarantee that models describing
more adequately the underlying density will count more in the resulting estimator.

The rationale behind our proposal draws strength from some results obtained by
Rigollet and Tsybakov (2007). Here the authors show that, under some fairly general
regularity assumptions, linearly aggregating density estimators leads asymptotically to
an improvement in the resulting density under L2-loss perspective. Hence, by possibly
improving the quality of the density estimates, we aim at obtaining better characteri-
zations of the relevant patterns in the data, leading to more refined partitions.

Even if the estimator (1) is still a mixture model we cannot obtain a partition as
usually carried out in parametric clustering, thus resorting to the one-to-one corre-
spondence among groups and components. As an illustrative example, consider an
ensemble formed by two mixture models, with two and three components respec-
tively. In this situation f̃ (·;α) will result in a five component mixture model hence
giving contradictory indications about the number of groups with respect to the mod-
els that have been mixed together. This issue shares strong contact points with the
situations where the number of components exceeds the number of groups; for exam-
ple a two components Gaussian mixture may result in a unimodal density leading to
a counterintuitive partition with no clear separation between the two groups. In the
model-based clustering framework the problem has been addressed by resorting to
merging procedures (Baudry et al. 2010; Hennig 2010) where mixture components
are combined together and their union seen as a single cluster.
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In this work we take a different path and naturally circumvent the problem by
shifting the concept of cluster to its modal formulation. Consistently, the grouping
structure is searched in the modality of an estimate of the density (1). Hence, each
cluster is built by gathering all those observations ascending to the same mode of the
density. Operationally, a partition is obtained bymeans of amode-searching algorithm.
Our proposal shares some conceptual connections with the work by Hennig (2010)
where the author proposes merging methods aimed at finding unimodal clusters.

The proposed solution, staying in the realm of density-based clustering, inherits
and enjoys its relevant strengths as the chance to frame the problem in a standard
inferential setting where proper statistical tools can be employed for evaluation, and
to obtain whole sample space partitions whose features are inferentially explorable.
Moreover it has been shown already (see Scrucca 2016; Chacón 2019) that blending
together parametric and nonparametric approaches to clustering can lead to some
relevant improvements in some, otherwise troublesome, situations.

2.2 Model estimation

The procedure outlined in Sect. 2.1 requires a practical way to estimate the density
in (1). Note that, since Ψ̂m has been previously estimated, the only unknown param-
eters involved are the αms. These parameters represent the weights to be assigned at
every single model in the ensemble, hence their estimation is crucial in governing the
resulting shape of the density, its modal structure and consequently the final partition.
A reasonable estimation procedure would result in giving nearly zero weights to those
models in the ensemble which do not suitably capture the features of the underlying
density, while weighting more the adequate ones.

In order to obtain an estimate for the weight vector α = (α1, . . . , αM ), based on
the sample X , we aim to maximize the log-likelihood of the model (1), defined as

	(α;X ) =
n∑

i=1

log
M∑

m=1

αm fm(xi |Ψ̂m). (2)

However, if (2) is considered as the objective function to maximize, the procedure will
incur in the overfitting problem since themost complexmodels in the ensemble, which
provide a better fit by construction, will weight more. This behaviour will commonly
result inwiggler estimates not appropriately seizing the relevant features of the density,
hence some regularization has to be considered in the estimation.

A tentative solution has been proposed by Smyth and Wolpert (1999) where a
stacking procedure is adapted to the density estimation framework. The authors avoid
to fall into the overfitting trap by exploiting a cross-validation schemewhen combining
the candidate models to obtain ensemble density estimates.

We take a different path by replacing the log-likelihood in (2) with a penalized
version, generally defined as

	P (α;X ) = 	(α;X ) − λg(α, ν) . (3)
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Here g(·) is a penalty function to be specified, ν = (ν1, . . . , νM ) is a vector measuring
the complexity of the models in the ensemble, while λ is a parameter controlling for
the strength of the penalization. Within this general framework, we set νm to be the
cardinality of Ψ̂m , as it appears a sensible proxy of the complexity of the mth model.
Additionally, we consider g(α, ν) = ∑

m αmνm as a simple choice which guarantees
a stronger penalization to the most complex models. Note that, since both αm and νm
are positive numbers,

∑
m αmνm = ∑

m |αmνm |. As a consequence our penalty might
be seen as a generalization of the LASSO one where νm is introduced to account for
the complexities of the models in the ensemble.

For a given value of λ, the parameters is then estimated to maximize the penalized
log-likelihood

α̂ = α̂(λ) = arg max
α

	P (α;X ).

