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Abstract

We present a novel method, REMAXINT, that captures the gist of two-way interaction
inrow by column (i.e., two-mode) data, with one observation per cell. REMAXINT is a
probabilistic two-mode clustering model that yields two-mode partitions with maximal
interaction between row and column clusters. For estimation of the parameters of
REMAXINT, we maximize a conditional classification likelihood in which the random
row (or column) main effects are conditioned out. For testing the null hypothesis of
no interaction between row and column clusters, we propose a max — F test statistic
and discuss its properties. We develop a Monte Carlo approach to obtain its sampling
distribution under the null hypothesis. We evaluate the performance of the method
through simulation studies. Specifically, for selected values of data size and (true)
numbers of clusters, we obtain critical values of the max — F statistic, determine
empirical Type I error rate of the proposed inferential procedure and study its power
to reject the null hypothesis. Next, we show that the novel method is useful in a variety
of applications by presenting two empirical case studies and end with some concluding
remarks.
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1 Introduction

Many studies in psychology, agriculture, bioinformatics, social networking and mar-
keting, among others, yield two-way two-mode data (Caroll and Arabie 1980).
Typically, two-way two-mode data can be represented in an / by J data matrix
D = {d;;}. Often the rows and columns of this data matrix constitute the levels of
two categorical predictors X and Y, say, with I and J categories, respectively, and cell
entries denote the observed values of a single quantitative dependent variable D. Such
data matrices are collected, for instance, in contextualized personality research, where
asetof / individuals (labeledbyi = 1, ..., I) is measured on some behavior of interest
D in J different situations (labeled by j = 1, ..., J). Other examples include the study
of micro-array data in genome research where DNA expression level D is obtained for
I genes under J different conditions, agriculture studies where crop yield per hectare
D is recorded for crops of I different genotypes at J different locations, and consumer
research where a preference rating D is obtained for / customers on J products.

A question of scientific interest is whether there is an interaction between X and
Y, and, if so, understanding the nature of this interaction. For instance, studying per-
son by situation interaction is a critical challenge for researchers in contextualized
personality psychology (Geiser et al. 2015; Mischel and Shoda 1995, 1998). This
challenge implies finding out whether the situation effect is the same for all indi-
viduals and, if not, in what way the situation effect differs between individuals. For
example, individuals may be characterized through distinctive sensitivities to specific
types of frustrating situations, such as responding more aggressively as a result of
being let down by others versus as a result of being narcissistically offended. Such
individual-specific response patterns across situations are referred to as behavioral sig-
natures, are considered central to the study of personality (Shoda et al. 2013, 2015),
and imply the existence of a person by situation interaction. Another example is in
the field of measurement (Choudhary and Nagaraja 2017). Specifically, in the study
of agreement between measurement methods administered to a set of objects, it is
important to determine, in case two (or more) methods (e.g., questionnaires, raters,
consumers, etc.) yield different measurements (e.g., intelligence, blood pressure, etc.),
whether that difference is attributable only to an additive constant that differs between
methods (i.e., no interaction between object and method) or whether that method effect
depends on the object being measured (i.e., object by method interaction). In the latter
case it is of interest to understand the nature of that object by method interaction. A
third example is in the case of experimental studies in which each study unit (e.g.,
patient, lab animal, etc.) is repeatedly observed on an outcome variable across differ-
ent experimental conditions. A scientific question of importance is whether condition
effects are equal for all study units or not. For instance, arguments in favor of the need
for personalized medicine (Hamburg and Collins 2010; Collins and Varmus 2015) are
based on the assumption that patient by treatment interaction (i.e., treatment effect
heterogeneity) exists (Rothwell 1995) and should be taken into account in the assign-
ment of patients to treatments. Additional examples of research problems pertaining
to the study of interaction in two-mode data are discussed in Schepers et al. (2017).

In these examples there are two issues that preclude a traditional (mixed) two-way
ANOVA approach to the study of interaction. The first is that two-mode data typically
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imply a single replication per cell of D. In that case, any row by column interaction is in
the model fully confounded with residual effects, ruling out the possibility of statistical
hypothesis testing on the presence of row by column interaction. Furthermore, two-
mode data typically include a large number of elements for at least one of the two
modes (e.g., subjects) in which case the two-way ANOVA model is not very useful
if one wishes to understand the nature of the row by column interaction. The amount
of information is simply overwhelming and some means to describe it succinctly is
needed. To address these issues, several methods have been proposed in the literature
(see e.g., Tukey 1949; Mandel 1971; Corsten and Denis 1990; Denis and Gower 1994,
Post and Bondell 2013; Franck et al. 2013; Forkman and Piepho 2014). These methods
have in common that a specific type of structure is imposed on the row by column
interaction (Alin and Kurt 2006). Another approach recently proposed is maximal
interaction two-mode clustering (Schepers et al. 2017), which belongs to the more
general class of two-mode clustering or biclustering methods (Van Mechelen et al.
2004; Madeira and Oliveira 2004).

Maximal interaction two-mode clustering yields simultaneous partitions of the rows
and columns of D such that in each bicluster the set of observed pairwise interactions
between rows and columns is optimally approximated by a single bicluster interaction
parameter. It is based on a probabilistic model, the parameters of which are estimated
by the maximum likelihood method. There are two issues not yet addressed by this
methodology. Firstly, in many applications the probabilistic model may be unrealistic
since it assumes fixed row (e.g., subject) and column (e.g., situation) main effects.
Often the elements of at least one of the two modes are a random sample from a pop-
ulation. For instance, in psychology studies, the set of subjects that are included in a
study is typically a random sample from some population of individuals. Secondly, no
procedure that allows for generalizability across replications, either with the same sub-
jects or with a new sample of subjects, has been discussed yet. In this paper, we extend
maximal interaction two-mode clustering to address these two issues. Firstly, we relax
the fixed effects assumption for one of the two modes (e.g., subjects) and show how
maximum likelihood estimators of the interaction effect parameters are obtained under
this relaxed model. Secondly, we develop a method to perform statistical inference on
the interaction effect parameters. Specifically, we develop an omnibus statistical test
for the null hypothesis of no interaction between row and column clusters. A strong
feature of the test statistic used to perform this test is that it is pivotal with respect to
the parameters that are not of interest, as we will show in Sect. 2.2.

