
Advances in Data Analysis and Classification (2022) 16:847–874
https://doi.org/10.1007/s11634-021-00462-7

REGULAR ART ICLE

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble

Tiffany Elsten1 ·Mark de Rooij1

Received: 9 July 2020 / Revised: 1 September 2021 / Accepted: 3 September 2021 /
Published online: 6 October 2021
© The Author(s) 2021

Abstract
Nearest Neighbor classification is an intuitive distance-based classification method. It
has, however, two drawbacks: (1) it is sensitive to the number of features, and (2) it
does not give information about the importance of single features or pairs of features.
In stacking, a set of base-learners is combined in one overall ensemble classifier by
means of ameta-learner. In thismanuscriptwe combine univariate and bivariate nearest
neighbor classifiers that are by itself easily interpretable. Furthermore, we combine
these classifiers by a Lasso method that results in a sparse ensemble of nonlinear main
and pairwise interaction effects.We christened the newmethodSUBiNN:StackedUni-
and Bivariate Nearest Neighbors. SUBiNN overcomes the two drawbacks of simple
nearest neighbor methods. In extensive simulations and using benchmark data sets,
we evaluate the predictive performance of SUBiNN and compare it to other nearest
neighbor ensemble methods as well as Random Forests and Support Vector Machines.
Results indicate that SUBiNN often outperforms other nearest neighbor methods, that
SUBiNN is well capable of identifying noise features, but that Random Forests is
often, but not always, the best classifier.

Keywords Classification · Distance · Ensemble methods · Lasso regression · Nearest
neighbors

Mathematics Subject Classification 62H30

1 Introduction

K Nearest Neighbors (kNN) is an intuitive, distance-based method for classification.
The outcome class of observation i is predicted by the most frequently occurring
class among its k nearest neighbors in the feature space. A small value for k causes

B Mark de Rooij
rooijm@fsw.leidenuniv.nl

1 Methodology and Statistics Department, Institute of Psychology, Leiden University, PO Box 9555,
2300 RB Leiden, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-021-00462-7&domain=pdf
http://orcid.org/0000-0001-7308-6210

848 T. Elsten, M. de Rooij

predictions to be precise, but holds the risk of being unstable (Hassanat et al. 2014).
With large k the predictions are more stable but probably biased. kNN’s nonparametric
nature and the lack of assumptions make it suitable and effective in many settings
(Hastie et al. 2001). Although kNN can be used for both binary as well as multiclass
classification, in the current manuscript we focus on binary classification.

kNN is, however, not without its drawbacks. We like to point out two drawbacks.
First, kNN’s prediction accuracy is negatively affected by the number of features,
resulting in a curse of dimensionality (Hastie et al. 2001). Second, the kNN classifier
does not allow for the identification or interpretation of the effect of the individual
features or pairs of features.

Past research focused on improving the predictive accuracy by creating an ensemble
of classifiers, composed of random subsets of features or some optimal selection of
features (Bay 1999; Domeniconi and Yan 2004; Gul et al. 2016; Li et al. 2011; Zhou
and Yu 2005). For an ensemble method to work well, the separate models need to
be both diverse and accurate (Bay 1999). kNN, however, is a stable method when it
comes to small changes in the input data, especially for large k.

In Bagging, bootstrap samples from the data are taken and a classifier is fitted on
each bootstrap sample. These classifiers are then used to create predictions by either
using their average, a majority vote, or some other decision rule. Breiman (1996)
identified kNN’s stability as the limiting factor for the performance with bagging. Bay
(1999) reported better performance for bagging when using a random subset of the
features without resampling. Domeniconi and Yan (2004) noted that using a subset of
features carries the risk of possibly including non-informative features or discarding
informative ones, and for that reason make use of feature relevance. Gul et al. (2016)
combined the use of a random set of features while also using resampled versions of
the data.

Boosting is an iterative algorithm that gives more weight to data points that are
difficult to classify. This is done by either directly weighting the input data, or by
weighted resampling (Dietterich 2000). Weighting the data points does not improve
the situation for kNN, however, because the classification of a data point depends on its
neighbors and never on its own weight (Bay 1999). García-Pedrajas and Ortiz-Boyer
(2009) propose two methods in which not the points are weighted, but the input space
is modified in such a way that difficult data points are more easy to classify. Neo and
Ventura (2012) adapted the boosting by weighting algorithm by adapting the influence
of the k nearest neighbors instead of the weight of the point itself, which they do by
warping the distance function.

In stacking, the out-of-sample predictions of multiple base-learners are the input
for a meta-learner to produce the final predictions. The stacking method originated
with Wolpert (1992), who suggested that using predictions of classifiers holds more
information than the original input itself. Breiman (1996) proposed a regression meta-
learner, and noted that using the cross-validated base-learner predictions is necessary
to avoid over-fitting. The literature lacks studies of stacking solely kNN models, but
using a combination of support vector machines, kNN, and random forest is common
(Mirończuk and Protasiewicz 2019; Wang et al. 2019; Yadrintsev and Sochenkov
2019).

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 849

In this paper, we propose SUBiNN, a StackedUni- and Bivariate Nearest Neighbors
classifier. SUBiNN is an ensemble of kNN classifiers that deals with the reduction of
dimensionality by using only uni- and bivariate kNN classifiers, and allows for the
interpretation of relevance of those features and their pairwise interactions by using
the Lasso as a meta-learner. Training the base-learners on different subsets of features
causes diversity between classifiers,which facilitates the improving effect that stacking
can have. The meta-learner then gives an importance to the different base-learners in
the form of coefficients, which can be used to filter out uninformative base-learners.

This paper is organized as follows. In the next section, we outline SUBiNN and the
choices we made for implementation. We also show a small empirical application. In
Sect. 3, we provide a pilot study on the choice of k within SUBiNN. In Sect. 4, we
describe four simulation experiments to test the classification performance of SUBiNN
and compare it with other nearest neighbor based classifiers as well as Random Forests
and the Support Vector Machine. In Sect. 5, we compare SUBiNN with the same
classification methods on a large set of benchmark data sets. We provide a discussion
in terms of classification performance as well as feature selection. We conclude with
some discussion.

2 SUBiNN

Stacking involves base-learners that generate cross-validated predictions and a meta-
learner that takes these predictions and combines them into a final predictive model.
Wolpert (1992) noted that in an ideal situation the base-learners are mutually orthog-
onal. Opitz and Maclin (1999) noted that the base-learners have to be both different
and perform well for the ensemble to have an improving effect. In this paper, we will
use kNN as base-learners and train them on a single feature or a pair of features, so
that each base-learner uses different information. The nonnegative lasso regression
will be used as a meta-learner.

We denote by y the n-vector with binary outcomes, yi ∈ {0, 1} for i = 1, . . . , n.
Furthermore, letX be the n× P matrix of features or predictor variables with elements
xip for p = 1, . . . , P .

2.1 Base-learners: kNN

Because distances depend on the scaling of the original variables, we first standardize
the features to have zero mean and variance 1. On each combination of features X p

and Xq , with p = 1, . . . , P and q = p, . . . , P , we apply kNN with 10 fold cross-
validation. If p = q,wefit a univariate classifier leading to amain effect. If p �= q wefit
a bivariate classifier, which indicates a pairwise interaction effect. As distancemeasure
we use the Euclidean distance. The choice of k is important for the performance of
nearest neighbor classifiers and is a manifestation of the bias variance trade-off. Small
k will lead to unbiased but variable predictions, while large k will lead to biased but
stable predictions. The optimal value for k depends onmany factors such as the sample

123

850 T. Elsten, M. de Rooij

size, the covariance structure of the predictors, and the class proportions (Enas and
Choi 1986).