To this end, due to the mixture structure easily recognizable in (1), we can resort to
a slightly simplified version of the EM-algorithm in order to maximize the penalized
log-likelihood (3); note that the number of free parameters to estimate is equal toM−1
since Ψ̂m with m = 1, . . . , M have to be considered as fixed and

∑M
m=1 αm = 1. At

iteration t of the E-step, conditionally to an estimate α̂(t−1) for the vector α at the
previous iteration, we compute

τ
(t)
mi = α̂

(t−1)
m fm(xi |Ψ̂m)

∑M
m′=1 α̂

(t−1)
m′ fm′(xi |Ψ̂m′)

. (4)

Then the M-step will consist in maximizing, with respect to α, the expected value of
the complete-data penalized log-likelihood, in our setting expressed as

Qp(α; α̂(t−1)) =
M∑

m=1

n∑

i=1

τ
(t)
mi [logαm + log fm(xi |Ψ̂m)] − λ

M∑

m=1

αmνm , (5)

under the constraint
∑

m αm = 1 with αm > 0, ∀m = 1, . . . , M . Since closed form
solutions are not available, α̂(t) is obtained by maximizing (5) numerically. As usual,
the two steps will be iterated until a convergence criterion is met. Several initialization
strategies might be adopted in order to obtain α̂(0): in this work we consider a uniform
initializationwhere, in thefirst step of theEM-algorithm, all themodels in the ensemble
are equally weighted.

Regarding the choice of λ, somemore caution is needed, since an accurate selection
turns out to be essential in order to obtain ameaningful estimatewhich properly reflects
the geometrical structure of the underlying density. In this work some different options
have been taken into consideration. A first, possible, strategy consists in estimating
λ by means of the observed data resorting to a cross-validation scheme defined as
follows:

– Randomly split the set {1, . . . , n} into V equally-sized subsets F1, . . . ,FV ;
– For v = 1, . . . , V :
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– Consider as a training sample Xtrain(v) = {xi }i /∈Fv
and as a test sample

Xtest(v) = {xi }i∈Fv
;

– For varying λ in a reasonable grid Λ, maximize 	P (α;Xtrain(v)) and obtain
α̂v(λ);

– For each x ∈ Xtest(v) predict the density f̃ (x; α̂v(λ));

– Define a test log-likelihood

	test(λ) =
V∑

v=1

∑

x∈Xtest(v)

log f̃ (x; α̂v(λ))

and select

λCV = arg max
λ∈Λ

	test(λ)

The selected λCV is finally used to obtain an estimate of α based on the whole
sample.

Another reasonable approach consists in taking inspiration from the formulations
of some information criteria which may be seen, in all respects, as penalized likeli-
hood. Therefore we introduce the AIC-type and the BIC-type penalizations, stemming
directly from the definitions of AIC and BIC, that induce penalized log-likelihoods
defined as

	P,AIC (α;X ) = 2	(α;X ) − 2
M∑

m=1

αmνm (6)

	P,BIC (α;X ) = 2	(α;X ) − log(n)

M∑

m=1

αmνm , (7)

hence implying λAIC = 1 and λBIC = log(n)/2 according to the formulation in (3).
Although requiring an higher computational effort, it stands to reasons that the cross-
validation based approach has some relevant advantages in the regularization process.
By resorting to a fully data-driven selection of λ, we end up with a more adaptive
parameter thanλBIC andλAIC, both in terms of sample size and features of the observed
data. However, the latter penalties are computationally faster and simple rules of
thumbs enable, in practice, to produce satisfactory results, as will be discussed in
Sect. 4.

Once the density (1) is estimated, a partition is operationally obtained by identifying
its modal regions. To this aim we consider the so called Modal EM (MEM; Li et al.
2007) in the modified version proposed by Scrucca (2020). Designed for densities
which are built as mixtures, this technique alternates two iterative steps in the guise
of the EM, but unlike the EM its goal is to find the local maxima of the density. Since
the density (1) may still be seen as a peculiar mixture model, MEM can be fruitfully
adapted to our situation where, given an estimate α̂, a starting value x (0) and setting
initially r = 0, the iterative steps are defined as follows
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– Let

pm = α̂m fm(x (r)|Ψ̂m)
∑M

m′=1 α̂m′ fm′(x (r)|Ψ̂m′)

– Update

x (r+1) = arg max
x

M∑

m=1

pm log fm(x |Ψ̂m) .

The algorithm iteratively performs these steps until a convergence criterion is met. The
outlined iterative procedure draws a path leading to a local maximum of the density
(see Li et al. 2007, for a proof of the ascending property of the algorithm). Lastly, a
partition is operationally obtained by using each observation {xi }i=1,...,n in the sample
as an initial value in theMEMand by grouping together those observations converging
to the same mode.