The remainder of this article is organized as follows: In Sect. 2 we relax the fixed
effects assumption for one of the two modes and discuss estimation of the parameters
of interest. Furthermore, in Sect. 3 we propose a method for statistical inference on
the interaction effect parameters that is based on a Monte Carlo approach. Section 4
discusses the design and results of a simulation study in which two aspects of the
newly proposed inferential test are studied: empirical Type I error rate and statistical
power. Subsequently, Sect. 5 presents applications of the proposed method on two real
case studies. Finally, Sect. 6 includes concluding remarks and possible directions for
future research.
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2 Methods

2.1 Maximal interaction two-mode clustering model with fixed and random
effects

Recently, a statistical model for maximal interaction two-mode clustering was pro-
posed (Schepers et al. 2017) which we will refer to as the MAXINT model. This
development extended earlier work by Bock (1980), who proposed a maximal inter-
action clustering criterion. The latter, however, lacked a statistical justification in terms
of a stochastic model that describes a generating process for the observable data. Mak-
ing the stochastic model explicit is valuable as it clarifies the conditions under which
a proposed clustering method can be useful (Bock 1996; Banfield and Raftery 1993).

The MAXINT model assumes a simultaneous partition of the row set R into P
row clusters R, (p = 1,..., P) and the column set C into Q column clusters C,
(g =1,..., Q). Furthermore, | » R, = R (i.e., row clusters are jointly exhaustive)
and R, (R, = ¢ forall p # pr(i.e., row clusters are mutually exclusive). Likewise,
Uq C,=Cand C,(\Cy = ¢ forall g # g/. A bicluster R, x C, is defined as the
Cartesian product of row cluster R, and column cluster C,. Formally, the model is
expressed as:

dij = u+a; + B+ vpg + €ij i€Ry, jeCyp=1...,P,g=1,...,0.
(H

According to this model, an observed data value d;; can be decomposed as a sum of
several terms: an overall mean (u), fixed (additive) main effects of, respectively, row
i (represented as «;) and column j (represented as ), a fixed interaction effect y,,
associated to the bicluster R, x C,, and a residual term ¢;;. The residual terms «;;
represent the only stochastic component of the MAXINT model and are assumed to
be iid normally distributed random variables with mean zero and variance o2. The
interaction effect y,, is constant for all observations (ij) that belong to the same
bicluster R, x C. Interaction is thus assumed to occur between row and column
clusters, but not between rows and columns within the same bicluster.

MAXINT finds row and column partitions by maximizing a specific likelihood
function (see Eq. 3) based on Model (1), in which the following identifiability con-
straints are imposed on the fixed effect parameters:

1
> i =0, (2a)
i=l

J
> B =0, (2b)
j=1

P P
Z Z Ypg = Z [Rplypg =0, (2¢)
p=1

p=li€R,
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Q

0
D> e =D 1Clypg =0, (2d)
g=1

q=1jeCy

where |R)| and |Cy| denote the cluster cardinalities of row cluster R;, and column
cluster C,, respectively. Let us denote the vector of row main effects as o« = {o;}

(i = 1,...,1), the vector of column main effects as B = {B;} (j = 1,..., ),
the matrix of interaction effects as y = {ypq} (p = 1,...,Pandg = 1,..., Q)
and the vector of location parameters 6 = {u, o, 8, y}. Furthermore, let R and C
represent row and column partitions, respectively, that is, R = {Rjy,..., Rp} and

C={Ci.....Cq}.
Schepers et al. (2017) obtained estimators of the interaction effect parameters yp,
by maximizing the classification likelihood of model (1), that is, maximizing

2102

(_1(071'/' —pn—a =B — qu)2>
5 .

o2

3)

The MAXINT model assumes all row (;) and column (8;) effects to be fixed and
estimation proceeds by maximizing classification likelihood (3) across all possible
two-mode partitions R x C = (R, x Cy; p=1,...,P, g=1,...,0). How-
ever, this fixed effects assumption is often unrealistic. For instance, in contextualized
personality research, rows of the observed data matrix D = {di j } may refer to persons,
which are typically a random sample from a population of interest, whereas columns
may refer to situations or conditions, for which a fixed effects assumption is appro-
priate in most studies. Therefore, we propose a generalization of model (1), coined
REMAXINT, in which the main effects of one of the two modes, say, «; for the rows,
are allowed to be either fixed or random. To prevent any misunderstanding, the rows
are assumed to be randomly drawn from a population that consists of P fixed (but
unknown) biclusters. The interaction effect parameters y,,, that pertain to these clus-
ters are therefore fixed too. For estimation, we will be using a conditional likelihood
approach in which the random effects are treated as nuisance parameters. These are
parameters that are not of scientific interest but, nonetheless, have to be accounted for
in the estimation of the parameters of interest. Conditional likelihood is well-known in
modern psychometrics (Andersen 1973; Fischer and Molenaar 1995) and biostatistics
(Anderson and Senthilselvan 1980). The main advantage of this approach is that no
distributional assumption is needed with respect to the nuisance parameters (Verbeke
et al. 2001). In REMAXINT, it implies that we make no assumptions on the random
effects («;), except that these are iid with finite variance and zero expectation (the
latter for identifiability of x in the model). However, the constraints 2b—2d are kept on
the fixed effects parameters. Furthermore, REMAXINT can be used for the purpose
of capturing the gist of row by column interaction in a data set at hand, but by itself
is not sufficient for inferring whether there is statistical evidence of such interaction.
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Therefore we develop an omnibus statistical test, based on REMAXINT, for the null
hypothesis of no interaction between row and column clusters.