Using 10-fold cross-validation with a nearest neighbor classifier, we obtain for
every combination of p and q a probabilistic prediction for every observation in the
data, that is, the proportion of neighbors that are in class 1. These cross-validated
predictions are collected in the n × R matrix Z, where R = P + P(P − 1)/2. Note
that the columns of the matrix Z all have the same range, that is, the probabilities lie
in the range 0 to 1.

2.2 Meta-learner: Lasso regression

The meta-learner takes y and Z as input. Because R might be very large, we need a
meta-learner that regularizes. Furthermore, we like to have a meta-learner that results
in a sparse solution. Therefore we use Lasso regression (Tibshirani 1996, 2011).

As the kNN predictions already have the same range we do not use any further
standardization of these variables. Moreover, because the cross-validated predictions
are already in the range of the outcome variable, we do not need an intercept in the
lasso regression model. Therefore, in the Lasso regression we minimize the following
loss function

L(β1, . . . , βR) =
n∑

i

(
yi −

R∑

r

zirβr

)2

+ λ

(
R∑

r

|βr |
)

,

where we impose a nonnegativity constraint on the regression weights, that is we
require βr ≥ 0. Breiman (1996) suggested this non-negativity constraint on the coef-
ficients of the regression meta-learner. Further support for this constraint is found in
Leblanc and Tibshirani (1996) andVan Loon et al. (2020). For the choice of an optimal
λ value we use 10-fold cross-validation.

Linear regression, as opposed to logistic regression, might seem a weird choice
when the outcome variable is dichotomous. We would like to point out that the classi-
fication boundary of a linear regression and a logistic regression are often quite similar.
Assumptions for linear regression, such as independent normally distributed residuals
with mean zero and constant variance, when applied to a dichotomous outcome are not
tenable. The assumptions, however, mainly influence the standard errors, the resulting
statistical tests, and the p-values of a linear regression, not the estimates themselves,
nor the predictions. In SUBiNN, we are not interested in standard errors or test statis-
tics for the regression coefficients. Instead, we focus on predictive accuracy (Shmueli
2010). The final predictions may go out of the range, in which case we simply set them
to zero or one. The choice for a linear model instead of a logistic model is also moti-
vated by interpretational issues: The interpretation in terms of a weighted combination
on the probability scale is much simpler than on the log-odds scale.

Because we use linear regression as a meta-learner, the final outcome of SUBiNN
becomes a weighted combination of the predictions of the kNN base-learners. If an
estimated regression coefficient equals zero (i.e., β̂r = 0) the corresponding pair
of features (p and q) have no effect on the outcome. If p = q, and the regression

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 851

coefficient for the corresponding base-learner is zero there is no main effect for this
feature; if p �= q and the regression coefficient for the corresponding base-learner
equals zero there is no interaction effect for this pair of features. The magnitude of the
lasso regression coefficients provides variable importance measures.

2.3 Final model and predictions for new data

After we fitted the lasso regression models, we know which main effects and which
pairwise interactions are important for predictive purposes (those with βr > 0) and
which are irrelevant (those with βr = 0). Predictions of the SUBiNN model for a new
observation with features x+ look into the selected subspaces. Suppose, that only the
pairs of variables 1 and 2, and 3 and 7 are selected by the lassowith estimated regression
weights 0.8 and 0.2, respectively. Thenwe compute the proportion of nearest neighbors
with yi = 1 in the bivariate spaces of predictors 1 and 2, and 3 and 7 for the complete
training data; say they are 0.6 and 0.4, respectively. The estimated probability for the
new observation to be in class Y = 1 is therefore 0.8×0.6+0.2×0.4 = 0.56 and the
observation would be best classified in class Y = 1 (if we use the threshold of 0.5).

2.4 Empirical application

To show the merits of SUBiNN, we apply it here to the classification of patients with
a panic disorder on the basis of personality characteristics. For 200 subjects we have
information on the big five personality scales neuroticism, extraversion, openness,
agreeableness, and conscientiousness. Furthermore, we have an assessment whether
this person has a panic disorder or not. The data consist of a subsample from the study
reported in Spinhoven et al. (2009).

The first step in the analysis is to obtain predicted probabilities of kNN classi-
fiers for each of the personality characteristics and for each pair of the personality
characteristics. We use k = 14 ≈ √

200 for the number of neighbors. The 10-fold
cross-validated predictions (probabilities) of kNN are collected in the matrix Z, with
200 rows and 15 (i.e., P + P(P − 1)/2 with P = 5) columns. In the second step, this
matrix is used as the predictor matrix in a linear lasso regression with non-negativity
constraints. We select an optimal value of the penalty parameter of the lasso through
10-fold cross-validation and with this optimal value obtain the estimated regression
weights. This whole procedure is repeated 100 times and we took the median of the
100 regression weights as our final regression weights.

For this data set, four base-learners were selected. The univariate base-learners for
the features openness (regression weight 0.33) and agreeableness (regression weight
0.18), and the bivariate base-learners for (1) openness and conscientiousness (regres-
sion weight 0.13) and (2) agreeableness and conscientiousness (regression weight
0.30). kNN classification plots are shown in Fig. 1 where for the univariate base-
learners we also use two-dimensional graphs in order to get a clearer picture. Each of
the four plots indicates nonlinear decision boundaries.

To obtain a prediction about a new person, we only need values of the three pre-
dictors openness, agreeableness, and conscientiousness. Such a final prediction is

123

852 T. Elsten, M. de Rooij

Fig. 1 Nearest Neighbor classification plots for the four selected base-learners for the panic disorder data.
Red points (in black and white: light grey) indicate subjects with panic disorder, while blue points (in black
and white: dark grey) indicate subjects without panic disorder. The dots indicate observations, while the
background colour indicates predictions. The black triangle indicates a new observation for which we like
to make a prediction. The upper two plots give the univariate base-learners, the lower two plots give the
bivariate base-learners

an additive combination of the predictions of the four base-learners. Suppose, we
have a new person with standardized scores of 2, −2, and 2 on these three features,
respectively. This person is also indicated in Fig. 1 by the black triangle. Based on
the four base-leaners, we obtain estimated probabilities for having panic disorder.
These four probabilities are 0.56 (openness), 0.73 (agreeableness), 0.57 (openness
− conscientiousness), and 0.71 (agreeableness − conscientiousness). To obtain the
final probability of having panic disorder we take a weighted average of these four
probabilities, that is

0.33 × 0.56 + 0.18 × 0.73 + 0.13 × 0.57 + 0.30 × 0.71 = 0.60,

where the weights are the estimated regression coefficients of the Lasso. We would
classify this person into the panic disorder class.

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 853

3 Pilot study: the choice of k

The effect of k on predictions with kNN is large. Gul et al. (2016) fit their kNN
model using an optimal value of k, which is derived by means of cross-validation. In
SUNiNN this would add another layer of cross-validation in SUBiNN. A small pilot
study was therefore performed to study the effect of k on the predictive performance,
base-learners selection, and model execution time.

3.1 Setup

For this experiment we made use of two benchmark datasets. The Dystrophy dataset
from the ‘ipred’ package (Peters and Torsten 2019) and the Diabetes dataset from the
‘mlbench’ package (Leisch and Dimitriadou 2010). The Dystrophy dataset consists
of 194 observations on 5 features (we used age and the four serum markers), for the
Diabetes dataset this is 768 observations on 8 features.

For a k of 5, 10,
√
n and cross-validated optimal value, the model’s performance

was measured with 10-fold cross-validation over 100 replications. We recorded which
base-learners were selected, the model’s execution time, and the prediction accuracy.
For k =

√
n, n refers to the number of observations in the training set within that fold.

