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CLUSTERING OF MODAL VALUED SYMBOLIC DATA

VLADIMIR BATAGELJ, NATAŠA KEJŽAR, AND SIMONA KORENJAK-ČERNE
UNIVERSITY OF LJUBLJANA, SLOVENIA

Abstract. Symbolic Data Analysis is based on special descriptions of data – symbolic
objects (SO). Such descriptions preserve more detailed information about units and their
clusters than the usual representations with mean values. A special kind of symbolic
object is a representation with frequency or probability distributions (modal values).
This representation enables us to consider in the clustering process the variables of all
measurement types at the same time. In the paper a clustering criterion function for SOs is
proposed such that the representative of each cluster is again composed of distributions of
variables’ values over the cluster. The corresponding leaders clustering method is based
on this result. It is also shown that for the corresponding agglomerative hierarchical
method a generalized Ward’s formula holds. Both methods are compatible – they are
solving the same clustering optimization problem.
The leaders method efficiently solves clustering problems with large number of units;
while the agglomerative method can be applied alone on the smaller data set, or it could
be applied on leaders, obtained with compatible nonhierarchical clustering method. Such
a combination of two compatible methods enables us to decide upon the right number of
clusters on the basis of the corresponding dendrogram.
The proposed methods were applied on different data sets. In the paper, some results
of clustering of ESS data are presented. Symbolic objects and Leaders method and
Hierarchical clustering and Ward’s method and European social survey data set

1. Introduction

In traditional data analysis a unit is usually described with a list of (numerical, ordinal
or nominal) values of selected variables. In symbolic data analysis (SDA) a unit of a
data set can be represented, for each variable, with a more detailed description than only
a single value. Such structured descriptions are usually called symbolic objects (SOs)
Bock, H-H., Diday, E. (2000), Billard, L., Diday, E. (2006)). A special type of symbolic
objects are descriptions with frequency or probability distributions. In this way we can at
the same time consider both – a single value variables and variables with richer descriptions.
Computerization of data gathering worldwide caused the data sets getting huge. In order
to be able to extract (explore) as much information as possible from such kind of data the
predefined aggregation (preclustering) of the raw data is getting common.

For example if a large store chain (that records each purchase its customers make)
wants information about patterns of customer purchases, the very likely way would be to
aggregate purchases of customers inside a selected time window. A variable for a customer
can be a yearly shopping pattern on a selected item. Such a variable could be described
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with a single number (average yearly purchase) or with a symbolic description – purchases
on that item aggregated according to months. The second description is richer and allows
for better analyses.

In order to retain and use more information about each unit during the clustering process,
we adapted two classical clustering methods:

• leaders method, a generalization of k-means method (Hartigan, J.A. (1975), Anderberg, M.R.
(1973), Diday, E. (1979))

• Ward’s hierarchical clustering method (Ward, J.H. (1963)).

Both methods are compatible – they are based on the same criterion function. Therefore
they are solving the same clustering optimization problem. They can be used in combi-
nation: using the leaders method the size of the set of units is reduced to a manageable
number of leaders that can be further clustered using the compatible hierarchical clustering
method. It enables us to reveal the relations among the clusters/leaders and also to decide,
using the dendrogram, upon the right number of final clusters.

Since clustering objects into similar groups plays an important role in the exploratory
data analysis, many clustering approaches have been developed in SDA. Symbolic object
can be compared using many different dissimilarities with different properties. Based on
them many clustering approaches were developed. Review of them can be found in ba-
sic books and papers from the field: Bock, H-H., Diday, E. (2000), Billard, L., Diday, E.
(2003), Billard, L., Diday, E. (2006), Diday, E., Noirhomme-Fraiture, M. (2008), and Noirhomme-Fraiture, M., Brito, P.
(2011). Although most attention was given to clustering of interval data (de Carvalho,
F.A.T. and his collaborators) some methods were developed also for modal valued data that
are close to our approach (Gowda, K.C., Diday, E. (1991), Ichino, M., Yaguchi, H. (1994),
Korenjak-Černe, S., Batagelj, V. (1998), Verde, R. et al. (2000), Korenjak-Černe, S., Batagelj, V.
(2002), Irpino, A., Verde, R. (2006), Verde, R., Irpino, A. (2010)).

The very recent paper of Irpino, A. et al. (2014) describes the dynamic clustering ap-
proach to histogram data based on Wasserstein distance. This distance allows also for
automatic computation of relevance weights for variables. The approach is very appealing
but cannot be used when clustering general (not necessarily numerical) modal valued data.
In the paper de Carvalho, F.A.T., de Sousa, R.M.C.R. (2006) the authors present an ap-
proach with dynamic clustering that could be (with a pre-processing step) used to cluster
any type of symbolic data. For the dissimilarities adaptive squared Euclidean distance is
used. One drawback to this approach is in the fact that when using dynamic clustering one
has to determine the number of clusters in advance. In the paper Kim, J., Billard, L. (2011)
the authors propose Ichino-Yaguchi dissimilarity measure extended to histogram data and
in the paper Kim, J., Billard, L. (2012) two measures (Ichino-Yaguchi and Gowda-Diday)
extended to general modal valued data. They use these measures with divisive clustering
algorithm and propose two cluster validity indexes that help one decide for the optimal
number of final clusters. In the paper Kim, J., Billard, L. (2013) even more general dis-
similarity measures are proposed to use with mixed histogram, multi valued and interval
data.
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The aim of this paper is to provide a theoretical basis for a generalization of the compat-
ible leaders and agglomerative hierarchical clustering methods for modal valued data with
meaningful interpretations of clusters’ leaders. The novelty in our paper is in proposed ad-
ditional dissimilarity measures (stemming directly from squared Euclidean distance) that
allow the use of weights for each SO (or even its variable’s component) in order to consider
the size of each SO. It is shown that each of these dissimilarities can be used in a leaders
and agglomerative hierarchical clustering method, thus allowing the user to chain both
methods. In dealing with big data sets we can use leaders methods to shrink the big data
set into a more manageable number of clusters (each represented by its leader) which can
be further clustered via hierarchical method. Thus the number of final cluster is easily
determined from the dendrogram.