3 Some remarks

In this section we discuss further the procedure introduced so far by pointing out some
practical considerations and highlighting its properties along with some links with
other existing methods.

Remark 1 Estimator (1) has been introduced by considering the models to be mixed
fm(·|Ψ̂m), as well as their number M , as given. In fact, a virtually huge number of
models could be estimated, and selecting which ones should enter in the ensemble
could have some impact on the resulting partitions. In practice, when choosing the
ensemble size, different paths might be considered.

A first possible approach consists in populating the ensemble with all the mod-
els estimated in the previous step of the procedure, being reasonable candidates and
representing a wide batch of alternatives recording a general uncertainty. In such a
way the possibly troublesome selection of M is somehow circumvented by letting the
penalty term to do the job. In practical applications the penalized estimation strategy
would indeed shrink towards zero the weights of the models considered as irrelevant
hence somehow automatically selecting M , here defined as the number of models
considerably weighted in the ensemble.

Another alternative may consist in considering an Occam’s window to choose a set
of models as proposed by Madigan and Raftery (1994). The main idea is to discard
those models providing estimates being qualitatively too far from the ones provided
by the best model. A rule of thumb would be to discard the mth model if |BICbest −
BICm | > 10, where BICbest and BICm represent respectively the values of the BIC for
the bestmodel and for themth one. Lastly another viable approach consists in choosing
M subjectively and picking those models, among the estimated ones, resulting in a
good fitting of the data. In this case M should vary also reflecting the case-specific
uncertainty witnessed in the modelling process.
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Finally a word of caution; finding substantial arguments that motivate some general
recommendations is challenging and cannot leave aside the specificities of the data
and of the problem at hand.

Remark 2 The estimation procedure outlined in Sect. 2.2 is fully frequentist in nature.
Alternatively, aBayesian approach could be an interesting development claiming some
advantages. The work by Malsiner-Walli et al. (2017) faces, from a Bayesian perspec-
tive, the estimation of mixtures of mixture models. Even if the underlying motivation
is different some ideas could be fruitfully borrowed and exploited in order to average
different mixture models. As an example, the consideration of a shrinkage prior on
the weights of the models in the ensemble could practically overcome the previously
discussed issue of selecting M .

Remark 3 Model selection often precedes inference that is usually conducted consid-
ering the chosen model as fixed. However, since the selection is itself data-dependent,
it possesses its own variability. Drawing inference without accounting for the selection
of the model corresponds to neglect completely a source of uncertainty and usually
results in anti-conservative statements (Leeb and Pötscher 2005). Even in the full
awareness of the fact that, in parametric clustering, the main focus tipically lies on
obtaining partitions rather than on inference or uncertainty quantification, we believe
that a model averaging approach can entail better estimation properties and more
informative confidence intervals for the parameters when needed.

Remark 4 In the supervised framework ensemble approaches have been found tremen-
dously effective in improving predictions of a plethora of different models. For those
techniques it has been frequently noticed (see, e.g. Dietterich 2000) how the concept
of diversity is a key factor in increasing classification performances of the base learn-
ers that are combined. As a consequence, often weak learners are considered in the
supervised context. These classifiers are highly unstable, consequently different one
from the others, as they possibly focus on distinct features of the observed data. Even
in a clustering framework the impact of the diversity among the combined partitions
has been empirically studied and proved to be impactful by Fern and Brodley (2003)
and Kuncheva and Hadjitodorov (2004).

We are aware that, when the proposed method is used to go beyond the single
best model paradigm, the models in the ensemble cannot be considered as weak and
consequently diversity among them is not achieved. Nonetheless, even if introduced
with a specific aim, the proposal can in principle be exploited in all those cases where
averagingmultiple density-induced clusterings could be fruitful.As a consequence, the
diversity can be somehow determined for example averaging densities computed on
bootstrap samples or on general subsamples of the observed data. Since initialization
plays a crucial role when resorting to the EM algorithm (see, e.g. Scrucca and Raftery
2015), another appealing application consists in combining models estimated using
different starting values. As a consequence of the estimation instability these models
would probably be more heterogeneous hence entailing greater diversity.

Remark 5 The model introduced so far, despite being based on a different rationale,
shares some connections with the general framework ofDeep Gaussian Mixture Mod-
els investigated by Viroli and McLachlan (2019). Deep Gaussian Mixture Models are
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networks of multiple layers of latent variables distributed as a mixture of Gaussian
densities. Since the outlined representation encompasses the specification of a mixture
of mixtures (Li 2005), model (1) can be seen as a two layers Deep Gaussian Mixture
Model where the parameters involved in the inner layer are fixed.