Within each fold,
√
n becomes 13 for Dystrophy, and 26 for Diabetes. For k = opt, the

function tune from the ‘e1071’ package (Meyer et al. 2019) was used. The range of
possible k values was set from 1 to 20.

3.2 Results and conclusion

The results in Table 1 show that different values of k causes small differences in accu-
racy and sometimes large difference in the number of base-learners selected. While
one could expect that a cross-validated value of k would cause better performance,
this does not hold for these datasets. For the Diabetes data set, the difference between
k =

√
n and k = opt is virtually 0, while opt results on average in more selected base-

learners. For the Dystrophy data set, the best k is 10, thereby also selecting on average
the smallest number of base-learners. The computational time for tuning k through
cross-validation is substantial for both datasets.

From the results of k = 5, 10, and
√
n, the effect of k on the selected number of

base-learners becomes visible. With a smaller k, the model is less stable and base-
learner predictions are more variable between runs. This increases the chance that a
base-learner that was fit on a non-informative feature or pair of features is selected.

The likely cause for thenon-optimal performance of the optimal k is that this optimal
value is unstable. It is calculated within another layer of cross-validation, leaving less
training samples for fitting. The conclusion can be drawn that the performance gain
by calculating the optimal k is not worth the added complexity. For that reason, in the
remainder of this manuscript we will use k = √

n. It is less arbitrary than choosing
5 or 10 because it depends on the sample size of the data, and has the property that
it creates more stability in predictions and results in a lower number of base-learners
selected.

123

854 T. Elsten, M. de Rooij

Table 1 The average prediction
accuracy, number of selected
(non-zero coefficient)
base-learners and execution time
in seconds for SUBiNN

k Accuracy b-learners Time

(a) Diabetes

5 0.754 11.521 6.985

10 0.759 9.197 7.384√
n 0.761 6.195 9.172

opt 0.761 7.975 630.025

(b) Dystrophy

5 0.892 6.914 3.248

10 0.895 5.386 3.392√
n 0.885 5.552 3.572

opt 0.889 6.331 159.266

4 Simulation studies

In this Section, we will report about four simulation studies. The first two are replica-
tions from those inGul et al. (2016)wherewe added SUBiNN. Simulation experiments
three and four are adaptations of the first two.

In these simulation studies, we study the classification and feature selection perfor-
mance of SUBiNN, compare the performance of SUBiNNwith other nearest neighbor
based classifiers, that is, kNN, bagged kNN (BkNN), random kNN (RkNN), Multiple
Feature Selection (MFS), and the ensemble method proposed by Gul et al. (2016),
ESkNN. In our comparison, we also take two other, well known, classifiers into
account: Random Forests (RF) and Support Vector Machine (SVM). Both often have
high classification performance but are also considered black box techniques. We
choose for these two methods as they require minimal tuning in comparison to, for
example, gradient boosted trees or extreme gradient boosted trees. Bentéjac et al.
(2021), for example, conclude that with the default settings of these boosted tree
methods the performance is inferior to Random Forests. We like to know whether
the nearest neighbor classifiers, and especially our SUBiNN approach, is competitive
with these. These models are compared in terms of their classification performance.
For SUBiNN, we also analyze its feature selection capabilities.

Two-class data are generated to include both non-informative features and infor-
mative features with a varying covariance and correlation structure. The inclusion of
non-informative features in the first and third experiment is a means to test a model’s
robustness with respect to noise input features. Adapting the covariance structure of
informative features for one of the two classes in the second simulation experiment,
allows for the investigation of the effect of an increased difference in variances between
classes. Lastly, the inclusion of a varying correlation structure between features in the
fourth experiment is meant to show the effect of the difference in correlation structure
between the two classes while keeping the variance the same.

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 855

4.1 Data generation for main simulation experiments

For the first two experiments the data generation follows the set up described in Gul
et al. (2016). The last two experiments change the covariance structure of one of the
classes.

For all experiments we generate 20 informative features from amultivariate normal
distribution. For class 1 these features have a mean of 2 and a specified covariance
matrix, N (2,�), where the definition of � varies for the four simulation experiments
(see below). Class 2 has a mean of 1 and constant variance 1, N (1, I), where I is
the identity matrix. The data generation model therefore follows that of a quadratic
discriminant analysis, where the covariance matrices differ per class, and lead to non-
linear classification boundaries. Non-informative features are drawn from a standard
normal distribution, irrespective of the outcome class. The sample size is 1000 for all
simulation experiments.

In the first part (experiment 1 and 2), the covariance matrix as specified by Gul
et al. (2016) is used, � = w�, where � has elements ψp,q = (1/2)|p−q| for p, q =
1, . . . , 20.

This covariance matrix follows an autoregressive structure, where the covariance
between features declines with the distance between features. In the first experiment
we use w = 1, and vary the number of non-informative features (0, 50, 100, 200 and
500). In the second experiment, the number of uninformative features is fixed at 50,
and w is taken as 3, 5, 10, 15, and 20. All variances and covariances for the features
determining class 1 are multiplied by w.

The data generation mechanism in experiment 1 without the non-informative fea-
tures represents a worst case scenario for our SUBiNN model, in the sense that there
is relatively good separation between the 2 classes in 20 dimensional space but that
there is more and more overlap between the classes in lower dimensional subspaces.
Because SUBiNN works with 1 and 2 dimensional subspaces this will have a detri-
mental effect. Other feature selection nearest neighbor classifiers (such as RkNN and
MFS) will also work less good compared to kNN and BkNN that use all features. In
Fig. 2 we show two bivariate scatterplots for data generated in this experiment. In the
left hand side plot we show ‘adjacent’ features, where the correlation between the 2
features is relatively high in class 1, but low in class 2. On the right hand side we show
a scatterplot of features 1 and 20, the features that have the lowest correlation in class
1, similar to the correlation between the features in class 2.

We expect that adding non-informative features does not have a large influence on
SUBiNN, because separation between the classes is difficult in the two-dimensional
spaces based on non-informative features. Therefore we expect the meta-learner to
exclude those base-learners. In contrast, the non-informative features will have a neg-
ative effect on the classification performance of kNN and BkNN.

In experiment 2, by changing the w we obtain different variances and covariances
in class 1, both are multiplied with this constant. That also means that the covariances
that are zero (for example between feature 1 and features 13 till 20) remain zero for
all w. Furthermore, by increasing the variances, the observations of class 2 get more

123

856 T. Elsten, M. de Rooij

−2

0

2

4

−1 0 1 2 3 4
Feature 2

Fe
at

ur
e

1

Experiment 1

−2

0

2

4

0 2 4
Feature 20

Fe
at

ur
e

1

Fig. 2 Scatterplots of informative features 1 versus 2 (left hand side) and 1 versus 20 (right hand side) for
the data generation model from experiment 1 (where w = 1), showing that in the low dimensional spaces
there is quite some overlap between the observations in class 1 (indicated by •) and class 2 (indicated by�).
The covariance between features 1 and 2 for class 1 is much higher than the covariance between features 1
and 20

−5

0

5

10

−5 0 5 10
Feature 2

Fe
at

ur
e

1

Experiment 2

−5

0

5

10

−10 −5 0 5 10
Feature 20

Fe
at

ur
e

1

Fig. 3 Scatterplots of informative features 1 versus 2 (left hand side) and 1 versus 20 (right hand side) for the
data generation model from experiment 2 where w = 20, showing that in the two-dimensional sub spaces
the observations in class 1 (indicated by •) and class 2 (indicated by �) can be quite well distinguished.
The variance of the features in class 1 is the determining factor. The covariance between features 1 and 2
for class 1 is much higher than the covariance between features 1 and 20

and more in the middle of the observations of class 1. See Fig. 3 for scatterplots of
features 1 and 2 and features 1 and 20 for this experiment. In this case, the increased
variances become meaningful and by increasing the variances of class 1 separation
becomes possible. So, with increasing w values we expect SUBiNN to have increased
classification performance. We do not expect the meta-learner to favor any pair of
features from the informative ones; as can be seen in Fig. 3 separation between the
classes is equally good in the two-dimensional spaces of features 1 and 2 as in the
two-dimensional spaces of features 1 and 20.