When clustering units described with frequency distributions, the following problems
can occur:

Problem 1: The values in descriptions of different variables can be based
on different number of original units.

A possible approach how to deal with this problem is presented in an application in
Korenjak-Černe, S. et al. (2011), where two related data sets (teachers and their students)
are combined in an ego-centered network, which is presented with symbolic data descrip-
tion.

Problem 2: The representative of a cluster is not a meaningful represen-
tative of the cluster.

For example, this problem appears when clustering units are age-sex structures of the
world’s countries (e.g. Irpino, A., Verde, R. (2006); Košmelj, K., Billard, L. (2011)). In
Korenjak-Černe, S. et al. (2015) authors used a weighted agglomerative clustering approach,
where clusters’ representatives are real age-sex structures, for clustering population pyra-
mids of the world’s countries.

Problem 3: The squared Euclidean distance favors distribution compo-
nents with the largest values.

In clustering of citation patterns Kejžar, N. et al. (2011) showed that the selection of the
squared Euclidean distance doesn’t give very informative clustering results about citation
patterns. The authors therefore suggested to use relative error measures.

In this paper we show that all three problems can be solved using the generalized leaders
and Ward’s methods with an appropriate selection of dissimilarities and with an appro-
priate selection of weights. They produce more meaningful clusters’ representatives. The
paper also provides theoretical basis for compatible usage of both methods and extends
methods with alternative dissimilarities (proposed in Kejžar, N. et al. (2011) for classical
data representation) on modal valued SOs with general weights (not only cluster sizes).

In the following section we introduce the notation and the development of the adapted
methods is presented. The third section describes an example analysis of the European
Social Survey data set ESS (2010). Section four concludes the paper. In the Appendix
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we provide proofs that the alternative dissimilarities can also be used with the proposed
approach.

2. Clustering

The set of units U consists of symbolic objects (SOs). An SO X is described with a
list of descriptions of variables Vi, i = 1, . . . ,m. In our general model, each variable is
described with a list of values fxi

x = [fx1
, fx2

, . . . , fxm ],

where m denotes the the number of variables and

fxi
= [fxi1, fxi2, . . . , fxiki ],

with ki being the number of terms (frequencies) fxij of a variable Vi, i = 1, . . . ,m.
Let nxi

be the count of values of a variable Vi

nxi
=

ki
∑

j=1

fxij

then we get the corresponding probability distribution

pxi
=

1

nxi

fxi
.

In general, a frequency distribution can be represented as a vector or graphically as
a barplot (histogram). To preserve the same description for the variables with different
measurement scales, the range of the continuous variables or variables with large range has
to be categorized (partitioned into classes). In our model the values NA (not available) are
treated as an additional category for each variable, but in some cases use of imputation
methods for NAs would be a more recommended option.

Clustering data with leaders method or hierarchical clustering method are two ap-
proaches for solving the clustering optimization problem. We are using the criterion func-
tion of the following form

P (C) =
∑

C∈C

p(C).

The total error P (C) of the clustering C is the sum of cluster errors p(C) of its clusters
C ∈ C.

There are many possibilities how to express the cluster error p(C). In this paper we
shall assume a model in which the error of a cluster is a sum of differences of its units from
the cluster’s representative T . For a given representative T and a cluster C we define the
cluster error with respect to T :

p(C, T ) =
∑

X∈C

d(X,T ),

where d is a selected dissimilarity measure. The best representative TC is called a leader

TC = arg minT p(C, T ).
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Then we define

(1) p(C) = p(C, TC) = min
T

∑

X∈C

d(X,T ).

Assuming that the leader T has the same structure of the description as SOs (i.e. it
is represented with the list of nonnegative vectors ti of the size ki for each variable Vi).
We do not require that they are distributions, therefore the representation space is T =
(R+

0 )
k1 × (R+

0 )
k2 × · · · × (R+

0 )
km .

We introduce a dissimilarity measure between SOs and T with

d(X,T ) =
∑

i

αidi(X,T ), αi ≥ 0,
∑

i

αi = 1,

where αi are weights for variables (i.e. to be able to determine a more/less important
variables) and

di(X,T ) =

ki
∑

j=1

wxijδ(pxij , tij), wxij ≥ 0

where wxij are weights for each variable’s component. This is a kind of a generalization of
the squared Euclidean distance. Using an alternative basic dissimilarity δ we can address
the problem 3 . Some examples of basic dissimilarities δ are presented in Table 1. It lists
the basic dissimilarities between the unit’s component and the leader’s component that
were proposed in Kejžar, N. et al. (2011) for classical data representation. In this paper
we extend them to modal valued SOs.

The weight wxij can be for the same unitX different for each variable Vi and also for each
of its components. With weights we can include in the clustering process different number of
original units for each variable (solving problem 1 and/or problem 2 ) and they also allow a
regulation of importance of each variable’s category. For example, the population pyramid
of a country X can be represented with two symbolic variables (one for each gender), where
people of each gender are represented with the distribution over age groups. Here, wx1

is
the number of all men and wx2

is the number of all women in the country X.
To include and preserve the information about the variable distributions and their size

throughout the clustering process (problem 2 ), the following has to hold when merging two
disjoint clusters Cu and Cv (a cluster may consist of one unit only):

p(uv)i =
1

w(uv)i

f(uv)i

where p(uv)i denotes the relative distribution of the variable Vi of the joint cluster C(uv) =
Cu ∪ Cv, f(uv)i the frequency distribution of variable Vi in the joint cluster and w(uv)i the
weight (count of values) for that variable in the joint cluster.