2.2 Model estimation

In this subsection, we derive conditional classification maximum likelihood estimators
of the interaction effect parameters of the REMAXINT model. The conditional likeli-
hood approach implies conditioning on a sufficient statistic for nuisance parameters.
As a result, the conditional likelihood does not depend on those nuisance parame-
ters. To obtain this conditional likelihood, we factorized likelihood (3) by focusing on
di = % Z]J-ZI d;; as sufficient statistic for nuisance parameter ;. As a starting point,

d; was added and subtracted into likelihood (3):
L(D|R,C,0,c%)

1((dij —di. = Bj —vpg) + di —n— Oéi))z)
2 o2 ’

exp(—

Expanding the squares the following expression is obtained:

1 (& E _
exp (‘m YD Y Wiy —di— B —vpy)
p=1

q=1ieR, jeC,

P 0
+ DY Y i —p—a)+2-U| ],

p=lg=lieR), jeCy

. : _ P 0
where U is the sum of the cross product terms, that is, U = } > .~
ZieR,, Zjecq (dij —di. — Bj — vpg)Ai, with A; = d; — jn — ;. After rewriting U
as Zf;:] Yier, Ai Zqul > jec,dij —d;. — Bj — ¥pq) it is straightforward to show
that U = 0,since 2 ¥ ¢, (dij—di) = J(@di.—~di) =0, X2 " 1cc (B) =0

[see Eq. (2b)] and ZqQ:] ZjeC (¥pq) = 0 [see Eq. (2d)].
Therefore likelihood (3) can be written as

P Q0
L(D|R,C,0,0%) =exp —% ZZ Z Z (dij —di. — Bj — qu)2

p=1qg=lieR, jeCy

@ Springer



REMAXINT: a two-mode clustering-based method for... 993

1\ J A )
(W> exp (=550 D @—u—a)’ | @

p=1li€R,

which satisfies the Fisher—-Neyman factorization theorem (Fisher 1922; Neyman 1935).
Specifically, the second factor is the likelihood of d; , which is a function of «; and
depends on d;; only through the sufficient statistic d;.. As a clustering criterion, we
will maximize the first factor, which does not include «;,

p 0

e ZZ SNy —di— By — vpe)? 5)

p=lg=lieRy jeC,

for the unknown parameters f8;, yp, and R and C. This implies a classification like-
lihood approach to the clustering problem (see e.g., Scott and Symons 1971; Symons
1981; Bock 1996). For the problem at hand, this then is a maximal conditional classifi-
cation likelihood problem. For a given two-mode partition R x C, maximum likelihood
(m.1.) estimation of the unknown parameters §;, and y,, amounts to minimizing the
quadratic criterion:

P 0O
§:= ZZ Z Z (dij —di. — Bj — qu)za (6)

subject to identification constraints (2b—2d).
At this point, it is convenient to define the following statistics:

o« Bj=d;—d.,
® Vpg = |Rp||cq Dier, 2jec,(dij —di.—d j+d.)

for j = 1,...,J, 5) =1,.,Pand g = 1,..., Q, where E.j = %Z{:ldij and
= 1
=TT Zl 1Zj:1dij-

Proposition 1 For the REMAXINT model the m.L. estimators of the unknown main and
interaction effects are given by

Bi=B; and g =7pq
forj=1,...,J,p=1,..,Pandqg=1,..., Q.

Proof After adding and subtracting B ; and ¥, the squared-error residual sum S can
be decomposed as follows:

P Q
ZZ Z Z ( —di. _'Ej _?Pq)"i'(gj _ﬂj)+()7pq _qu))2
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P 0 B N 5
= ZZ Z (di.i —di. —Bj— )7pq>
P 0 N
+ ZZ Z <(13/ - :3./')2 + (qu - qu)2> +2-V

p=lg=lieR, jeC,

where V is a sum of cross-product terms that equals O (see “Appendix 17). Since the
first sum does not depend on §; and y,, and the second sum is always non-negative,
S is minimized if and only if 8; = B, and y,, = V)4, as asserted. |

Substituting the maximum likelihood estimators ,B\] =d i d_and Vpg in CL (5)
we obtain

P 0
CLR.O=exp [ 53 DY Yy~ di—d;+d ~5* | @)

p=lg=lieR, jeCy

The maximum likelihood solution is then found by maximizing (7) over all possi-
ble two-mode partitions R x C, or equivalently, minimizing the following clustering
criterion:

P 0
SR.O) =33 (ds — Ppo)”. ®)

p=lg=1ieR, jeC,

where di*. = d;j — di —d j = d . These results based on considering a condi-
tional likelihood approach are important in two ways. Firstly, they show how to obtain
maximum likelihood estimates of the interaction effect parameters for either of two
different model assumptions: (i) row and column effects are fixed or (ii) row effects are
random and column effects are fixed. As the method proposed in Schepers et al. (2017)
was suitable only for model assumption (i), this result extends the scope of data sets
that are eligible for maximal interaction two-mode clustering. Note that applications
with fixed row effects and random column effects can also be addressed by making
model assumption (ii) and analyzing the transpose of D. Secondly, these results show
that, computationally, the associated optimization problem is equivalent to the one
addressed in Schepers et al. (2017). As a consequence, maximum likelihood esti-
mates of y,, in (5) can be obtained by applying the numerical optimization algorithm
described in Schepers et al. (2017) and Schepers and Hofmans (2009), the latter of
which also provides open-source software. We describe this algorithm (Algorithm 1)
in Sect. 3.2.

3 Statistical test

In this Section, we propose a statistical test to test the null hypothesis of all interaction
effect parameters in the REMAXINT model to be equal to zero. Specifically, we test
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the null hypothesis,
Ho :Vp.q ypg =0 C))
versus
Hy:3p,q suchthat y,, #0, (10)

for a fixed number of row and column clusters, P and Q.

We first introduce a new test statistic based on a decomposition of the variance,
we show that maximizing CL (5) is equivalent to maximizing this statistic and we
describe its properties. We then propose a procedure to obtain the distribution of the
test statistic under the null hypothesis and to perform the statistical test.

3.1 Test statistic

2
From this subsection on, wereferto i 7SS = Zil=1 ZJJ'=1 (d;;) as the total observed

interaction sum of squares. Furthermore, for any arbitrary two-mode partition R xC =
(RpxCq; p=1,...,P, g=1,...,0), werefer to:

P 0

iESS=ZZ|Rp||Cq|(?pq)2 an

p=1 q=1

zRSS—ZZZ > (a ypq) , (12)

p=lg=lieR, jeCy

where (11) defines the explained interaction sum of squares and (12) the residual
interaction sum of squares. Note that for any arbitrary two-mode partition R x C the
following decomposition of the total observed interaction sum of squares i 7SS holds:

iTSS =iESS+iRSS.