With � = w�, increasing w increases both the variance of the features and the
covariances between features, causing the correlation to be roughly constant across
w’s. In contrast with what Gul et al. (2016) state in their article, generating data in
this manner data with a varying w does not result in a differing correlation structure
between variables. Neither within the first class nor when pooling the two classes
together.

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 857

−2

0

2

4

−1 0 1 2 3 4
Feature 2

Fe
at

ur
e

1

Experiment 3

−2

0

2

4

0 2 4
Feature 20

Fe
at

ur
e

1

Fig. 4 Scatterplots of informative features 1 versus 2 (left hand side) and 1 versus 20 (right hand side) for
the data generation model from experiment 3, showing that the observations of class 1 (indicated by •)
and 2 (indicated by �) can be distinguished reasonably well. The correlation between the features is the
determining factor. This correlation is stronger for adjacent features (left hand side plot) than for features
far apart (right hand side plot)

Therefore, we designed a second set of experiments (experiments 3 and 4)where the
correlation structure between the informative features ismanipulatedwhile keeping the
variances of the informative features constant. For experiments 3 and 4, the covariance
matrix of class 1 is adapted, and � = �, with elements φp,q = 0.99w|p−q|.

The third experiment is again about introducing a different number of non-
informative features (0, 50, 100, 200, 500), leaving w = 1. In the fourth and last
experiment, the correlation structure of class one is adapted, by changing the value of
w = 3, 5, 10, 15, 20. At w = 1, all features are extremely collinear, at w = 20 the
largest correlation is between any two adjacent features 0.82 and virtually 0 between
the features with their indices furthest apart.

In experiment 3,we again have the same situation as in experiment 1where the sepa-
ration between the two classes is good in 20 dimensional space. In the two-dimensional
subspaces the separation of the classes is created by the correlation between adjacent
features (see Fig. 4) . That is, features 1 and 2 have a correlation of 0.99 in class 1,
whereas this correlation is 0 in class 2. Most information for distinguishing the two
classes is therefore found in adjacent features. We therefore expect the meta-learner
to select base-learners based on adjacent features. Like before, we do not expect
non-informative features to have much influence on the classification performance of
SUBiNN.

In experiment 4, in the data generating mechanism we vary values of w. Since,
with increasing w the correlations become smaller, we expect that classification per-
formance of SUBiNN decreases with increasing w. With increasing values of w it
becomes more difficult to distinguish the two classes in the two-dimensional sub-
spaces (compare Fig. 4 with Fig. 5)

For each experiment we use 100 replications. Data sets with sample size 1000 were
generated and partitioned into 10 sets. The eight models are subsequently fitted on
9 of these, including all tuning and possibly internal cross-validation. Out of sample
predictions were made on the left out part. That means that in total we have 100
(repetitions) times 10 sets of model estimates and corresponding prediction errors.

123

858 T. Elsten, M. de Rooij

−2

0

2

4

0 2 4
Feature 2

Fe
at

ur
e

1

Experiment 4

−2

0

2

4

0 2 4
Feature 20

Fe
at

ur
e

1

Fig. 5 Scatterplots of informative features 1 versus 2 (left hand side) and 1 versus 20 (right hand side)
for the data generation model from experiment 4 wit w = 20, showing that with increasing value of w it
becomes more difficult to distinguish the two classes (compare to Fig. 4 which shows the case for w = 1).
Class 1 is indicate by • and class 2 by �

As the measure of prediction error we used the misclassification rate. The cross-
validated prediction errors of all replications are averaged to obtain the final models’
misclassification rate. Furthermore, for each of the 1000 results per condition we look
at the number of times a particular feature or pair of features is selected by SUBiNN’s
meta-learner.

4.2 Software implementations

R version 3.6.1 was used (R Core Team 2019). Random samples from the multivari-
ate normal distributions were drawn using the function mvrnorm from the package
‘MASS’ (Venables and Ripley 2002). Any added non-informative features are drawn
from a standard normal distribution, using base R’s rnorm function.

For the implementation in R of the seven models, we follow from Gul et al. (2016).
For simple kNN, we used the function knn from the package ‘class’ (Venables and
Ripley 2002). BkNN is implemented by fitting 1001 of these kNN models where the
input data is sampled with replacement. The final prediction is a majority vote of the
1001 outcomes. For these two models we used k = √

n.
For RkNN andMFSwe used the rknn function from the ‘rknn’ package (Li 2015).

The parameters of importance are again k, r the number of models fitted (taken again
to be 1001), andmtry, the number of random features drawn at each fitting. Following
Gul et al. (2016), we used a subset size of 1/3rd of the number of features, with a
minimum of 2. For MFS we fit 1001 kNN model using a random draw of the features
with replacement (again 1/3rd of the total number of features, with at least 2) and take
the majority vote of the 1001 results.

For RF we have used the function best.randomForest from the package
‘e1071’ (Meyer et al. 2019), which also uses the function randomForest from the
package ‘randomForest’ (Liaw and Wiener 2002). The automatic best.random
Forest function does parameter selection without range specification, using 10-

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 859

fold cross-validation which is implemented with the argument tunecontrol where
sampling = ‘cross’ and cross = 10.

SVM is implemented using the ksvm function from the package ‘kernlab’ (Karat-
zoglou et al. 2004) where the kernel is said to be rbfdot and the kpar is set to
automatic to allow for automatic optimal parameter selection.

For ESkNN we made use of the package ‘ESkNN’ (Gul et al. 2015). In the first
stage, 1001 models are fitted, with the number of random features taken to be 1/3 of
the total number of features and the percentage of models to be selected is set to 40%.
This function then returns the best 40% of models which can be used for prediction
with the predict.esknnClass function.

SUBiNN is implemented analogous to the implementation specified in the previous
chapter. All base-learners are kNN models fitted using the package ‘class’ (Venables
and Ripley 2002), fit on all single features and pairwise combinations of features.
The predictions produced by these base-learners are used as input for the Lasso meta-
learner, using cv.glmnet. The predict function and the glmnet object are used
to generate predictions for the test samples.

R code for all our analysis can be found on the github website of the first author
(https://github.com/TElsten/subinn).

4.3 Results

4.3.1 Experiment 1: adding noise

For this experiment, we have chosen to evaluate the result of SUBiNN by comparing
its accuracy and execution time to the other models. Additionally, the stability of base-
learner selection is taken into consideration. The results with respect to classification
performance are shown in Table 2.