Although we are using the notation f which is usually used for frequencies, other in-
terpretations of f and w are possible. For example w is the money spent, and f is the
distribution of the money spent on a selected item in a given time period.
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2.1. Leaders method. Leaders method, also called dynamic clouds method (Diday, E.,
1979), is a generalization of a popular nonhierarchical clustering k-means method (Anderberg, M.R.,
1973; Hartigan, J.A., 1975). The idea is to get the ”optimal” clustering into a pre-specified
number of clusters with an iterative procedure. For a current clustering the leaders are
determined as the best representatives of its clusters; and the new clustering is determined
by assigning each unit to the nearest leader. The process stops when the result stabilizes.

In the generalized approach, two steps should be elaborated:

• how to determine the new leaders;
• how to determine the new clusters according to the new leaders.

2.1.1. Determining the new leaders. Given a cluster C, the corresponding leader TC ∈ T
is the solution of the problem (Eq. 1)

TC = arg minT
∑

X∈C

d(X,T ) = arg minT
∑

X∈C

∑

i

αidi(X,T )

= arg minT
∑

i

αi

∑

X∈C

di(X,T ) =
[

arg minti

∑

X∈C

di(X,T )
]m

i=1

Denoting TC = [t∗1, t
∗

2, . . . , t
∗

m], where t∗i ∈ (R+
0 )

ki , i = 1, 2, . . . ,m, we get the following
requirement: t∗i = arg minti

∑

X∈C d(xi, ti).
Because of the additivity of the model we can observe each variable separately and

simplify the notation by omitting the index i.

t∗ = arg mint
∑

X∈C

d(x, t) = arg mint
∑

X∈C

k
∑

j=1

wxjδ(pxj , tj)

= arg mint

k
∑

j=1

∑

X∈C

wxjδ(pxj , tj) =
[

arg mintj∈R
∑

X∈C

wxjδ(pxj , tj)
]k

j=1

Since in our model also the components are independent we can optimize component-wise
and omit the index j

(2) t∗ = arg mint∈R
∑

X∈C

wxδ(px, t)

t∗ is a kind of Fréchet mean (median) for a selected basic dissimilarity δ.
This is a standard optimization problem with one real variable. The solution has to

satisfy the condition

(3)
∂

∂t

∑

X∈C

wxδ(px, t) = 0
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Table 1. The basic dissimilarities and the corresponding cluster leader,
the leader of the merged clusters and dissimilarity between merged clusters.
Indices i and j are omitted.

δ(x, t) t∗C z D(Cu, Cv)

δ1 (px − t)2 PC

wC

wuu+ wvv

wu + wv

wu·wv

wu+wv
(u− v)2

δ2 (px−t
t

)2 QC

PC

uPu + vPv

Pu + Pv

Pu

u
(u−z

z
)2 + Pv

v
(v−z

z
)2

δ3
(px−t)2

t

√

QC

wC

√

u2wu + v2wv

wu + wv
wu

(u−z)2

z
+ wv

(v−z)2

z

δ4 (px−t
px

)2 HC

GC

Hu +Hv

Hu

u
+ Hv

v

Gu(u− z)2 +Gv(v − z)2

δ5
(px−t)2

px

wC

HC

wu + wv

Hu +Hv
wu

(u−z)2

u
+ wv

(v−z)2

v

δ6
(px−t)2

pxt

√

PC

HC

√

Pu + Pv

Pu

u2 + Pv

v2

Pu

u
(u−z)2

uz
+ Pv

v
(v−z)2

vz

wC =
∑

X∈C

wx

PC =
∑

X∈C

wxpx

QC =
∑

X∈C

wxp
2
x

HC =
∑

X∈C

wx

px

GC =
∑

X∈C

wx

p2x

Leaders for δ1. Here we present the derivation only for the basic dissimilarity δ1. The
derivations for other dissimilarities δ from Table 1 are given in the appendix.

The traditional clustering criterion function in k-means and Ward’s clustering meth-
ods is based on the squared Euclidean distance dissimilarity d that is based on the basic
dissimilarity δ1(px, t) = (px − t)2. For it we get from (3)

0 =
∑

X∈C

wx
∂

∂t
(px − t)2 = −2

∑

X∈C

wx(px − t)
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Therefore

(4) t∗ =

∑

X∈C wxpx
∑

X∈C wx

=
PC

wC

The usage of selected weights in the dissimilarity δ1 provides meaningful cluster repre-
sentations, resulting from the following two properties:
Property 1. Let wxij = wxi

then for each i = 1, . . . ,m:

ki
∑

j=1

t∗ij =
1

wC

ki
∑

j=1

∑

X∈C

wxi
pxij =

1

wC

∑

X∈C

wxi

ki
∑

j=1

pxij =
1

wC

∑

X∈C

wxi
= 1

If the weight wxij is the same for all components of variable Vi, wxij = wxi
, then for δ1 the

leaders’ vectors t∗i are distributions.
Property 2. Let further wxij = nxi

then for each cluster C, i = 1, . . . ,m and j = 1, . . . , ki:

t∗Cij =

∑

X∈C nxi
pxij

∑

X∈C nxi

=

∑

X∈C fxij
∑

X∈C nxi

=
fCij

nCi

= pCij

Note that in this case the weight wxij is constant for all components of the same variable.
This result provides a solution to the problem 2 .

For each basic dissimilarity δ the corresponding optimal leader, the leader of the merged
clusters, and the dissimilarity D between clusters are given in Table 1.