4 Empirical analysis

4.1 Synthetic data

The idea of averaging together different densities to obtain a more informative sum-
mary for clustering purposes is explored in this section via simulations. The simulation
study has multiple goals. On one side we want to evaluate the performances of our
proposal in terms of the quality of the produced density estimates. These performances
are studied with respect to the true and known density function considering the MISE
as evaluating criterion. On the other hand the clustering performances of the proposed
method are investigated. As an assessment criterion we employ the Adjusted Rand
Index (ARI, Hubert and Arabie 1985) between the obtained partitions and the true
component memberships of the observations. An additional aim consists in evaluating
how the sample size impacts on these comparisons.

As a side goal of the numerical explorations we want to study which penalization
strategy introduced in Sect. 2.2 produces more satisfactory results. In particular, we
evaluate whether the increased computational costs implied by the cross-validation
are worth the effort or if less intensive strategies such as the BIC- and AIC-type penal-
ties produce comparable results. Lastly, we want to compare our proposals with some
reasonable competitors.We consider a fully parametric approach, using the single best
model chosen among a set of Gaussian mixture models corrisponding to combinations
of the number of components and of different covariance matrix parametrizations.
Moreover, we consider a nonparametric clustering method where the density is esti-
mated using a kernel estimator with unconstrained gradient as bandwidth matrix, a
standard choice in nonparametric density literature (see Chacón and Duong 2018, for
a detailed tractation). The partition is afterwards practically obtained resorting to the
mean-shift algorithm (Fukunaga and Hostetler 1975; Cheng 1995). Furthermore, we
examine also an hybrid approach consisting in finding the modes, via Modal EM algo-
rithm, of the density estimated by the single best model. The possible improvements
introduced by our proposal may be due to two different motivations: the first related
to a better estimation of the underlying density while the second is concerned with the
modal-inspired allocation procedure. Considering an hybrid approach as a competitor
can help disentangling properly these distinct sources.

A total of B = 200 samples have been drawn, with sizes n ∈ {500, 5000}, for
each of the bivariate densities depicted in Fig. 2 and whose parameters are reported
in “Appendix”. These densities have been considered to encompass different situ-
ations which pose different challenges from a model-based clustering perspective.
The densities on the top panels of Fig. 2 represent indeed settings where the single
best model is expected to achieve satisfactory results, being the data generated from
Gaussian mixtures. On the other hand the densities on the bottom panels, showing
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Fig. 2 Bivariate density functions used in the simulation study

strong asymmetric behaviours, constitute more challenging settings where Gaussian
mixture models generally produce inadequate partitions. All the reported analyses
have been conducted in the R environment (R Core Team 2019) with the aid of the
mclust (Scrucca et al. 2016), ks (Duong 2019) and EMMIXskew (Wang et al. 2018)
packages.

Throughout the simulationswe estimated a total of 126models, corresponding to the
default setting in mclust, where the 14 different parametrizations of the component
covariance matrices (see Celeux and Govaert 1995; Scrucca et al. 2016, for more
details) are combined with varying number of mixture components K = 1, . . . , 9.
Afterwards we have considered M = 30 best models ranked according to their BIC
values, coherently with Remark 1 in Sect. 3; this choice moves towards the direction of
retaining a large number of models, letting the estimation procedure to select the most
relevant ones, while keeping the computations feasible. Note that some additional
analyses have shown that clustering performances are not strongly influenced by a
further increase in the ensemble size. Moreover the choice of the information criterion
to rank the models and to select the best M ones is neither constraining nor strongly
influential; here the BIC has been considered in order to be consistent with the standard
practice in the model-based clustering framework. We also explored the option of
selecting M by the Occam’s window to build the ensemble as discussed in Remark 1;
nonetheless results, not reported here, indicate that this strategy often leads to the
selection of a too small subset of models due to the strong reliance on BIC. The three
options λAIC , λBIC and λCV discussed in Sect. 2.2 are evaluated, the last one resorting
to a V -fold cross-validation scheme with V = 5.

Results are reported in Tables 1, 2, 3, 4 and 5. A first expected behaviour indicates
that the performances of the considered methods tend to improve with the increase of
the sample size, both from a clustering and from a density estimation point of view.
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Table 1 Top panel: the MISE (× 1000) and the ARI (black lines) as functions of λ for n = 500, 5000. Red,
purple and brown horizontal lines represent the same quantities respectively for the single best model (SB),
the nonparametric approach (NP) and the hybrid approach (SB–NP). The vertical lines represent the mean
values over the B samples of λCV (in green), λAIC (in light blue) and λBIC (in orange). Bottom panel:
numerical values of the MISE (× 1000) and average ARI (and their standard errors) over the Monte Carlo
samples for the competing considered methods. Results refer to density M1 (color table online)
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SB 0.238 (0.162) 1.000 (0.000) 0.022 (0.015) 1.000 (0.000)
NP 1.246 (0.392) 0.500 (0.501) 0.270 (0.076) 0.455 (0.499)
SB-NP - 1.000 (0.000) - 1.000 (0.000)
λCV 0.241 (0.164)        0.995 (0.007) 0.024 (0.016) 1.000 (0.000)
λAIC 0.465 (0.380) 0.915 (0.280) 0.029 (0.019) 1.000 (0.000)
λBIC 0.244 (0.167) 0.990 (0.099) 0.022 (0.015) 1.000 (0.000)