When looking at the performance of SUBiNN, two things become apparent. First,
the prediction accuracy as compared to the other methods is bad. Second, adding

Table 2 Average misclassification rate (mean) and standard deviations (Std) of the 8 methods for data with
20 informative and a varying number of added noise features

Features kNN BkNN RkNN MFS RF SVM ESkNN SUBiNN

20 Mean 0.039 0.039 0.043 0.043 0.044 0.039 0.055 0.108

Std 0.006 0.006 0.007 0.007 0.006 0.006 0.008 0.009

20 + 50 Mean 0.050 0.049 0.048 0.047 0.048 0.051 0.058 0.108

Std 0.008 0.008 0.007 0.007 0.007 0.008 0.009 0.009

20 + 100 Mean 0.056 0.055 0.050 0.050 0.049 0.055 0.064 0.107

Std 0.008 0.008 0.008 0.008 0.006 0.007 0.009 0.009

20 + 200 Mean 0.067 0.064 0.054 0.054 0.051 0.058 0.074 0.106

Std 0.008 0.008 0.007 0.008 0.006 0.008 0.009 0.008

20 + 500 Mean 0.097 0.091 0.064 0.063 0.054 0.067 0.100 0.107

Std 0.013 0.012 0.010 0.010 0.007 0.009 0.010 0.007

123

https://github.com/TElsten/subinn

860 T. Elsten, M. de Rooij

non-informative features has no effect on the prediction accuracy of SUBiNN. With
regard to the first outcome, as alluded in Sect. 4.1 the data generating mechanism
is not beneficial for SUBiNN. The reason is that in each of the two-dimensional
subspaces the classes are not well separable, while separation becomes easier when
more informative features are used simultaneously. The fewer dimensions are used in
such a case, the larger the overlap between the two clouds of class observations. None
of the base-learners will thus produce very good predictions.

We see that other nearest neighbor classifiers that work on subsets of features
(RkNN, MFS, and ESkNN) also perform less good when compared to classifiers that
use all features (kNN and BkNN). The reasoning is the same, separation is easier in
higher dimensional spaces in this case. The performance of RF and SVM without
non-informative features is comparable to kNN and BkNN.

With regard to the second outcome, SUBiNN is able to filter out the non-informative
base-learners in the meta-step and is unaffected by the introduction of more noise.
This appears to be a main strength of SUBiNN. Whereas SUBiNNs classification
performance remains the same irrespective of the number of non-informative features,
the performance of all other classification methods deteriorates when non-informative
features are included.

On average, the meta-learner used 22 base-learners, but never contained a non-
informative feature. Over the replications, the number of selected base-learners
fluctuated only slightly, but this fluctuation was unrelated to the number of non-
informative features. Figure 6 shows the number of times each informative base-learner
was used for w = 1 and 500 non-informative features. Remember that we used
1000 replications, i.e., the maximum frequency in the cells is 1000. The figure does
not include the half-informative (pair of informative and non-informative feature)
or non-informative base-learners because they were never selected by the meta-
learner.

As shownby the diagonal of Fig. 6, none of the single-feature base-learnerswas ever
selected by the meta-learner. This is not surprising, because these one-dimensional
features carry less information that distinguishes the two classes. The reasoning is
the same as before, the lower the dimensionality the more overlap between classes.
There is no clear pattern in which base-learners are selected. Adjacent features (with
correlation 0.5 within class 1, but zero in class 2) seem to play a role as well as features
with a small correlation (i.e., pairs 4 or more apart that have a correlation smaller than
0.54 = 0.06 within class 1). From Fig. 6, it is also clear that the feature selection was
unstable between runs. The average of 22 base-learners selected are spread across the
190 possible pairs with no very clear preference. Base-learner selection does not seem
to be very stable in this situation.

A major downside of the SUBiNN model is its execution time (see Table 3). The
addition of 500 non-informative features resulted in

(520
2

) + 520 = 135,460 potential
base-learners which is a massive number. On the other hand, the final predictions can
be made rapidly using only 22 base-learners.

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 861

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

85
15
33
87
113
119
140
168
201
189
151
133
196
174
181
184
194
149
179

89
16
65
91
120
126
87
224
129
169
173
188
186
151
140
125
120
157

83
13
27
58
153
83
121
146
175
111
116
132
140
204
191
143
146

112
23
34
87
95
152
157
200
157
156
187
177
149
137
115
185

93
18
38
50

126
134
143
169
119
128
208
142
144
155
203

117
19
25
71

130
127
143
166
128
112
134
187
143
150

139
20
47
65

104
162
168
155
155
159
197
140
209

157
12
65
104
133
126
114
136
123
158
164
132

101
28
40
96
149
130
166
141
151
130
122

116
15
59
79

100
112
149
146
153
162

109
14
53
31
76
123
172
197
167

94
15
26
53

121
171
106
152

134
20
32
45
88

139
253

110
8

54
87

109
152

91
17
37
106
166

104
12
37
90

187
30
28

80
17 110

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x1

x2

0

50

100

150

200

250
Freq

Fig. 6 Frequency of base-learner selection with low covariance data, w = 1, 500 uninformative features

Table 3 Average execution time in seconds of classifying data with varying number of added non-
informative features

Features kNN BkNN RkNN MFS RF SVM ESkNN SUBiNN

20 0.0 35.6 20.8 21.6 57.3 3.7 137.2 40.2

20 + 50 0.1 103.8 36.9 37.6 154.6 8.0 210.5 409.7

20 + 100 0.2 166.1 63.2 63.0 254.8 12.5 307.6 1164.4

20 + 200 0.3 304.0 108.6 108.2 469.7 22.5 530.2 3947.4

20 + 500 2.5 2245.2 228.4 227.7 1106.4 58.2 1073.7 21367.2

4.3.2 Experiment 2: varying covariance structure

Table 4 shows the classification results with increased variance and covariances
(increasing values of w) and 50 uninformative features.

The SUBiNN model performs better when the data for class 1 is generated with
higher values of w. This was as expected, increasing the variances and covariances
for class 1 while keeping the variance for class 2 constant, simply means increasing
the differences between the two classes, making them more easily distinguishable.

SUBiNN already performs better than the other nearest neighbor classifiers when
w = 3 and the differences become larger with larger values of w. We see that for the
kNN and BkNN classifiers classification accuracy deteriorates with increasing w. For
all nearest neighbor methods that take a subset of the features, performance increases

123

862 T. Elsten, M. de Rooij

Table 4 Average misclassification rate (Mean) and standard deviations (Std) of the 8 classification methods
for data with 50 uninformative features and increasing variance/covariance of features

w kNN BkNN RkNN MFS RF SVM ESkNN SUBiNN

3 Mean 0.226 0.227 0.200 0.200 0.049 0.091 0.181 0.137

Std 0.014 0.014 0.013 0.012 0.007 0.009 0.011 0.008

5 Mean 0.291 0.292 0.228 0.228 0.025 0.091 0.211 0.096

Std 0.013 0.013 0.010 0.011 0.005 0.009 0.009 0.008

10 Mean 0.332 0.335 0.198 0.198 0.005 0.079 0.166 0.035

Std 0.012 0.012 0.008 0.008 0.002 0.008 0.009 0.005

15 Mean 0.341 0.343 0.158 0.158 0.001 0.072 0.118 0.016

Std 0.010 0.010 0.008 0.008 0.001 0.007 0.008 0.003

20 Mean 0.340 0.343 0.128 0.128 0.001 0.067 0.085 0.007

Std 0.010 0.010 0.008 0.008 0.001 0.007 0.007 0.003

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

17
168
231
220
182
283
204
191
234
263
178
229
219
229
249
210
214
194
240

18
102
215
201
223
210
200
245
230
232
267
221
235
180
202
281
214
223

24
171
200
218
207
113
238
178
199
206
298
192
177
225
231
145
275

31
137
180
205
236
279
214
225
246
148
201
197
193
257
163
262

23
144
164
252
236
192
241
204
176
220
227
205
199
212
186

14
159
178
184
188
294
236
246
201
255
168
160
219
230

7
142
173
217
248
186
206
199
262
244
194
211
170

5
193
160
217
208
191
220
232
227
169
247
207

16
163
216
185
204
211
192
131
239
238
221

7
140
200
206
237
258
224
181
174
254

10
120
141
244
254
176
190
201
206

17
132
201
226
185
201
206
209

27
151
205
184
237
248
251

1
190
164
225
229
219

11
130
146
275
204

4
142
197
293

23
128
215

28
166 13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x1

x2

0

100

200

Freq

Fig. 7 Frequency of base-learner selection with high covariance data, w = 20, 50 uninformative features

with increasing w. SUBiNN outperforms the SVM when w becomes large (≥ 10).
Random Forest (RF) is the best classifier for this situation.