2.1.2. Determining new clusters. Given leaders T the corresponding optimal clustering C∗

is determined from

(5) P (C∗) =
∑

X∈U

min
T∈T

d(X,T ) =
∑

X∈U

d(X,Tc∗(X)),

where c∗(X) = arg mink d(X,Tk). We assign each unit X to the closest leader Tk ∈ T.
In the case that some cluster becomes empty, usually the most distant unit from some

other cluster is assigned to it. In the current version of R package clamix (Batagelj, V., Kejžar, N.,
2010) the most dissimilar unit from all the cluster leaders is assigned to the empty cluster.

2.2. Hierarchical method. The idea of the agglomerative hierarchical clustering proce-
dure is a step-by-step merging of the two closest clusters starting from the clustering in
which each unit forms its own cluster. The computation of dissimilarities between the new
(merged) cluster and the remaining other clusters has to be specified.

2.2.1. Dissimilarity between clusters. To obtain the compatibility with the adapted lead-
ers method, we define the dissimilarity between clusters Cu and Cv, Cu ∩ Cv = ∅, as
(Batagelj, V., 1988)

(6) D(Cu, Cv) = p(Cu ∪ Cv)− p(Cu)− p(Cv).

Let us first do some general computation. ui and vi are i-th variables of the leaders U
and V of clusters Cu and Cv, and zi is a component of the leader Z of the cluster Cu ∪Cv.
Then
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D(Cu, Cv) = p(Cu ∪ Cv)− p(Cu)− p(Cv) =

=
∑

i

αi

[

∑

X∈Cu∪Cv

di(X,Z)−
∑

X∈Cu

di(X,U) −
∑

X∈Cv

di(X,V )

]

=
∑

i

αiDi(Cu, Cv)

Since Cu ∩Cv = ∅ we have

(7) Di(Cu, Cv) =
∑

X∈Cu

[di(X,Z) − di(X,U)] +
∑

X∈Cv

[di(X,Z) − di(X,V )] = Sui + Svi

Let us expand the first term

(8) Sui =
∑

X∈Cu

∑

j

wxij [δ(pxij , zij)− δ(pxij , uij)] =
∑

j

Suij

2.2.2. Generalized Ward’s relation for δ1. Now we consider a selected basic dissimilarity
δ1(px, t) = (px − t)2. We get (omitting ij-s)

Suij =
∑

X∈Cu

wx

[

(px − z)2 − (px − u)2
]

=
∑

X∈Cu

wx(z
2 − 2pxz + 2pxu− u2) =

as we know (4): Pu = wuu

= wuz
2 − 2wuu(z − u)− wuu

2 = wu(z − u)2.

Therefore

Dij(Cu, Cv) = wu(z − u)2 + wv(z − v)2

= wu(z
2 − 2uz + u2) + wv(z

2 − 2vz + v2)

= z2(wu + wv)− 2z(wuu+ wvv) + wuu
2 + wvv

2.

We can express the new cluster leader’s element z also in a different way.

wzz = Pz =
∑

X∈Cu∪Cv

wxpx =
∑

X∈Cu

wxpx +
∑

X∈Cv

wxpx = wuu+ wvv

Therefore

z =
wuu+ wvv

wu + wv
.

This relation is used in the expression for Dij(Cu, Cv):

Dij(Cu, Cv) = wuu
2 + wvv

2 − (wu + wv)z
2

= wuu
2 + wvv

2 − (wu + wv)(
wuu+wvv

wu + wv
)2

=
wu · wv

wu + wv

(u− v)2.

and finally, reintroducing i and j, we get

(9) D(Cu, Cv) =
∑

i

αi

∑

j

wuij · wvij

wuij + wvij
(uij − vij)

2
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a generalized Ward’s relation. Note that this relations holds also for singletons Cu = {X}
or Cv = {Y }, X,Y ∈ U.
Special cases of the generalized Ward’s relation. When wxi

= wx is the same for all variables
Vi, i = 1, . . . ,m, the Ward’s relation (9) can be simplified. In this case we have

t∗i =
1

wC

∑

X∈C

wx · pxi
,

where the sum of weights wC =
∑

X∈C wxi
=

∑

X∈C wx is independent of i. Therefore we
have

D(Cu, Cv) =
wu · wv

wu + wv

∑

i

αi(ui − vi)
2 =

wu · wv

wu + wv

d(u,v),

In the case when for each variable Vi all wxi
= 1, further simplifications are possible.

Since
∑

X∈C 1 = |C| we get

t∗i =
1

|C|

∑

X∈C

pxi

and

D(Cu, Cv) =
|Cu| · |Cv|

|Cu|+ |Cv |

∑

i

αi(ui − vi)
2 =

|Cu| · |Cv|

|Cu|+ |Cv|
d(u,v).

2.3. Huygens Theorem for δ1. Huygens theorem has a very important role in many
fields. In statistics it can be related to the decomposition of sum of squares, on which
the analysis of variance is based. In clustering it is commonly used for deriving clustering
criteria. It has the form

(10) TI = WI +BI,

where TI is the total inertia, WI is the inertia within clusters and BI is the inertia between
clusters.

Let tU denote the leader of the cluster consisting of all units U. Then we define
(Batagelj, V., 1988)

TI =
∑

X∈U

d(X, tU)

WI = P (C) =
∑

C∈C

∑

X∈C

d(X, tC)

BI =
∑

C∈C

d(tC , tU)

For a selected dissimilarity d and a given set of units U the value of total inertia TI

is fixed. Therefore, if Huygens theorem holds, the minimization of the within inertia
WI = P (C) is equivalent to the maximization of the between inertia BI.