Generally speaking our proposal, regardless of the penalization used, produces sat-
isfactory density estimates and partitions of the datasets. The first three scenarios have
been considered to see how the ensemble approach behaves in situations where the
single best model has a head start; in these cases the true generative model is indeed
among the ones estimated in the model-based clustering routine. Even in these some-
what unfavourable settings, where in some sense an ensemble approach is not strictly
needed, the proposed method behaves well producing overall comparable results with
respect to the parametric ones.

In the skewed scenarios M4 and M5, where Gaussian mixture models are known
to be less effective as a clustering tool, the ensemble approach induces remarkable
improvements in the performances, both in terms ofMISE and ARI. Note that, regard-
ing the relation between performances and sample size, we arewitnessing some results
constituting an exception with respect to what we pointed out before. Indeed, espe-
cially for the setting M5, the increased availability of data points forces Gaussian
mixture models to resort to an higher number of components, even in the presence of
two groups, to properly model the asymmetry thus deteriorating the clustering results.
In commenting these results some words of caution are needed since obtaining the
allocation according to the modal concept of groups can have a strong impact in these
two settings. Nonetheless comparisons with the hybrid approach help shedding light
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Table 2 Cf. Table 1. Results refer to density M2 (color table online)
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SB 0.666 (0.714) 0.677 (0.125) 0.057 (0.035) 0.680 (0.067)
NP 1.652 (0.434) 0.535 (0.186) 0.412 (0.094) 0.661 (0.083)
SB-NP - 0.690 (0.119) - 0.720 (0.012)
λCV 0.687 (0.402) 0.688 (0.064) 0.058 (0.036) 0.720 (0.012)
λAIC 0.809 (0.435) 0.687 (0.063) 0.072 (0.044) 0.719 (0.013)
λBIC 0.714 (0.522) 0.683 (0.129) 0.057 (0.035) 0.720 (0.012)

on this and to study further the improvements intrinsically introduced by averaging
together distinct densities. The method proposed, despite showing comparable results
when n = 500, attains notable enhancements when n = 5000 along with decreased
standard errors. This could constitute, from a clustering standpoint, an indication of
the improved quality of the density estimates produced considering model (1) with
respect to the ones produced by a single mixture model; better ARI values could
indeed indicate smoother estimates, being easier to be explored when searching for
the modes.

The aforementioned decrease in the variability of the results of the proposal with
respect to the competitors is witnessed across all the scenarios. This represents a
substantial and somewhat expected advantage of the ensemble approach, since a gain
in robustness and stability moves towards the desired direction when mixing models
together.

With regard to the choice of the penalization scheme some different considerations
arise. As expected, building on a data-based rationale, λCV seems to be more reliable
when the aim is to obtain an accurate estimate of the density. Choosing the amount
of the penalization via cross-validation appears to be particularly suitable especially
when n = 500 while, with increasing sample size, the performances of the three
considered schemes tend to be more similar. However, when clustering is the final
aim of the analysis λBIC turns out to be a serious candidate as it often produces better
results with respect to λCV and λAIC ; this constitutes a notable result since the BIC-
type penalization, unlike the cross-validation based one, requires a null computational
cost when dealing with the selection of λ. On the other hand, not even depending on

123



614 A. Casa et al.

Table 3 Cf. Table 1. Results refer to density M3 (color table online)
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the sample size, λAIC tends to produce the most unsatisfactory results among the three
as expected.

Lastly note that the performances of the fully nonparametric approach appear not
to be competitive with the other approaches considered. Nonetheless we believe that
some tuning in choosing the smoothing parameters used could lead to an improvement
in the results. This is not explored in our numerical experiments since appropriate
bandwidth selection is not the aim of the present study, hence it appears reasonable to
resort to a standard selector as we did.

4.2 Real data

In this section we consider three illustrative examples on real datasets. As in the pre-
vious section, we fit our proposed model considering the three different penalization
schemes introduced in Sect. 2.2 and we use as competitors the parametric, the non-
parametric and the hybrid approaches. The number of models in the ensemble is set to
M = 30 following the same rationale as the one discussed in the simulated examples.
Not having a real density to refer to, the analyses focus on the quality of the partitions
obtained, evaluated via the ARI.