This follows by noting that

iTSS = (¢ )

i=1 j=1

Q 2
> ) (d;; + Vg — 7pq>

lg=1ieR, jeC,

¢ 2
Z|R 11Cql qu)

1g=1

XYY Y (5 -700)" a3

p=1qg=lieR, jeCy

ﬁMw

I
™M~

=
Il
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where the equality between the last two lines is due to the cross product term being
equal to zero.
Let F denote the ratio between iESS and iRSS, that is,

PO S \2 )
=1 2_g=1 |RpllCql E
F(R.C) = Y op=1 Xget | RplICql (Vpq) _IESS (14)

27 :
P 0 o~ IRSS
szl Zq:l ZieRp Zjqu (d;} - )/pq)

Proposition 2 Maximizing the conditional classification likelihood in Eq. (5) is equiv-
alent to maximizing the value of F across all possible two-mode partitions R x C for
fixed P and Q.

Proof iT SS does not depend on R x C. Therefore, it follows that maximizing i ESS
implies minimizing i RS S, which is equivalent to minimizing S (8). From decompo-
sition (13) and clustering criterion (8) it follows that maximizing CL (5) is equivalent
to maximizing the value of F across all possible two-mode partitions R x C for fixed
P and Q, as asserted. O

Let F* denote the maximized value of F, that is F* = maxpc F(R,C). Larger
observed values of F* indicate stronger interaction between the row and column
partitions in the sample. We propose to use F™* as a test statistic to test the null
hypothesis of all interaction effect parameters in the REMAXINT model to be equal
to zero. This statistic is computationally similar to the standard F'-test statistic used
in two-way ANOVA. However, the REMAXINT model estimation implies searching
through the entire model space of possible two-mode partitions. As such, F* can be
considered a new max — F test statistic designed for the study of two-way interaction.
For finite sample sizes, the sampling distribution of max — F and related statistics
defined on clustering approaches is not known and must be computed by simulations
(Bock 1996). We describe how to obtain the sampling distribution via Monte Carlo
simulations in Sect. 3.2, but first we focus on two properties of F* that are appealing
for the specification of this computational task.

Property 1 The distribution of F* does not depend on the value of the unknown vari-
2
ance o”.

Proof This can be shown by considering the following transformation of the data:
d; j=cx d;j, thatis, multiplication by a constant factor c. This transformation implies

the residual variance of the transformed data to be 02" = ¢? x o'2. This transformation

further implies d = ¢ x d and Ypg = € X Vpg- Thus, since all terms within the
squares of F* are multiplied by the same factor ¢, both the numerator and denominator
are multiplied by ¢? and, therefore, they cancel out of Eq. (14). This implies that F*
does not depend on the value of the unknown residual variance, as asserted. O

Property 2 The distribution of F* does not depend on the size of the row and column
main effects nor on the overall mean ().
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Proof Starting from d}; = d;; — d; —d_j+d_,rewriting d; and d_j in terms of d;;
and replacing d;; with Eq. (1) leads to

d;;- =d;j —E,‘_ —E,j +E"
1 1 1
7;dff‘7lzdff+mzzdff
1 1
“mres =3 Ve Yt g L e

j i
=Ypq +€ij—€.—€;+E.,

where ¢;; indicates the residual term for row i and column j as defined in Model (1).
Details on the steps between the second and third line are provided in “Appendix 2”.
This final expression does not depend on «;, B; nor on u, as asserted. O

Hence, F* is pivotal with respect to u, «;, 8 ; and o?.

3.2 Computational procedure

It is important to note that in the current approach, the clustering of the data is con-
sidered primarily as a tool to make inference on the interaction effects.

To test the null hypothesis in Eq. 9, it is possible to draw from the true null distribu-
tion of F* rather than using a bootstrap approach (see e.g., McLachlan and Peel 1997,
Hennig and Lin 2015). Note that under the null hypothesis, there is no partitioning
in the data generating mechanism (i.e., ¥,y = 0 Vp, ¢). Specifically, we propose the
following three steps Monte Carlo (MC) approach to obtain the sampling distribution
of F*:

e Step 1: Generate a simulated data matrix from the null model. Specifically, generate

D™ of size I x J such that each cell (ij) contains a single observation d;; (sim)

N (ubsim —i—ozi(”m) —1—/3;5””) o 261m)y We discuss and specify ) oe(”m) ﬂ(”m)
and 026" in Sect. 4.1.1.

e Step 2: Fit the model with P row clusters and Q column clusters to D*" to estimate
the parameters of interest and compute the value of the corresponding test statistic.
Specifically, apply REMAXINT to estimate y,,, and compute F™*.

e Step 3: Repeat steps (1) and (2) K times, to compose the distribution of the test
statistic under the null hypothesis. Each value computed in step (2) is a value from

this distribution. Spemﬁcally, we obtain the following set of values § = {F b)}
with(b=1,...,K).

If K is sufficiently large, then the empirical distribution of FG, » approaches the sam-
pling distribution of F* under the null hypothesis. Step 2 1mplles that any of the F F b)
is yielded by a search through the complete model space of two-mode partitions and,
as such, is in line with the guidelines of Lipkovich et al. (2017). Specifically, in order
to fit REMAXINT we implemented the following two steps. First, use Algorithm 1
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to find a local maximum. Second, in order to increase the probability of finding the
global maximum, this process is repeated M = 20 times with different independently
generated random starting solutions. The highest maximum out of all M = 20 runs is
kept as the final solution, yielding REMAXINT estimates of .

Algorithm 1 Algorithm to find REMAXINT local maximum of (7) with respect to R
and C.

Set a randomly generated bicluster configuration R x C and compute )4 for that solution

repeat
Keep C and 74 fixed and update row partition R such that for each row assignment clustering criterion
(8) is minimized;
Keep R and C fixed and update 74 ;
Keep R and )4 fixed and update column partition C such that for each column assignment clustering
criterion (8) is minimized;
Keep R and C fixed and update 7pq;
Compute ¢ as the difference between the value of clustering criterion (8) in the previous iteration and
the current iteration;

until ¢ > 0

4 Simulation study

In this section, we report an evaluation of the proposed methodology in terms of two
statistical criteria: Type-I error rate and power. In the following subsections, we first
present the design of the studies and then discuss the results.