To prove that Huygens theorem holds for δ1 we proceed as follows. Because of the
additivity of TI, WI and BI and the component-wise definition of the dissimilarity d, the
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derivation can be limited only to a single variable and a single component. The subscripts
i and j are omitted. We have

TI −WI =
∑

C∈C

∑

X∈C

wx

[

(px − tU)2 − (px − tC)
2
]

=
∑

C∈C

∑

X∈C

wx

(

−2px tU + t2U + 2px tC + t2C
)

=
∑

C∈C

(

−2wC tC tU + wC t2U + 2wC t2C + wC t2C
)

=
∑

C∈C

wC(tC − tU)2 =
∑

C∈C

d(tC , tU) = BI

This proves the theorem. In the transition from the second line to the third line we
considered that for δ1 holds (Eq. (4))

∑

X∈C wxpx = wCtC .

3. Example

The proposed methods were successfully applied on different data sets: population pyra-
mids, TIMSS, cars, foods, citation patterns of patents, and others. To demonstrate some of
the possible usages of the described methods, some results of clustering of selected subset
of the European Social Survey data set are presented.

The data set ESS (2010) is an output from an academically-driven social survey. Its
main purpose is to gain insight into behavior patterns, belief and attitudes of Europe’s
populations (ESS www, 2012). The survey covers over 30 nations and is conducted bien-
nially. The survey data for the Round 5 (conducted in 2010) consist of 662 variables and
include more than 50,000 respondents. For our purposes we focused on the variables that
describe household structure: (a) the gender of person in household, (b) the relationship to
respondent in household (c) the year of birth of person in household and (d) the country of
residence for respondent, therefore also the country of the household. From these variables
(the respondent answered the first three questions for every member of his/her household)
symbolic variables (with counts of household members) were constructed. Variable V3 was
the only numeric variable and therefore a decision had to be made of how to choose the
category borders. From the economic point of view categorization into economic groups
of working population is the most meaningful, therefore we chose this categorization in
the first variant (V3a according to working population denoted with WP). But since demo-
graphic data about age are usually aggregated into five-year or ten-year groups, we also
consider ten-year intervals as a second option of a categorization of the age variable (V3b

in 10-year intervals denoted with AG).

• V1: gender (2 components):
{male : f11, female : f12}

• V2: categories of household members (7 components, respondent constantly 1):
{respondent : f21 = 1, partner : f22, offspring : f23, parents : f24, siblings :
f25, relatives : f26, others : f27}
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• V3: year of birth for every household member:
– V3a: according to working population (5 components):

{0 − 19 years : f31, 20 − 34 years : f32, 35 − 64 years : f33, 65 + years :
f34, NA : f35}

or
– V3b: 10-year groups (10 components):

{0−9, 10−19, 20−29, 30−39, 40−49, 50−59, 60−69, 70−79, 80+, NA}
• V4: country of residence (26 components, all but one with value zero):
{Belgium : f41, . . . , Ukraine : f4,26}

There were 641 respondents with missing values at year of birth therefore it seemed
reasonable to add the category NA to variable V3. That variant of handling missing values
is very naive and could possibly lead to biased results (i.e. it could be conjectured that
birth years of very old or non-related family members are mostly missing so they could
form a special pattern). A refined clustering analysis would better use one of the well
known imputation methods (e.g. multiple imputation, Rubin, D.B. (1987)). Note that for
each unit (respondent) in the data set the components of variables V1 to V3 sum into a
constant number (the number of all household members of that respondent). For the last
variable V4, the sum equals 1.

Design and population weights are supplied by the data set for each unit — respondent.
In order to get results that are representative of the EU population, both weights should be
used also for households. Because special weights for households are not available, we used
weights provided in data set in our demonstration: each unit’s (respondent’s) symbolic
variables were before clustering multiplied by design and population weight. wVi

(used in
the clustering process) for variables V1 to V3 was then the number of household members
multiplied by both supplied weights and for V4 the product of both weights alone.

3.1. Questions about household structures. Our motivation for clustering this data
set was the question what are the main European household patterns? And further, does
the categorization of ages of people from households influence the outcome of best clus-
tering results a lot? To answer this part, two data sets with different variable sets were
constructed: (a) data set with ages according to working population (further denoted as
variable set WP) and (b) with ages split in nine 10-year groups (further denoted as vari-
able set AG). Clustering was done on the three variables (gender, category of household
members and age-groups of household members).

Since we were interested also whether the household patterns differ according to coun-
tries, we inspected variable ’country’ after clustering. However this does not answer the
following question Does the country influence the household patterns? To be able to say
something about that, ’country’ has to be included in the data set and a third clustering
on data with all four variables was performed.

3.2. Clustering process. The set of units is relatively large — 50,372 units. Therefore
the clustering had to be done in two steps:
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(1) cluster units with non-hierarchical leaders method to get smaller (20) number of
clusters with their leaders;

(2) cluster clusters from first point (i.e. leaders) using hierarchical method to get a
small number of final clusters.

The methods are based on the same criterion function (minimization of the cluster errors
based on the generalized squared Euclidean distance with δ = δ1).

10 runs of leaders clustering were run for each data set (two data sets with three variables
and one with four variables (including country)). The best result (20 leaders) of them for
each data set was further clustered with hierarchical clustering. The dendrogram and
final clusters were visually evaluated. Where variable ’country’ was not included in the
data set it was plotted later for each of the four groups and its pattern was examined.
Generally more runs of leaders algorithm are recommended. Since this example serves as
an illustrative case and in ten runs the result was shown to be very stable we used ten runs
only, but in actual application more runs of the leaders method would be recommended.
The number of final clusters was selected with eyeballing the dendrogram selecting to cut
where dissimilarity among clusters had the highest jump (apart from clustering in only two
groups).