4.2.1 Iris data

The Iris dataset (available at https://archive.ics.uci.edu/ml/datasets/Iris), alreadymen-
tioned in Sect. 2.1 to motivate our proposal, have been thoroughly studied since the
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Table 4 Cf. Table 1. Results refer to density M4 (color table online)
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λCV 0.436 (0.172) 0.440 (0.498) 0.059 (0.026) 0.850 (0.358)
λAIC 0.441 (0.181) 0.440 (0.498) 0.059 (0.024) 0.915 (0.280)
λBIC 0.438 (0.167) 0.705 (0.457) 0.074 (0.030) 0.965 (0.184)

seminal paper by Fisher (1936) and it consists in d = 4 variables (sepal length and
width, petal length and width) measured on n = 150 iris plants with Ktrue = 3 classes
equally sized. A widely known characteristic of these data consists in having a class
being linearly separable from the other two, in turn hardly to detect as separate groups.
Results are shown in Table 6. The method proposed here clearly outperforms all the
considered competitors. As seen in Sect. 2.1 the BIC select a two-component model
hence giving wrong indications about the number of groups. As a consequence, both
the parametric and the hybrid approaches, relying on the single best model, tend to
produce unsatisfactory results. On the other hand the detection of 7 groups, via modal
clustering based on kernel density estimation, is a symptom of an undersmoothed
density estimate with the selected bandwidth matrix. Note that the high degree of
rounding in the dataset could affect nonparametric performances since the estimator
is built to work with continuous data, hence without duplicated values. Our method,
regardless of the penalization scheme, produces strong improvements in the clustering
results. The AIC-type and the CV-based penalties wrongly find 4 clusters with one
spurious, yet small, group detected. On the contrary, a closer examination of the
results reveals that λBIC assumes roughly twice the value of λAIC and λCV and leads
to the correct identification of 3 groups.

4.2.2 DLBCL data

The Diffuse Large B-cell Lymphoma (DLBCL) dataset is provided by the British
Columbia Cancer Agency (Spidlen et al. 2012; Aghaeepour et al. 2013). The sample
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Table 5 Cf. Table 1. Results refer to density M5 (color table online)

n = 500 n = 5000

λ

M
IS
E

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

AIC BICCV
SB
NP

λ

AR
I

0 1 2 3 4 5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

AIC BICCV

SB

NP
SB−NP

λ

M
IS
E

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

AIC BICCV

SB

NP

λ

AR
I

0 2 4 6 8 10

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

AIC BICCV

SB

NP
SB−NP

MISE ARI MISE ARI
SB 0.727 (0.236) 0.784 (0.193) 0.081 (0.030) 0.367 (0.032)
NP 0.697 (0.128) 0.862 (0.143) 0.187 (0.025) 0.862 (0.164)
SB-NP - 0.910 (0.158) - 0.829 (0.177)
λCV 0.385 (0.124) 0.789 (0.178) 0.058 (0.014) 0.934 (0.114)
λAIC 0.382 (0.122) 0.798 (0.175) 0.057 (0.013) 0.961 (0.091)
λBIC 0.459 (0.139) 0.889 (0.159) 0.074 (0.019) 0.986 (0.052)

Table 6 Results obtained on the
Iris dataset. The true number of
cluster is Ktrue = 3

SB NP SB–NP λCV λAIC λBIC

λ – – – 1.449 1.000 2.505

ARI 0.568 0.556 0.568 0.869 0.845 0.941

K̂ 2 7 2 4 4 3

consists in fluorescent intensities of d = 3 markers, namely CD3, CD5 and CD19,
measured on n = 8183 lymph nodes cells from subjects with a DLBCL diagnosis. A
scatter plot of the data is shown in Fig. 3. In flow cytometry analysis these measure-
ments are used to study normal and abnormal cell structures and to monitor human
diseases and response to therapies. An essential step in this framework consists in
obtaining a grouping of the cells according to their fluorescences. This task is usually
accomplished via the so called gating process: the experts obtain a partition manually
by visually inspecting the data. This approach is usually time-consuming and infea-
sible in high-dimensional situations, therefore clustering tools could come in aid to
automate the gating process. The 3-dimensional structure of the data, illustrated in
Fig. 3, allows us to visually inspect the true cluster configuration, displaying elon-
gated and skewed group shapes. As noted in the simulated scenarios, results in Table 7
show how the model-based approach by using symmetric components tends to per-
form badly when dealing with such situations, since it detects an higher number of
groups with respect to the true one. In this setting, building mixtures on more flexi-
ble, possibly skew component densities could help in improving the fit by means of a
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Fig. 3 3D scatter plot of the DLBCL data with colors representing the true clustering labels

Table 7 Results obtained on the
DLBCL dataset. The true
number of cluster is Ktrue = 4

SB NP SB–NP λCV λAIC λBIC

λ – – – 0.001 1.000 4.505

ARI 0.401 0.857 0.867 0.912 0.909 0.910

K̂ 7 5 4 4 4 4

single model. Conversely, the nonparametric and the hybrid approaches, which search
for the modes of the density, do not suffer of the same drawbacks and outperform the
parametric strategy. Nonetheless, while the former appears to undersmooth again the
density, the latter detects the true number of clusters, yet with improved performance
in the allocation of units.