4.1 Design

In this subsection we discuss the design of three simulation studies. The first study
is used to establish critical values of test statistic F* as a function of two completely
crossed experimental factors: size (I x J) of the data set and complexity of analysis
(P, Q). The critical values are found following the three steps in the preceding section,
with K = 10,000. The second simulation study investigates to what extent these
critical values are subject to sampling errors being based on finite K in the first
simulation. Furthermore, this study is used to verify that these critical values do not
depend on chosen values of the parameters that are not of interest (u, @, 8 and o).
The third simulation study is to assess the power of test statistic F* to detect row by
column interaction. In each of these three simulation studies, the two fully crossed
design factors, size and complexity of analysis, were varied across a range of values:

(1) size (I x J) of the data, at 6 levels: 20 x 20, 30 x 30, 40 x 40, 50 x 10, 50 x 30,
100 x 20;
(1) complexity of analysis (P, Q), at 4 levels: (2, 2), (3, 3), (4,4), (5,5).
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4.1.1 Determination of critical values

In order to determine critical values for the proposed test statistic F* we applied the
three-step Monte Carlo approach as described in Sect. 3. Specifically, we generated
K = 10,000 independent data sets without any row by column interaction for each
level of the design factor size. That is, data were generated from the null model such
that dl.(;lm) ~ N (ubim 4 ai(s”") + ﬁ;”m), o2ty Without loss of generality, we

set 0207 — 1 and, likewise, 107" + o™ 4 ,3](-”’") = 0, since F* is pivotal with
respect to these parameters.

On each generated data set, we applied REMAXINT for each level of complexity
of analysis. For any combination of size and complexity of analysis this yields K =
10,000 simulated Monte Carlo (MC) test statistic values & = {F’ (*;))}, b=1,...,K),
of which the distribution approaches the sampling distribution of F* under the null
hypothesis if K is sufficiently large (Efron 1982; Chernick 2011). From the simulated
distribution of F* we then obtain critical values F for any significance level o by
finding the (100 — «)th quantile of the empirical distribution.

4.1.2 Type-l error rate

We used a second simulation study to investigate (a) the extent to which sampling error
affects establishing critical values if K = 10,000 and (b) to verify that the inferential
procedure is not sensitive to choices of values of ,u(”m), q5im) ﬂ(‘”' m) (which were
set to 0 in study 1) and o> (which was set to 1 in study 1). Specifically, for each
level of size, we generated independent data sets from the null model such that d;;
~ N(u+ai+Bj, o), where u ~ U0, 1),e; ~ N'(0, 1) and ; ~ N(0, 1). In order
to reduce the computational burden we now generated 5000 data sets as opposed to
the 10,000 we used to determine critical values. Furthermore, compared to simulation
study 1, we chose 0> = 2 to show empirically that F* is pivotal with respect to this
variance.

Each data set was then analyzed by applying REMAXINT for each level of com-
plexity of analysis. Every single analysis yields an observed value of the test statistic
F (*;h 5 which may be compared to the critical value for that combination of size and
complexity of analysis as was obtained in the first simulation study in Sect. 4.1.1.
Specifically, if F, (*Db 5 > F the decision is to reject the null hypothesis (i.e., no row by
column interaction) in favour of the alternative hypothesis that there is some interac-
tion. For each combination of size and complexity of analysis, the proportion of F (ﬁ; bs)
values (out of all 5000 data sets for that combination of size and complexity of anal-
ysis) that fall in the rejection region corresponds to the empirical Type I error rate or
empirical significance level of the newly proposed test of interaction. If study 2 yields
empirical Type-I error rates close to the nominal level o, we may safely conclude that
(a) choosing K = 10,000 is sufficient for accurately establishing critical values, and
(b) that the proposed method does not depend on the choice of p (7, (57  glsim)
and 026 for generating MC samples.
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4.1.3 Power of the test

This study was designed to evaluate the power of the REMAXINT test of interaction.
To this end, data sets were generated such that cell entries d;; ~ N (1 pq, 02), where
the bicluster means u ,, were drawn from a standard uniform distribution, that s, w4
~ U(0, 1) . Furthermore, each row (resp. column) was randomly and independently
assigned to one of the row (resp. column) clusters with probability 1/P (resp. 1/Q).
If this yielded a row (resp. column) partition with empty clusters, this procedure was
repeated until a partition without empty row (resp. column) clusters was obtained.
Having the row and column cluster memberships assigned allows to reparametrize the
bicluster means as i ps=p + o; + B; + ypq (imposing constraints 2a-2d) and choose
o2 such that

P Y 2
—1 2_g—1 |RplICq4l 1
> Zp IZq_] pllitq (qu) _ (15)

2
21173:1 ZqQ=1 IRpICql (vpg)” +1-7-02 16

That is, we made sure that the ratio of interaction variance to the sum of interaction
variance and residual variance was small.

In this third simulation study, the frue number of row and column clusters
(P®, Q) is an additional design factor varied at four levels: (2,2), (3,3), (4, 4),
(5,5), which was fully crossed with size and complexity of analysis.

For each combination of size and true number of row and column clusters, we
independently generated 5000 simulated data sets. We analyzed each of these data
sets at all 5 levels of complexity of analysis, by applying the REMAXINT model. This
yields for each data set and each level of complexity of analysis an observed value of
test statistic F%, |, which, as in simulation study 2, is compared to the corresponding
critical value F; for that combination of size and complexity of analysis. The proportion
of observed values (out of all 5000 data sets for that combination of size, true number
of row and column clusters and complexity of analysis) that fall in the rejection region
corresponds to the empirical power of the REMAXINT test of interaction.

4.2 Results
4.2.1 Simulation results for critical values

At nominal significance level @ = 0.05, Table 1 shows critical values F, for each
combination of size and complexity of analysis. These critical values were obtained
by applying the MC approach, as described in Sect. 4.1.1.

Inspection of Table 1 shows that, for each level of size, the null distribution of F* is
shifted towards the right for higher levels of complexity of analysis. This is an expected
result as higher levels of complexity of analysis imply models with more parameters
to fit the observed data and thus higher F*-values observed by chance. Furthermore,
note that the levels of size constitute a partially ordered set with respect to the relation
<@Ge.,,J)<{',J)if I <I'and J < J'). Table 1 shows that, for each level
of complexity of analysis, the null distribution of F* is shifted towards the right for
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Table 1 Critical values F'

corresponding to « = 0.05 for Size (C;’;i]lex”y Of?; a?g/sis (FQ) ) 5.5

each combination of size and ; ; ; |

complexity of analysis 20 x 20 0.1440 0.2504 0.3535 0.4660
30 x 30 0.0890 0.1478 0.2000 0.2524
40 x 40 0.0635 0.1037 0.1375 0.1703
50 x 10 0.1569 0.2715 0.3859 0.5126
50 x 30 0.0670 0.1096 0.1459 0.1811
100 x 20 0.0648 0.1048 0.1400 0.1751