In Fig. 7 we show the number of times each informative base-learner was selected
for the situation where w = 20. The model has a preference for selecting feature pairs
with low covariance in class 1 (right hand side of Fig. 3 instead of left hand side Fig. 3).
The feature pairs with the highest covariance, for instance the pairs 1-2, 2-3, etc., are

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 863

Table 5 Average misclassification rate (Mean) and standard deviation (Std) of the 8 classification meth-
ods for data with 20 informative features with high correlation (w = 1), and an increasing number of
uninformative features

Features kNN BkNN RkNN MFS RF SVM ESkNN SUBiNN

20 Mean 0.463 0.465 0.055 0.055 0.001 0.003 0.063 0.027

Std 0.007 0.007 0.009 0.009 0.001 0.002 0.009 0.006

20 + 50 Mean 0.435 0.439 0.181 0.181 0.005 0.144 0.176 0.027

Std 0.031 0.031 0.031 0.031 0.003 0.011 0.018 0.006

20 + 100 Mean 0.373 0.376 0.190 0.190 0.016 0.161 0.191 0.027

Std 0.039 0.041 0.028 0.028 0.007 0.012 0.018 0.006

20 + 200 Mean 0.324 0.323 0.187 0.186 0.062 0.174 0.202 0.027

Std 0.046 0.048 0.032 0.032 0.020 0.014 0.020 0.007

20 + 500 Mean 0.285 0.281 0.182 0.182 0.120 0.186 0.218 0.027

Std 0.036 0.037 0.021 0.022 0.011 0.011 0.017 0.006

not often selected. Again, SUBiNNdid not select single-feature base-learners, because
such a single feature can not capture the quadratic nature of the decision boundaries.
The meta-learner makes use of more base-learners as w increases, ranging from on
average 22 at w = 1 to 36 at w = 20. Again, no uninformative base-learners were
ever included by the meta-learner. Figure 7 shows that the most favoured base-learners
are selected up to 300 out of 1000 times.

4.3.3 Experiment 3: correlation and noise

In this experiment we generated data with highly collinear features in class 1 and
increasing numbers of non-informative features. The results are shown in Table 5.

Like in experiment 1, SUBiNN is insensitive to the non-informative features. The
classification performance is equally good, no matter the number of non-informative
features. Furthermore, the classification performance of SUBiNN is better than that
of all other nearest neighbor classifiers. Comparing SUBiNN with SVM, we see that
in the case of no uninformative features SVM performs better, but with uninformative
features SUBiNN outperforms the SVM. A similar patter can be observed when com-
paring SUBiNN to RF, although in that case the number of non-informative features
should be large (≥ 200) before SUBiNN outperforms RF.

Figure 8 shows that the meta-learner preferred base-learners trained on the most
highly-correlated pairs of features in class 1 (cf., Fig. 4). SUBiNN used on average
21.5 base-learners. The non-informative base-learners were never included in the final
model. Like before, no base-learner fit on a single feature was ever included in the
final model.

4.3.4 Experiment 4: varying correlation structure

Table 6 shows the results with different levels of feature correlation, which decreases
by increasingw. The number of uninformative features is kept constant at 50. SUBiNN

123

864 T. Elsten, M. de Rooij

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

987
271
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

977
157

2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

939
140
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0

952
248

5
0
0
0
0
0
0
0
0
0
0
0
0
0

971
202

1
0
0
0
0
0
0
0
0
0
0
0
0

913
174

5
0
0
0
0
0
0
0
0
0
0
0

933
180
0
0
0
0
0
0
0
0
0
0
0

952
177
19
0
0
0
0
0
0
0
0
0

927
166
10
0
0
0
0
0
0
0
0

946
186
13
0
0
0
0
0
0
0

922
128
10
0
0
0
0
0
0

915
153
8
0
0
0
0
0

921
157
9
0
0
0
0

905
176

1
0
0
0

969
183
12
0
0

948
220

2
1

962
233
16

926
243 972

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x1

x2

0

250

500

750

Freq

Fig. 8 Frequency of base-learner selection with highly correlated data, w = 1, 500 uninformative features

Table 6 Average misclassification rate (Mean) and standard deviation (Std) of the 8 models for data with
20 informative features of decreasing correlation as w increases, and 50 uninformative features

w kNN BkNN RkNN MFS RF SVM ESkNN SUBiNN

3 Mean 0.372 0.374 0.156 0.155 0.049 0.140 0.166 0.049

Std 0.044 0.047 0.023 0.023 0.012 0.011 0.017 0.007

5 Mean 0.310 0.310 0.132 0.132 0.081 0.135 0.154 0.064

Std 0.037 0.039 0.015 0.015 0.006 0.010 0.013 0.007

10 Mean 0.207 0.203 0.106 0.107 0.087 0.120 0.130 0.082

Std 0.033 0.033 0.010 0.009 0.007 0.010 0.013 0.007

15 Mean 0.143 0.139 0.094 0.094 0.081 0.107 0.109 0.091

Std 0.023 0.022 0.008 0.008 0.007 0.008 0.011 0.007

20 Mean 0.117 0.114 0.086 0.087 0.076 0.100 0.100 0.097

Std 0.019 0.019 0.009 0.009 0.007 0.009 0.011 0.008

outperforms all other nearest neighbor classifiers inmost situations. The performances
becomes roughly equal when w = 20. SUBiNN outperforms the SVM for all w,
excepts w = 20. The performance of SUBiNN is comparable to that of RF, although
at larger values of w, RF seems to do a little better.

Similar to experiment 3, SUBiNN has a preference for base-learners consisting
of pairs of features with the highest correlation, see Fig. 9 which shows the number

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 865

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

937
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8

781
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

745
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

753
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

651
0
0
0
0
0
0
0
0
0
0
0
0
0
0

608
0
0
0
0
0
0
0
0
0
0
0
0
0

717
0
0
0
0
0
0
0
0
0
0
0
0

688
0
0
0
0
0
0
0
0
0
0
0

649
0
0
0
0
0
0
0
0
0
0

623
1
0
0
0
0
0
0
0
0

691
0
0
0
0
0
0
0
0

688
0
0
0
0
0
0
0

712
1
0
0
0
0
0

706
0
0
0
0
0

562
0
0
0
0

751
0
0
0

800
0
0

772
2 956

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x1

x2

0

250

500

750

Freq

Fig. 9 Frequency of base-learner selection with low-correlation data, w = 20, 50 uninformative features

of features selected at w = 20. Comparing the number of base-learners selected by
SUBiNN, we see that as the correlation decreases the number of base-learners also
decreases, ranging from on average 21 when w = 1 to on average 14 when w = 20.

4.4 Conclusion

The four simulation experiments with a varying number of added uninformative fea-
tures and a varying covariance and correlation structure have shown that in the right
conditions, SUBiNN can perform well. While in experiment 1 SUBiNN performs
badly, in experiments 2, 3 and 4SUBiNNoutperformed the other nearest neighbor clas-
sifiers. Furthermore, SUBiNNfilters out successfully all uninformative features,which
is a great advantage of SUBiNN. The latter result is probably due to the choice of a rel-
atively high value for k. Compared to SVM, SUBiNN performed better in experiments
3 and 4 and also in experiment 2 when w ≥ 10. Compared to RF, SUBiNN often per-
forms worse, except for experiment 3 with large numbers of non-informative features.