3.3. Results. The results were very stable. In Figure 1 the dendrogram on the best leaders
(with minimal leaders criterion function) for the variable set WP with ages according to
working population {V1, V2, V3a} is presented. For other two clusterings, i.i.e.e. for the
variable set AG with 10-year age groups {V1, V2, V3b} and the variable set Co with ’country’
included {V1, V2, V3b, V4} the dendrograms look similar and are not displayed. The variable
distributions of the final clusters are presented on Figure 2 for the variable set WP, on
Figure 3 for the variable set AG, and on Figure 6 for the variable set with Co.

There is one large (CWP
2 with 24,049 households), one middle sized (CWP

4 with 11,909
households) and two small clusters (CWP

1 with 7,134 and CWP
3 with 7,280 households) in

the result for the variable set WP. For the variable set AG, three relatively medium size
clusters (CAG

4 with 12,658, CAG
1 with 14,975, and CAG

3 with 15,800 households) and a small
one (CAG

2 with 6,939 households) were detected.
Inspecting variable distributions, one can see (as expected) that gender is not a signifi-

cant separator variable. The other two variables however both reveal household patterns.
From Figure 2 and Figure 3 we see that most of the patterns can be matched between the
clustering results with WP (working population age groups) and AG (10-year age groups):
CWP
3 with CAG

2 ; CWP
2 with CAG

3 ; cluster CAG
1 is split into two clusters in the WP cluster-

ing CWP
1 and CWP

4 . We see that CAG
4 would fit well with CWP

2 too which is not surprising
because the working population category is very broad (it includes 30 years, so three to
four 10-year age groups).

The differences in clustering results are observed due to different categorization. The
WP categorization reveals less due to less categories, however it does show the separation
of two household patterns where mostly two people (couples) live, CWP

1 and CWP
4 . Some

are still at work and the others (that sometimes live with some other family member) are
already retired. AG categorization puts these two groups in the same cluster CAG

1 . We
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see that those ’still at work’ are actually near retirement (they are about 50–60 years old)
and they naturally fall into the same group. AG categorization on the other hand due
to more age categories shows some more difference in the case of relationship patterns
(a) respondent-parent-sibling, CAG

2 , and (b) respondent-partner-offspring, CAG
3 . These two

relationship patterns reveal core families with (a) a respondent being in his/hers twenties
and (b) a respondent being around 30–50 years old. In these two ’types of families’ CAG

2 are
about 10 to 15 years older than CAG

3 . The cluster CAG
4 however shows additional pattern

that WP categorization does not reveal – the extended families with more females and a
very specific household age pattern.

Considering also supplementary variable ’country’ which was not included in the these
two clusterings (Figure 4) we found that household pattern CAG

4 (extended family) has
the largest percentage in Ukraine, Russian Federation, Bulgaria and Poland. CAG

2 with
younger questionnaire respondent in the core family is relatively most frequent in Israel,
Slovenia, Spain and Czech Republic and with older respondent, CAG

3 , in The Netherlands,
Greece, Spain and Norway. Respondents living in mostly two-person families are most
frequently interviewed in Finland, Sweden, Denmark and Portugal. Since ESS is one of the
surveys that should represent the whole population the very large (and very small) relative
values for country should exhibit a kind of household pattern that can be observed in each
country (i.e. large families in Russian Federation, Spain and Ukraine).

These differences should be even more pronounced when ’country’ is included in the
clustering process. The best clustering split the data set Co (with included additional
variable ’country’) into one very large cluster (C3 with 27,759 households), one medium
sized (C4 with 14,488 households) and two small clusters (C2 with 2,120 and C1 with 6,005
households). Figures 5 and 6 show the results. Note that for easier observation scales
for percentages in the horizontal coordinates are different. Immediately we can notice the
cluster C2 with dominating extended families in Russian Federation. This cluster is also
the smallest. The largest cluster C3 (core family with small proportion of other members
in the household) is most evenly distributed among countries, but most pronounced in
Ukraine and Spain. Shares in the second smallest cluster C1 with core families and younger
respondent are still large in Israel, Slovenia, Czech Republic but now also for Poland and
Croatia. We could conjecture that in these countries offspring stay with parents long
before becoming independent. The cluster C4 belongs to older two- to three-person families
with large proportions of German, Finnish, Swedish and Danish households. This type of
households is the least evenly distributed among countries.

4. Conclusion

In the paper versions of well known leaders nonhierarchical and Ward’s hierarchical
methods, adapted for modal valued symbolic data, are presented. Since the data measured
in traditional measurement scales (numerical, ordinal, categorical) can all be transformed
into modal symbolic representation the methods can be used for clustering data sets of
mixed units. Our approach allows the user to consider, using the weights, also the original
frequency information. The proposed clustering methods are compatible – they solve the
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Figure 1. Dendrogram for best leaders clustering for variable set WP with
working population age groups.

same optimization problem and can be used each one separately or in combination (usually
for large data sets). The optimization criterion function depends on a basic dissimilarity
δ that enables user to specify different criteria. In principle, because of the additivity of
components of criterion function, we could use different δs for different symbolic variables.

Presented methods were applied on the example of household structures from the ESS
2010 data set. The clustering was done on nominal (gender, relationships, country) and
interval data (age groups). When clustering such data information on size (which is impor-
tant when design and population weights have to be used to get the sample representative
of a population) was included into the clustering process.

The proposed approach is partially implemented in the R-package clamix (Batagelj, V., Kejžar, N.,
2010).