the smallest level of any pair of levels (1, J) and (I’, J) that are comparable (i.e.,
(I, J)y < U',J)orI',J) < (I,J)). This again is an expected result since, for a
given level of complexity of analysis, larger data sets imply relatively fewer parameters
as compared to the total number of observations and thus less chance capitalization.
Finally, the size effect on the critical values of F* cannot only be explained by the total
number of observations implied by the levels of size, as becomes clear by comparing
size levels 40 x 40 and 100 x 20: critical values in the first condition, with fewer
number of total observations, are systematically (i.e., across all levels of complexity of
analysis) smaller than those in the second. This suggests that the amount of symmetry
in terms of data size plays a role as well. Specifically, more symmetrical data sizes
imply smaller critical values. This result makes sense too, because for a fixed total
number of observations the probability of obtaining small clusters (e.g., singleton) is
larger for less symmetrical data sizes. Smaller clusters are more likely to yield more
extreme F* values.

4.2.2 Simulation results for Type-I error rate

Table 2 shows the proportion of significant test results for all combinations of size and
complexity of analysis. This table shows that the proportions of significant test results
are close to the nominal significance level «, which is 0.05 in this case. This suggests
that generating K = 10,000 samples in the MC procedure is a reasonable choice
for approximating the null distribution of F*. As expected, observed deviations from
the nominal level do not appear to be systematically related to size nor complexity of
analysis. Furthermore, the empirical Type-I error rates are close to the nominal level,
confirming that it does not matter what choices are made for 1, o, 8 and o2 in the
process of generating MC data.

4.2.3 Simulation results for power of the test

Figure 1 shows empirical power as a function of size, true numbers of row and col-
umn clusters (P®, QW) and complexity of analysis (P, Q). These results show
that empirical power increases for increasing levels of size, as expected. Further-
more, the results suggest that the most parsimonious level of complexity of analysis
(i.e, (P, Q) = (2, 2)) tends to outperform higher levels of complexity of analysis for
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Table 2 Type-I error rate Size Complexity of Analysis (P,Q)

corresponding to o = 0.05 for

differeF;lt datagsizes and0 05 2.2 3,3 @9 .5

complexity of analysis 20 x 20 0.0572 0.0534 0.0566 0.0520
30 x 30 0.0502 0.0512 0.0502 0.0500
40 x 40 0.0498 0.0532 0.0520 0.0510
50 x 10 0.0508 0.0488 0.0504 0.0506
50 x 30 0.0518 0.0526 0.0542 0.0520
100 x 20 0.0518 0.0540 0.0518 0.0540

all data sizes. However, this effect decreases for increasing levels of true complexity
(PD, Q™). The fact that even for higher levels of frue number of row and column
clusters empirical power does not appear to benefit (much) from increasing the level
of complexity of analysis allows the formulation of straightforward advice for prac-
titioners intending to use this method: If one does not have strong prior hypotheses
about the frue number of row and column clusters, then apply this test of interaction
for complexity of analysis equal to (2, 2). Furthermore, comparing size levels 40 x 40
and 100 x 20, the results are quite similar. It thus appears that empirical power is
not only a function of the total number of observations but rather that the degree of
symmetry of the data size also figures in.

4.3 Effect of data size and of symmetry

In order to study in more detail the effect of data size and of symmetry, we ran an
additional simulation study in which we varied the size and degree of symmetry of the
data size. It is known that to preserve the same level of statistical power, traditional F-
tests require larger sample sizes by a factor k? if the size of the tested effect (expressed
as a ratio of true to total variance) changes by a factor % (Cohen 1992). In order to
check whether this property carries over to the REMAXINT test of interaction, we
decreased the interaction effect size w in (15). Specifically, for all data sets generated in
this additional study, @ was decreased by a factor 2 as compared to simulation study 3
(i.e.,w = 1/32 vs w = 1/16). Furthermore, we chose data size 100 x 20 as a reference
and specified three additional levels of size. Compared to data size 100 x 20, these three
additional size levels imply an increase in terms of the total number of observations by
a factor of 4. However, these data sizes are of varying degrees of data size symmetry:

e data size 100 x 80 is more symmetrical than data size 100 x 20
e data size 200 x 40 has the same degree of symmetry as data size 100 x 20
e data size 400 x 20 is less symmetrical than data size 100 x 20.

Figure 2 shows that the beneficial effect of increasing the total number of observations
on empirical power is stronger the more the resulting data size is symmetrical [compare
panels (b) and (c) to panel (d)]. It appears that if a larger total number of observations is
achieved by introducing more asymmetry in the resulting data size, then the associated
power increase is limited [compare panel (d) to panel (a)]. Finally, we also note that the
empirical power values shown in panel (c) of Fig. 2 are very similar to the results shown
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Fig. 1 Empirical power as a function of size (panel), true number of row and column clusters (curves) and
complexity of analysis (horizontal axis)

in panel (f) of Fig. 1, where the total number of observations is 4 times as small, but
the effect size is 2 times as large. This suggests that, in terms of how required sample
size relates to effect size, this REMAXINT based test of interaction indeed behaves
in the same way as traditional two-way ANOVA F-tests do (if degree of symmetry in
data size is kept constant).

5 Application to case studies

The previous section evaluated the performance of the REMAXINT interaction test
using simulated data sets. In this section, we apply the method on two case studies. The
first application stems from a study of person by situation interaction, one of the key
questions addressed by researchers in contextualized personality psychology (Geiser
etal. 2015; Mischel and Shoda 1995, 1998). The second application pertains to a study
of genotype by location interaction, which is of substantial interest in agriculture
(Corsten and Denis 1990; Piepho 1997, 1999; Gauch 2006; Forkman and Piepho
2014). The first application is an example of a study in which one of the modes (i.e.,
persons) is a random sample from a population of interest. In the second application,
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Fig. 2 Additional simulation study: empirical power as a function of size and symmetry (panels), true
number of row and column clusters (curves) and complexity of analysis (horizontal axis)

on the other hand, it is more typical to assume that both modes (i.e., genotypes and
locations) represent fixed effects. As discussed in Sect. 2.2, the REMAXINT model
is appropriate for both of these model assumptions.