5 Benchmark data study

Weused 22 benchmark data sets to compare the same set ofmodels as in the simulation
studies. The eight models will be compared by their classification accuracy and feature
selection capabilities.

123

866 T. Elsten, M. de Rooij

5.1 Data

Table 7 specifies the datasets’ sample size, number of features, and the resultingnumber
of SUBiNN base-learners. For all datasets, cases with missing values were omitted.
Furthermore, in accordance with the procedure from Gul et al. (2016), the maximum
number of observations used was 1000, if this was a subset of the full dataset the 1000
rows were sampled at random.

Both categorical and nominal features were transformed into numerical features.
If the nominal feature had more than 2 levels, they were transformed into indicator
variables, one for each level of the feature. The Cylinder Bands dataset forms an
exception, for this dataset the nominal features with more than 2 levels were omitted,
following Gul et al. (2016).

Table 7 Specification of benchmark datasets

Name Sample size Features Num/Cat/Nom B-learners

Haberman (haber) 306 3 3/0/0 6

Mammography (mammo) 830 4 1/1/2 66

Transfusion (transf) 748 4 4/0/0 10

Phoneme (phone) 1000 5 5/0/0 15

Liver disordersa (bupa) 345 5 5/0/0 15

Appendicitis (appen) 106 7 7/0/0 28

Dystrophy (dystr) 194 7 6/0/1 28

Pima Indians diabetes (diabe) 768 8 8/0/0 36

Biopsy (biops) 683 9 9/0/0 45

SAHeart (heart) 462 9 8/1/0 45

Indian liver (Indian) 579 10 9/0/1 55

Solar flareb (solar) 323 10 7/0/3 231

Credit approvalc (credit) 653 15 7/0/8 820

House votes (house) 232 16 0/16/0 136

Hepatitis (hepat) 80 19 6/12/1 190

Two norm (twono) 1000 20 20/0/0 210

Cylinder bandsd (bands) 365 24 18/0/5 300

German credite (german) 1000 24 24/0/0 300

Breast cancer (wpbc) 194 33 33/0/0 561

Sonar (sonar) 208 60 60/0/0 1830

Glaucoma (glauc) 153 66 66/0/0 2211

Musk (musk) 476 166 166/0/0 13861

The dataset name links to the source, the abbreviation in brackets will be used in subsequent tables.
aUsed outcome is dichotomized x6 > 5, x7 is omitted. Mcdermott and Forsyth (2016) wrote an article on
the frequent improper use of this dataset.
bUsed outcome is dichotomized x11 > 0. Indicator variables were created for the 3 nominal features.
cThe cost matrix was not used.
dNominal features with more than 2 levels were omitted.
eThe numerical version was used

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 867

5.2 Models

The software implementation of the eight models is analogous to the implementation
in the simulation studies. All eight models are fit on the 22 benchmark datasets by
means of 10-fold cross-validation, for 100 replications.

5.3 Results

Table 8 shows the cross-validated classification error of the models on the 22
benchmark datasets. The last ‘B-learners’ column denotes the average number of
base-learners that were used by SUBiNN’s meta-learner. In the following we first dis-
cuss the classification accuracy and thereafter provide more detailed results about the
selection of base-learners.

When we compare SUBiNN against the other nearest neighbor classifiers, we see
that for 8 data sets it performs the best, for 9 data sets it performed as intermediate,
and for 5 data sets it performed worst. We ordered the rows in Table 8 in those three
groups, such that in the upper part the data sets appear where SUBiNN performs
better than the other nearest neighbor methods, in the middle part its performance is
intermediate, and in the lower part SUBiNN performs worse than the other nearest
neighbor classifiers. The three parts are indicated by the dashed lines.

For the 8 data sets that SUBiNN performed best among the nearest neighbor classi-
fiers, RF performs a little better for 7 of the 8 data sets, although the differences are in
5 cases within one standard deviation. For 1 data set, the Glaucoma dataset, SUBiNN
outperforms all other methods, including RF.

For the 5 data sets that SUBiNN performed worst among the nearest neighbor
classifiers, in one case RF performed slightlyworse. One of the five datasets is the solar
data, for which all classification methods basically perform equally good. Only with
the Twonorm and Cylinder Bands datasets did SUBiNN perform substantially worse
than the othermodels. The Twonorm dataset is a simulated data set with characteristics
similar to the datasets used in the first simulation experiment, where there is relatively
good separation in the high dimensional space, but quite some overlap of the classes in
every two-dimensional subspace. SUBiNN also makes considerably more errors than
the other models for the Cylinder Bands dataset. This dataset has a large number of
nominal features which appears problematic for SUBiNN because there is not much
information in the two-dimensional subspaces of this problem.

The only dataset for which SUBiNN obtains a considerably better performance
is the Glaucoma dataset. It does so while using on average only 5.6 base-learners,
a great reduction in dimensionality from the complete dataset of 66 features. kNN
and ESkNN have the highest missclassification rate for this dataset. An explanation
for this can be found in Peters et al. (2003), who used this dataset in their study to
the applicability of indirect variables in classifying glaucoma. The dataset contains
three of these indirect variables, which are derived from clinical expert judgement and
prior analysis. Along with those 3 indirect variables are the 63 measurement (direct)
variables. For SUBiNN, these features resulted in 2211 potential base-learners. In
almost every run, base-learners (64), (64, 66), and (65, 66) which correspond to the