References

Anderberg, M.R. (1973), Cluster Analysis for Applications. Academic Press, New York
Batagelj, V. (1988), Generalized Ward and Related Clustering Problems, Classification

and Related Methods of Data Analysis H.H. Bock (editor), p. 67-74, North-Holland,
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Figure 2. Variable distributions for final 4 clusters (CWP
1 with 7,134, CWP

2
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3 with 7,280, and CWP

4 with 11,909 households) with work-
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households) with 10-year age categories.
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Figure 4. Supplementary variable country for variable set AG.
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Batagelj, V. and Kejžar, N., Clamix – Clustering Symbolic Objects. Program in R (2010)
https://r-forge.r-project.org/projects/clamix/

Bock, H. H., Diday, E. (editors and coauthors) (2000), Analysis of Symbolic Data. Ex-
ploratory methods for extracting statistical information from complex data. Springer,

https://r-forge.r-project.org/projects/clamix/


CLUSTERING OF MODAL VALUED SYMBOLIC DATA 19

Cluster 1

percentage

Belgium
Bulgaria
Croatia
Cyprus

Czech Republic
Denmark

Estonia
Finland
France

Germany
Greece

Hungary
Ireland

Israel
Netherlands

Norway
Poland

Portugal
Russian Federation

Slovakia
Slovenia

Spain
Sweden

Switzerland
Ukraine

United Kingdom

0 5 10 15 20 25

Cluster 2

percentage

Belgium
Bulgaria
Croatia
Cyprus

Czech Republic
Denmark

Estonia
Finland
France

Germany
Greece

Hungary
Ireland

Israel
Netherlands

Norway
Poland

Portugal
Russian Federation

Slovakia
Slovenia

Spain
Sweden

Switzerland
Ukraine

United Kingdom

0 10 20 30 40 50 60

Cluster 3

percentage

Belgium
Bulgaria
Croatia
Cyprus

Czech Republic
Denmark

Estonia
Finland
France

Germany
Greece

Hungary
Ireland

Israel
Netherlands

Norway
Poland

Portugal
Russian Federation

Slovakia
Slovenia

Spain
Sweden

Switzerland
Ukraine

United Kingdom

30 40 50 60 70 80

Cluster 4

percentage

Belgium
Bulgaria
Croatia
Cyprus

Czech Republic
Denmark

Estonia
Finland
France

Germany
Greece

Hungary
Ireland

Israel
Netherlands

Norway
Poland

Portugal
Russian Federation

Slovakia
Slovenia

Spain
Sweden

Switzerland
Ukraine

United Kingdom

10 15 20 25 30 35 40

Figure 5. Variable country for variable set Co with 10-year age categories.

Heidelberg
Billard, L., Diday, E. (2003), From the statistics of data to the statistics of knowledge:

Symbolic Data Analysis, JASA. Journal of the American Statistical Association, 98,
462, p. 470-487

Billard, L., Diday, E. (2006), Symbolic data analysis. Conceptual statistics and data mining.
Wiley, Chichester
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Figure 6. Variable distributions for final 4 clusters for variable set Co with
10-year age categories.
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Kejžar, N., Korenjak-Černe, S., and Batagelj, V. (2011), Clustering of distributions: A
case of patent citations, Journal of Classification, 28, 2, p. 156-183
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Appendix

In this Appendix we present derivations of entries t∗C , z and D(Cu, Cv) from Table 1 for
different basic dissimilarities δ.

Since in our approach the clustering criterion function P (C) is additive and the dissim-
ilarity d is defined component-wise, all derivations can be limited only to a single variable
and a single its component. Therefore, the subscripts i (of a variable) and j (of a compo-
nent) will be omitted from the expressions.

In derivations we are following the same steps as we used for δ1 in Section 2. To obtain
the component t∗C of representative of cluster C we solve for a selected δ the one dimensional
optimization problem (2). Let us denote its criterion function with F (t), t ≥ 0

F (t) =
∑

X∈C

wxδ(px, t)

then the optimal solution is obtained as solution of the equation

dF (t)

d t
= 0.

To obtain the component z of the leader of a cluster Cz we use the relation for t∗C for a
cluster Cz and re-express it in terms of quantities for Cu and Cv.

Finally, to determine the between cluster dissimilarity D(Cu, Cv) for a selected δ we will
use the relation (6) and following the scheme for δ1 the auxiliary quantity Su from (8)
(after omitting indices i and j)
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(11) Su =
∑

X∈Cu

wx(δ(px, z) − δ(px, u))

For different combinations of the weights used in the expressions, the abbreviations
wC , PC , QC ,HC and GC from Table 1 are used. Note that for Cz = Cu∪Cv and Cu∩Cv = ∅,
we have Rz = Ru +Rv, for R ∈ {w,P,Q,H,G}.

4.1. δ2(x, t) =
(

px−t
t

)2
. The derivation of the leader t∗C : In this case

F (t) =
∑

X∈C

wx

(

px − t

t

)2

and F ′(t) = −2
∑

X∈C

wxpx(px − t)
1

t3
= 0.

The leader’s component is determined with

(12) t∗C =

∑

X∈C wxp
2
x

∑

X∈C wxpx
=

QC

PC
.

The derivation of the leader z of the merged disjoint clusters Cu and Cv: From
the Eq. (12) and Cu ∩ Cv = ∅ follows

z =
Qz

Pz
=

Qu +Qv

Pu + Pv
=

Puu+ Pvv

Pu + Pv
.

The derivation of the dissimilarity D(Cu, Cv) between the disjoint clusters Cu

and Cv: Since u is the leader of the cluster Cu it holds Qu = Puu (see Eq. (12)). We can
replace

∑

X∈Cu
wxp

2
x = Qu in the expression Su (Eq. (11))

Su =
∑

X∈Cu

wx

[

(

px − z

z

)2

−

(

px − u

u

)2
]

with Puu and get

Su = Pu
(u− z)2

uz2
=

Pu

u

(

u− z

z

)2

.

Similary Sv =
Pv

v

(

v − z

z

)2

. Combining both expressions (Eq. (7)) we get

D(Cu, Cv) =
Pu

u

(

u− z

z

)2

+
Pv

v

(

v − z

z

)2

.