5.1 Person by situation case study

In this case study, we applied our method to infer whether there is evidence of person by
situation interaction in a study on altruism. The altruism data were collected in a study
by Quintiens (1999) and were more recently reanalyzed in Schepers and Van Mechelen
(2011) and Schepers et al. (2017). A group of I = 102 participants was presented
with a set of J = 16 hypothetical situations, each describing an emergency in which
a victim could possibly be helped by a person. Each participant was asked to indicate
for each emergency to what degree they would be willing to help the victim. Ratings
were given on a 7-point scale from 1 (definitely not) to 7 (definitely yes).

The REMAXINT interaction test was applied to the resulting 102 x 16 data matrix
of help ratings in order to infer whether there is evidence of interaction between person
and situation clusters. Specifically, complexity of analysis (P, Q) was varied at five
levels: (2,2), (3,3), (4,4), (5,5) and (6, 6), each of which yields an observed value
F Z; bs) of test statistic F*. In order to obtain critical values we employed the procedure
described in Sect. 4.1.1 for a significance level « = 0.05. For each test, p values were
computed as P(F; > F(*;bs)). The results are shown in Table 3.
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Table3 Results of REMAXINT interaction test applied to help data for five levels of complexity of analysis

Complexity of Analysis (P,Q)

2,2) (3.3) “4.4) (5.5) (6,6)
Critical value (Fj) 0.0774 0.1269 0.1719 0.2163 0.2625
Test statistic (F(*obs)) 0.1021 0.1577 0.2282 0.2857 0.3615
p value 0.0000 0.0000 0.0000 0.0000 0.0000

We note that F:;bs) falls within the rejection region for each level of complexity of
analysis. In fact, for each (P, Q), the F, (’;b 5) value is larger than any of the simulated
values F(*;) obtained under the null distribution, implying p values that are equal to
zero. Altogether this is strong evidence in favour of the alternative hypothesis that
person clusters differ with respect to the effect that these 16 situations have on their
willingness to help. A complete analysis requires, in addition, a consideration of which
model is most useful (i.e., selecting a level of (P, Q) in some optimal way) followed
by an interpretation of the nature of the associated interaction. With respect to model
selection in the framework of two-mode partitioning problems, various procedures for
choosing appropriate numbers of clusters P and Q have been proposed and evaluated
in the literature (see e.g., Ceulemans and Kiers 2006; Schepers et al. 2008; Wilderjans
etal. 2013). Some of these procedures may potentially be useful for the model selection
problem at hand, possibly upon a suitable adaptation. However, this problem is beyond
the scope of this paper.

Figure 3 shows a plot of the explained interaction sum of squares [i ESS, see
Eq. (11)] in the 102 x 16 data matrix of help ratings, for each complexity of analysis.
Model complexity was quantified as the number of freely estimated interaction effect
parameters (P — 1)(Q — 1) in the model. Based on this graph, and favouring simpler
models for the sake of interpretation, we selected the model with (P, Q) = (3, 3)
(i.e., three person clusters and three situation clusters) for further elaboration. Figure 4
shows a plot of ¥/, for each combination of person cluster p (p = 1, 2, 3) and situation
clusterg (¢ = 1, 2, 3).

A substantive interpretation of the situation clusters was obtained by comparing
them on external ratings from independent raters. Specifically, each situation was rated
by aset of 56 raters in terms of the extent to which each of 22 characteristics applies. For
each situation s and each characteristic f, these ratings were then averaged across the
56 raters, yielding values AvRsr (s =1,...,16and f = 1,...,22). Next, for each
f,an ANOVA on AvR,; was performed with situation cluster membership as factor.
The strongest associations were found between situation cluster membership and the
following two characteristics: frequency of occurrence (R> = .35) and the extent to
which a situation requires skills to get resolved (R2 = .34). The situation cluster labels
in Fig. 4 include descriptions characterizing them with respect to these two situation
characteristics. Specifically, compared to the situations in situation clusters 1 and 3, the
situations in situation cluster 2 are, on average, considered to occur more frequently.
Likewise, compared to the situations in situation clusters 1 and 2, the situations in
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Fig.3 Plot of explained (2,2) (3,3) (4,4) (5,5) (6,6)
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Fig. 4 Plot of ¥, for each combination of person cluster p (p = 1, ..., P) and situation cluster ¢ (g =

L..O)

situation cluster 3 are, on average, considered to require a higher skill level in order
to be resolved.

It appears from Fig. 4 that the largest amount of non-additivity between the person
clusters is with respect to situation cluster 2. That is, it is mostly in these situations (i.e.,
situations that occur frequently and do not require high skill levels to get resolved)
that individuals from different person clusters respond differentially. In contrast, the
smallest degree of non-additivity is observed for situation cluster 1 (i.e., the estimated
interaction effect parameters tend to be closer to zero in that situation cluster). Fur-
thermore, this graph also helps characterizing the person clusters in terms of their
sensitivity profiles to situations. For instance, those who are in person cluster 2 are,
compared to the other person clusters, less inclined to help when they are in situations
that require a higher skill level.

5.2 Genotype versus location case study
In genotype studies, plant breeders are typically interested in studying the behavior

of genotypes at different locations. An issue of particular interest is whether there is
a genotype by location interaction. For instance, it is important for plant breeders to
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Table 4 Results of REMAXINT interaction test applied to genotype data for five levels of complexity of
analysis

Complexity of Analysis (P,Q)

2,2) (3,3) 4,4) (5.5 (6,6)
Critical value (F}) 0.3355 0.6409 1.0117 1.5014 2.1843
Test statistic (FJiy)) 0.3202 0.6879 1.0868 1.3758 1.9200
P-value 0.0804 0.0183 0.0165 0.1658 0.2652

know if the performance of genotypes in terms of crop yield differs across locations.
The genotype data we used was published in Corsten and Denis (1990) and consists
of average yield of corn in kg per acre for I = 20 genotypes in J = 7 locations.

The REMAXINT test was applied to the resulting 20 x 7 data matrix of corn yield to

infer whether there is evidence of interaction between genotype and location clusters.
Again, complexity of analysis was varied at five levels: (2, 2), (3,3), (4,4), (5,5)
and (6, 6), each of which yields an observed value F (";bs) of test statistic F*. Critical
values were obtained by the procedure described in Sect. 4.1.1 for a significance level
a = 0.05. The results are shown in Table 4.
We observe that the value of test statistic F* falls in the rejection region for only two
levels of complexity of analysis (i.e., (3, 3) and (4, 4)). Furthermore, a (conservative)
Bonferroni correction would result in none of the five test results being significant at
a familywise Type I error rate of 5%. One may note that this correction could have
been avoided by following the practical guideline to test only at complexity of analysis
equal to (2, 2). This would not have led to a different conclusion, as the p value of that
test is larger than 0.05. Thus, in this study there is no unambiguous empirical evidence
to conclude that the performance of these 20 genotypes in terms of crop yield differs
across the set of 7 locations under investigation.