Our proposal, regardless of the penalization scheme adopted, enjoys the very same
advantage of modal clustering methods when dealing with asymmetric shapes. In fact
the results obtained improve with respect to the hybrid approach thus indicating that
our model produces a density estimate better tailored for the clustering scope. In this
case different penalization schemes lead to irrelevant changes in the ARI values, and
indicate a weaker dependency on the selected penalty value.

4.2.3 Olive oil data

As a last example we consider the Olive oil dataset, originally introduced in Forina
et al. (1986). The data consist of d = 8 chemical measurements on n = 572 olive
oils produced in 9 regions of Italy (North and South Apulia, Calabria, Sicily, Sardinia
coast and inland, Umbria, East and West Liguria) that can be further aggregated in
three macro-areas (Centre-North, South and Sardinia island). Clustering tools may
come in aid in reconstructing the geographical origin of the oils on the basis of their
chemical compositions.
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Table 8 Results obtained on the
Olive oil dataset. The
unaggregated regions have been
considered as true labels hence
Ktrue = 9

SB NP SB–NP λCV λAIC λBIC

λ – – – 1.155 1.000 3.175

ARI 0.782 0.604 0.792 0.902 0.902 0.892

K̂ 6 20 6 8 8 8

Table 9 Olive oil results, partition obtained with penalization parameter λAIC

1 2 3 4 5 6 7 8

South

Apulia north 24 1 0 0 0 0 0 0

Apulia south 0 6 200 0 0 0 0 0

Calabria 0 56 0 0 0 0 0 0

Sicily 6 30 0 0 0 0 0 0

Sardinia

Sardinia inland 0 0 0 65 0 0 0 0

Sardinia coast 0 0 0 0 33 0 0 0

Centre-North

Liguria east 0 0 0 0 0 1 42 7

Liguria west 0 0 0 0 0 0 0 50

Umbria 0 0 0 0 0 48 3 0

Compared to the cases considered previously, this example allows exploring the
performances of the proposal in a moderately higher dimensional setting. Results
in Table 8 show how our proposal outperforms the competitors, regardless of the
penalization adopted, and how it yields a more faithful partition of the data into the
9 considered regions. The parametric and the hybrid approaches detect 6 groups,
aggregating Sardinia coast and inland oils and highlighting some issues concerning
the correct classification of oils produced in South macro-area. On the other hand,
probably suffering of the higher dimensionality of the data, the fully nonparametric
approach clearly produces a partition based on an severely undersmoothed density
with 20 modes.

As it happened in Sect. 4.2.2 the clustering performances of our proposal appear
to be quite insensitive to the specific penalization adopted. In Table 9 we report the
partition induced by consideringλAIC as penalizing parameter. Again it appears harder
to discriminate the oils produced in the southernmacro-area,with calabrian and sicilian
ones assigned mainly to the same cluster, while oils in the other two macro-areas are
substantially correctly identified.

5 Conclusions

In this work we have addressed the issue of overcoming the strong reliance of model-
based clustering on a single best model, selected according to some information
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criterion. Making reference to a single model may be suboptimal both for cluster-
ing and for density estimation, since alternative well-fitted models may provide useful
information by uncovering different and complementary features which are otherwise
discarded. It has been pointed out that possible solutionsmay be found in the ensemble
learning literature. In this setting, we have proposed a clustering method building on a
density function which averages different estimated models, and whose modal regions
are then associated to the groups. The introduced density estimator is defined as a con-
vex linear combination of the estimates of the models in the ensemble, with weights
estimated via penalized maximum likelihood. This choice allows assigning relevance
to the only models which better fit the data while avoiding the risk of overfitting.