4.2. δ3(x, t) =
(px−t)2

t
. The derivation of the leader t∗C: In this case

F (t) =
∑

X∈C

wx
(px − t)2

t
and F ′(t) =

∑

X∈C

(t2 − p2x)
1

t2
= 0.

The square of the leader’s component is determined with

(13) t∗C
2 =

∑

X∈C wxp
2
x

∑

X∈C wx
=

QC

wC
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and from it

t∗C =

√

QC

wC
.

The derivation of the leader z of the merged disjoint clusters Cu and Cv: From
Eq. (13) and Cu ∩ Cv = ∅ follows

z2 =
Qz

wz
=

Qu +Qv

wu + wv
=

wuu
2 + wvv

2

wu + wv
and z =

√

wuu2 + wvv2

wu + wv
.

The derivation of the dissimilarity D(Cu, Cv) between the disjoint clusters Cu

and Cv: Since u is the leader of the cluster Cu and Qu = wuu
2 (see Eq. (13)), we can

replace
∑

X∈Cu
wxp

2
x = Qu in the expression Su

Su =
∑

X∈Cu

wx

[

(px − z)2

z
−

(px − u)2

u

]

with wuu
2 and get

Su = wu
(u− z)2

z
.

Similary Sv = wv
(v − z)2

z
. Combining both expressions we get

D(Cu, Cv) = wu
(u− z)2

z
+ wv

(v − z)2

z
.

4.3. δ4(x, t) =
(

px−t
px

)2
. The derivation of the leader t∗C : In this case

F (t) =
∑

X∈C

wx

(

px − t

px

)2

and F ′(t) = −2
∑

X∈C

wx(px − t)
1

p2x
= 0.

For px 6= 0 (this is also the condition for δ4(x, t) to be defined), the leader’s component is
determined with

(14) t∗C =

∑

X∈C
wx

px
∑

X∈C
wx

p2x

=
HC

GC

.

In the case px = 0 we set t∗C = 0 and δ4(x, t) = 0.
The derivation of the leader z of the merged disjoint clusters Cu and Cv: From
Eq. (14) and Cu ∩ Cv = ∅ follows

z =
Hz

Gz

=
Hu +Hv

Gu +Gv

=
Hu +Hv

Hu

u
+ Hv

v

.

The derivation of the dissimilarity D(Cu, Cv) between the disjoint clusters Cu

and Cv: Since u is the leader of the cluster Cu and Hu = Guu (see Eq. (14)), we can
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replace
∑

X∈Cu

wx

px
= Hu in the expression Su

Su =
∑

X∈Cu

wx

[

(

px − z

px

)2

−

(

px − u

px

)2
]

with Guu and get

Su = Gu(u− z)2.

Similary Sv = Gv(v − z)2. Combining both expressions we get

D(Cu, Cv) = Gu(u− z)2 +Gv(v − z)2.

4.4. δ5(x, t) =
(px−t)2

px
. The derivation of the leader t∗C: In this case

F (t) =
∑

X∈C

wx
(px − t)2

px
and F ′(t) = −2

∑

X∈C

wx(px − t)
1

px
= 0.

For px 6= 0 (this is also the condition for δ5(x, t) to be defined), the leader’s component is
determined with

(15) t∗C =

∑

X∈C wx
∑

X∈C
wx

px

=
wC

HC

.

In the case px = 0 we set t∗C = 0 and δ5(x, t) = 0.
The derivation of the leader z of the merged disjoint clusters Cu and Cv: From
Eq. (15) and Cu ∩ Cv = ∅ follows

z =
wz

Hz
=

wu + wv

Hu +Hv
.

The derivation of the dissimilarity D(Cu, Cv) between the disjoint clusters Cu

and Cv: Since u is the leader of the cluster Cu and wu = Huu (see Eq. (15)), we can
replace

∑

X∈Cu
wx = wu in the expression Su

Su =
∑

X∈Cu

wx

[

(px − z)2

px
−

(px − u)2

px

]

with Huu and get

Su = Hu(u− z)2 = wu
(u− z)2

u
.

Similary Sv = wv
(v − z)2

v
. Combining both expressions we get

D(Cu, Cv) = wu
(u− z)2

u
+ wv

(v − z)2

v
.
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4.5. δ6(x, t) =
(px−t)2

px·t
. The derivation of the leader t∗C: In this case

F (t) =
∑

X∈C

wx
(px − t)2

px · t
and F ′(t) =

∑

X∈C

wx

px
(t2 − p2x) = 0.

For px 6= 0 (this is also the condition for δ6(x, t) to be defined), the leader’s component is
determined with

(16) t∗C
2 =

∑

X∈C wxpx
∑

X∈C
wx

px

=
PC

HC

and from it

t∗C =

√

PC

HC
.

In the case px = 0 we set t∗C = 0 and δ6(x, t) = 0.
The derivation of the leader z of the merged disjoint clusters Cu and Cv: From
Eq. (16) and Cu ∩ Cv = ∅ follows

z2 =
Pz

Hz

=
Pu + Pv

Hu +Hv

=
Pu + Pv

Pu

u2 + Pv

v2

and z =

√

Pu + Pv

Pu

u2 + Pv

v2

.

The derivation of the dissimilarity D(Cu, Cv) between the disjoint clusters Cu

and Cv: Since u is the leader of the cluster Cu and Pu = Huu
2 (see Eq. (16)), we can

replace
∑

X∈Cu
wxpx = Pu in the expression Su

Su =
∑

X∈Cu

wx

[

(px − z)2

px · z
−

(px − u)2

px · u

]

with Huu
2 and get

Su = Pu
(u− z)2

u2z
=

Pu

u

(u− z)2

uz
.

Similary Sv =
Pv

v

(v − z)2

vz
. Combining both expressions we get

D(Cu, Cv) =
Pu

u

(u− z)2

uz
+

Pv

v

(v − z)2

vz
.
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