6 Discussion

In this paper, we have presented REMAXINT, a method for studying interaction based
on two-mode clustering which, unlike classical ANOVA, allows testing interaction in
a two-mode data matrix if there is only one observation per cell. The methodological
contribution of this manuscript is two-fold. Firstly, we extended the maximal interac-
tion two-mode clustering model (MAXINT) that assumes fixed row and column main
effects to include random row or column main effects. This extension is relevant, since
many studies are better characterized by one of the two modes being random rather
than fixed. Secondly, we introduced a new test statistic with appealing properties and
developed a parametric re-sampling based procedure to perform hypothesis testing
on the interaction effect parameters. In order to evaluate the performance of the pre-
sented method, we used simulations and real-life data sets. In the simulation studies,
we studied the performance of the REMAXINT based test in terms of Type-I error
rate and power. Results showed that empirical Type I error rate was always close to the
nominal level, that is, in general deviated by not more than 0.005. Empirical power of
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the REMAXINT test of interaction substantially decreased as complexity of analysis
increased. The simulation results also showed that statistical power of the proposed
test is not only a function of the total number of observations. Specifically, we found
that power was higher for (almost) square data sizes (i.e., I &~ J) as compared to
more rectangular sizes (e.g., I > J). Since in our simulation studies only the case
P = Q was considered, and it may be conceivable that the results are different if
P > Qor P < Q, weran some additional simulation studies (results not shown) with
P # Q to check whether the optimal scenario is the case where I/J = P/Q. The
results indicate that the phenomenon is more complicated than that and requires further
investigation, which is beyond the scope of this paper. However, symmetric data sizes
appear to be optimal even if P # Q. A speculative explanation is that the case [ = J
maximizes precision of the sufficient statistics for the many nuisance parameters («’s,
B’s) that are conditioned out/estimated, and thereby improves the precision for the
y’s (of which there are far fewer). Note that in applications with a random sample of
I rows and a fixed set of J columns, the dimensions of the data set will typically be
such that I > J. Therefore, the case P > Q may occur more frequently than P < Q.
Furthermore, an interesting conclusion of the power study is that the lowest level of
complexity of analysis, (2, 2), gave the highest power to detect interaction, even if the
true number of row and column clusters was larger than (2, 2), which is important for
practitioners to be aware of. The method developed can be applied to address relevant
research questions in a variety of applications. In this paper, we presented two such
applications on real-life data sets.

The proposed method only requires users to set the number of row and column
clusters, and the number of MC samples needed to establish the critical F*-value for
their data matrix size and assumed number of clusters. There is no need to choose any
other parameter or to look for some optimal setting of tuning parameters. In this paper,
we showed that 10,000 MC samples are sufficient, while in the applications (Sect. 5)
we selected the number of row and column clusters, P and Q, based on a ’post analysis’
approach, as is commonly done. However, other approaches are possible. For instance,
one could develop a method that treats P and Q as parameters to be estimated. This
can be done, for example, in a Bayesian framework using mixture models with a prior
on the number of mixture components, see Miller and Harrison (2018). Several other
extensions of the REMAXINT method are also worth investigating. For example, a
formulation that allows to perform two-mode maximal interaction clustering for binary
response data (e.g., consumers that are willing to buy a product or not, testees that
correctly respond to test items or not) would be useful. This can be done by considering
a logistic model framework. Additionally, the current method implicitly assumes that
the probability to be assigned to a cluster is the same for all clusters. This assumption
can be relaxed by introducing a vector of mixing proportions, which leads to a different
likelihood and, thus, to a different optimization problem (Symons 1981). Lastly, an
alternative way to obtain a sampling distribution of the test statistic would be by using
a non-parametric resampling procedure. This alternative approach would be useful if
the assumption of normality on the residuals is dubious.
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Appendix 1

In order to show that the sum of cross product terms V equals 0, we make use of the
fact that the sum of ¥, overi =1, ..., [ is O:
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The sum T3 is O because of the fact that 211;:1 Y icr. Ypg = 0 and identification
constraint (2¢). Furthermore, the sum 7> is 0 since the cfeviations

Aij = dij = di. = Bj = 7pq
=dijj—di —dj+d.— ]71,,1,

sumto O overi € Ry, j € Cy:

X A=Y Yy —di —dy+d)) = (Rl 1G] Fg)

i€R) jeCy i€R) jeCy
= |Rp| : |Cq| . 77pq - |Rp| : |Cq| . 77pq
=0.

Finally, the sum 77 is, considering the fact that Z,}:: 1D ic R, Ypq = 0, given by

o Y 2, iy = o= By = Toa) - By = B

0 - ~
=1 Zqzl Zjecq(d.j —d.—dj+d.—0)- (B —B))
=0.

Hence, V is a sum of zero sums and equals 0.

Appendix 2

Here we show that

1 1 1
dy =g L = 2+ 2
i

J i

where y), is the interaction effect associated to bicluster R, x C, and ¢;; indicates
the residual term for row i and column j as defined in Model (1).

We replace all d;; terms on the left side with Eq. (1): d;; = u+a; + B + ypg +€ij.
We then focus on rewriting each of the components of the expression involving u, ¢;,
Bj, Ypq and €;;, solve and then add everything back together.

Overall mean pu:

| 1 1 J I IxJ
“_7;“_7;“+IxJXi:;“zu_?“_Y“Jrli“:O'
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Row main effect o;:
- Ve Yot g Y
=ai_§ai_7lzai+mlza,-=o.
Column main effect 3;:
RV T DI
%;ﬂj—éﬁﬁm;ﬂj:o

Row cluster by column cluster interaction y,,;:

1
_Zym E:qu § 2 Ypqg = Vpq>
J ~ IxJ

J

with the second, third and fourth term on the left side being zero because of constraints
(2b) and (2¢). No simplification can be made for the ¢;; terms. In summary we are left
with only y,, and (averages of) the residuals terms ¢;;, which is what we wanted to
show.
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