The proposed methodology finds a relevant strength in the coherency not to resort
to distance-based approaches to practically identify a grouping of the data. While it
exhibits an hybrid taxonomy which borrows both concepts and operational tools from
the parametric and nonparametric settings, it enjoys some of the relevant properties of
any formulation of density-based clustering, as for example its mathematically sound
formalization. In fact, it additionally inherits the strengths of both approaches. On
one hand, by resorting to parametric tools and to model average, density estimation
is strengthened and allows obtaining more accurate results of both nonparametric
tools and single parametric models. Additionally, the introduced penalization scheme
allows us to end upwith a single parsimoniousmixturemodel when the true generative
mechanism underlying the data is among the candidates to be averaged. On the other
hand, relying on the modal concept of clusters, groups are not constrained by any
shape induced by distributional assumptions, and they can arise with arbitrary shapes
which naturally comply with the geometric intuition.

The introducedmethod finds its original andmainmotivation in the need of propos-
ing a viable alternative to the single bestmodel paradigm in themodel-based clustering
framework. Nonetheless a different reading keymay be given if the proposal is consid-
ered from amodal perspective. Nonparametric clustering is known to have its Achilles’
heel in the density estimation step, since nonparametric estimators tend not to be reli-
able inmoderately high-dimensional situations (Scott 2015). It has been shown (Fraley
and Raftery 2002) that Gaussian mixture models, used with density estimation pur-
poses, usually outperform kernel density estimator even in low-dimensional spaces.
Our proposed method may therefore be thought as a way to strengthen the estimation
process, by using an ensemble of Gaussian mixtures, with a modal clustering aims in
mind.

It is worth noting that the proposed density estimator lies itself half-away between
parametric and nonparametric methods. In fact, when considering the number of com-
ponents as an unknown parameter, mixture models can be seen as a semi-parametric
compromise between classical parametric models and nonparametric methods as
kernel density estimators. The model we introduced has an increased number of com-
ponents with respect to a single mixture, inherited by the averaging procedure, hence
it takes another step forwards the nonparametric approach to density estimation.

The performances of the proposal have been investigated both on simulated and on
real data, selected to encompass different situations and confirm the considerations
above. The method produces satisfactory results both from a density estimation and
from a clustering perspective, and it compares favorably with the considered com-
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petitors. A deeper examination of the results leads to disentangle the reasons of the
improvements into two different sources: on one side partitioning the data accord-
ing to the modal formulation produces promising results in some specific scenarios,
on the other hand several clues have been obtained which highlight enhancements
in the density estimation process. Moreover, since nonparametric density estimation
performances are known to deteriorate in high-dimensional settings, our proposal is
expected to produce more pronounced improvements in these scenarios. Even if in the
simulation study we explored only two-dimensional situations due to the computa-
tional burden, some analysis we have conducted, not reported here, appears to confirm
this conjecture.

Concerning the introduced penalization schemes, the results seem to suggest the
use of the BIC-type penalization, being more suitable for clustering, or of the cross-
validation-based one, being able to adaptmore to the features of the considered dataset.
Lastly note that the use of a penalized log-likelihood, as well as the ways we consid-
ered to select the penalization parameter, targets an improvement in density estimation.
While the aforementioned considerations motivate the soundness of this choice, a pos-
sible interesting research direction may consist in proposing some clustering-oriented
penalization schemes and comparing them with the one introduced in this work.
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Appendix: Parameter settings

In the following the parameter settings of the densities selected for the simulations
in Sect. 4.1 are presented. For Density M1, M2 and M3, being Gaussian mixture
models, we adopt the usual notation where, for a given k component, πk represents
the kth mixture weight, μk and Σk the corresponding mean vector and covariance
matrix. On the other hand, for Density M4 and M5 we consider multivariate skew
normal distributions (or mixture of) hence the additional parameter δk regulates the
skeweness of the kth component (for details on the parametrization readers can refer
to Azzalini and Dalla Valle 1996).
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Density M1

Component πk μk Σk

1 1

(
0
0

) (
1.25 0.75
0.75 1.25

)

Density M2

Component πk μk Σk

1 0.5

(− 0.53
− 0.53

) (
0.68 − 0.41

− 0.41 0.68

)

2 0.5

(
0.53
0.53

) (
0.68 − 0.41

− 0.41 0.68

)

Density M3

Component πk μk Σk

1 0.4

(− 0.85
− 0.85

) (
0.58 − 0.35

− 0.35 0.58

)

2 0.4

(
0.85
0.85

) (
0.58 − 0.35

− 0.35 0.58

)

3 0.2

(
0
0

) (
0.16 − 0.09

− 0.09 0.16

)

Density M4

Component πk μk Σk δk

1 1

(
0
0

) (
0.8 − 0.4

− 0.4 0.8

) (
3
3

)

Density M5

Component πk μk Σk δk

1 0.5

(
1
1

) (
0.8 − 0.4

− 0.4 0.8

) (
3
3

)

2 0.5

(− 1
− 1

) (
0.8 − 0.4

− 0.4 0.8

) (− 3
− 3

)
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