123

868 T. Elsten, M. de Rooij

Ta
bl
e
8

M
is
cl
as
si
fic
at
io
n
ra
te
(w

ith
st
an
da
rd

de
vi
at
io
ns

in
sm

al
le
r
fo
nt
)
of

th
e
8
cl
as
si
fic
at
io
n
m
et
ho
ds

on
di
ff
er
en
tb

en
ch
m
ar
k
da
ta
se
ts

kN
N

B
kN

N
R
kN

N
M
FS

R
F

SV
M

E
Sk

N
N

SU
B
iN
N

B
-l
ea
rn
er
s

M
am

m
o

0.
21

2
0.
20

9
0.
19

6
0.
19

6
0.
19

3
0.
20

4
0.
19

8
0.
19

5
5.
93

4

0.
00

5
0.
00

5
0.
00

3
0.
00

3
0.
00

3
0.
00

5
0.
00

5
0.
00

3

Ph
on

e
0.
20

2
0.
20

4
0.
20

2
0.
20

2
0.
14

3
0.
18

5
0.
21

1
0.
17

7
5.
90

8

0.
00

5
0.
00

4
0.
00

4
0.
00

5
0.
00

5
0.
00

5
0.
00

7
0.
00

4

D
ys
tr

0.
14

9
0.
14

7
0.
14

1
0.
14

1
0.
10

9
0.
11

0
0.
12

9
0.
11

5
5.
56

8

0.
00

9
0.
00

8
0.
00

9
0.
00

9
0.
00

8
0.
00

8
0.
01

3
0.
00

7

D
ia
be

0.
25

3
0.
24

9
0.
26

1
0.
26

1
0.
23

5
0.
24

0
0.
24

7
0.
24

1
5.
95

7

0.
00

6
0.
00

6
0.
00

5
0.
00

5
0.
00

5
0.
00

6
0.
00

6
0.
00

6

C
re
di

0.
20

5
0.
20

0
0.
17

7
0.
17

7
0.
12

2
0.
14

8
0.
13

6
0.
13

6
9.
01

1

0.
00

6
0.
00

5
0.
00

5
0.
00

4
0.
00

4
0.
00

5
0.
00

6
0.
00

0

H
ep
at

0.
14

9
0.
13

7
0.
14

8
0.
14

9
0.
11

2
0.
13

9
0.
41

7
0.
13

1
7.
09

0

0.
01

8
0 .
01

8
0.
01

1
0.
01

0
0.
01

5
0.
01

7
0.
09

3
0.
01

9

G
er
m
a

0.
27

2
0.
27

4
0.
29

6
0.
29

6
0.
23

5
0.
24

2
0.
27

1
0.
26

4
7.
05

2

0.
00

4
0.
00

4
0.
00

2
0.
00

2
0.
00

5
0.
00

5
0.
00

8
0.
00

5

G
la
uc

0.
18

8
0.
17

8
0.
17

7
0.
17

7
0.
09

5
0.
15

0
0.
18

2
0.
06

8
5.
58

7

0.
01

4
0.
01

2
0.
01

1
0.
01

1
0.
00

7
0.
00

8
0.
01

9
0.
00

7

H
ab
er

0.
25

5
0.
25

2
0.
26

9
0.
26

9
0.
27

9
0.
26

8
0.
25

9
0.
25

8
3.
57

4

0.
00

7
0.
00

8
0.
00

8
0.
00

8
0.
00

9
0.
00

8
0.
01

1
0.
00

9

T
ra
ns

0.
20

8
0.
20

6
0.
23

1
0.
23

1
0.
24

5
0.
21

0
0.
23

4
0.
23

2
4.
90

2

0.
00

5
0.
00

5
0.
00

4
0.
00

4
0.
00

6
0.
00

4
0.
00

6
0.
00

5

B
up

a
0.
21

0
0.
21

2
0.
23

2
0.
23

2
0.
20

7
0.
19

6
0.
22

6
0.
22

1
5.
49

5

0.
00

6
0.
00

5
0.
00

5
0.
00

5
0.
00

9
0.
00

6
0.
01

1
0.
00

9

B
io
ps

0.
03

0
0.
03

1
0.
02

9
0.
02

9
0.
02

7
0.
04

0
0.
03

4
0.
03

1
14

.5
08

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 869

Ta
bl
e
8

co
nt
in
ue
d kN

N
B
kN

N
R
kN

N
M
FS

R
F

SV
M

E
Sk

N
N

SU
B
iN
N

B
-l
ea
rn
er
s

0.
00

2
0.
00

1
0.
00

0
0.
00

0
0.
00

2
0.
00

2
0.
00

3
0.
00

2

H
ea
rt

0.
28

8
0.
28

8
0.
30

5
0.
30

6
0.
31

3
0.
28

7
0.
30

2
0.
29

5
6.
33

3

0.
00

9
0.
00

7
0.
00

7
0.
00

7
0.
01

0
0.
00

8
0.
01

3
0.
00

9

In
di
a

0.
30

6
0.
30

6
0.
28

1
0.
28

1
0.
29

4
0.
29

1
0.
29

0
0.
29

1
8.
30

0

0.
00

8
0.
00

8
0.
00

3
0.
00

3
0.
01

0
0.
00

5
0.
01

0
0.
00

7

H
ou
se

0.
22

3
0.
21

9
0.
18

7
0.
18

7
0.
22

1
0.
20

3
0.
22

5
0.
20

1
4.
88

5

0.
01

6
0.
01

5
0.
00

4
0.
00

4
0.
01

3
0.
00

9
0.
03

4
0.
01

4

So
na
r

0.
27

6
0.
27

9
0.
25

9
0.
25

8
0.
16

1
0.
17

4
0.
22

7
0.
23

5
12

.8
73

0.
01

2
0.
01

3
0.
01

1
0.
01

2
0.
01

3
0.
01

3
0.
01

9
0.
01

6

M
us
k

0.
22

1
0.
21

9
0.
18

8
0.
18

7
0.
10

1
0.
10

6
0.
17

7
0.
20

7
18

.2
88

0.
00

8
0.
00

7
0.
00

8
0.
00

7
0.
00

7
0.
00

7
0.
01

3
0.
01

1

A
pp
en

0.
12

6
0.
12

6
0.
13

7
0.
13

6
0.
13

2
0.
13

4
0.
13

7
0.
13

9
4.
41

7

0.
01

1
0.
00

8
0.
00

6
0.
00

6
0.
00

7
0.
00

9
0.
01

6
0.
01

3

So
la
r

0.
17

3
0.
17

2
0.
17

4
0.
17

4
0.
17

6
0.
17

1
0.
17

4
0.
17

5
8.
22

5

0.
00

2
0.
00

2
0.
00

1
0.
00

1
0.
00

4
0.
00

3
0.
00

3
0.
00

2

Tw
on

o
0.
02

6
0.
02

6
0.
02

7
0.
02

7
0.
03

3
0.
02

5
0.
04

4
0.
11

1
23

.0
24

0.
00

2
0.
00

2
0.
00

2
0.
00

2
0.
00

3
0.
00

2
0.
00

5
0.
00

7

B
an
ds

0.
32

0
0.
31

6
0.
31

9
0.
31

9
0.
23

4
0.
29

0
0.
33

9
0.
36

6
11

.0
93

0.
01

2
0.
00

9
0.
00

8
0.
00

8
0.
01

3
0.
00

9
0.
01

8
0.
01

1

W
pb

c
0.
24

1
0.
24

5
0.
23

9
0.
23

9
0.
20

8
0.
23

2
0.
23

3
0.
24

6
9.
15

7

0.
00

8
0.
00

8
0.
00

4
0.
00

4
0.
01

0
0.
00

8
0.
01

4
0.
01

2

T
he

B
-l
ea
rn
er
s
co
lu
m
n
re
fe
rs
to

th
e
av
er
ag
e
nu

m
be
r
of

ba
se
-l
ea
rn
er
s
th
at
w
er
e
us
ed

by
SU

B
iN

N

123

870 T. Elsten, M. de Rooij

indirect measurements, were used in the final model. The meta-learner barely made
use of any of the direct measurement variables but chose combinations of the three
indirect variables. Note that for this data set the univariate base-learner for feature 64
was selected in every run. So, whereas in the simulation study univariate base-learners
were never selected, application of SUBiNN to this data set shows that indeed the
univariate base-leaners can have a contribution to the final model.

Considering, more generally, the choice of base-learners it seems that when
SUBiNN performs relatively good, it uses a small number of base-learners, as can
be witnessed in the last column in Table 8.

6 Conclusion and discussion

In this paper we proposed SUBiNN, a stacked uni- and bivariate nearest neighbor
classifier. Researchers are often interested in the effects of predictor variables/features
on an outcome variable or in the interaction effect of features on an outcome variable.
Usually, such main effects and interaction effects are included in a logistic regression
model. The logistic regression model, however, assumes that these effects are linear
effects which is a rather strong assumption. Nearest neighbor analysis imposes no
functional form, but does not have the capability to distinguish main and interaction
effects. Moreover, nearest neighbor analysis is sensitive to the dimensionality of the
feature space. InSUBiNNwebuilt an ensemblemethodby combiningnearest neighbor
analyses in one and two-dimensional subspaces, thereby overcoming the curse of
dimensionality and at the same time enabling identification of main and pairwise
interaction effects without imposing a functional form on these effects.

In this respect, SUBiNN works similarly to generalized additive models that also
focus on sums of one and possible two-dimensional smoothers (Hastie and Tibshirani
1990; Wood 2017). In SUBiNN, we finally have a sum of one and two-dimensional
nearest neighbor classifiers, where the number of neighbors can be used to control the
smoothness in a way.

In nearest neighbor classifiers the number of neighbors, k, is important. Small
values k lead to unbiased models with high variance, while high values of k lead to
biased but stable models. In a small experimental study we investigated the choice of
k for SUBiNN and found no big differences in classification performance. Therefore,
we choose to use k = √

n in the simulation studies and benchmark study. When
applying SUBiNN to an empirical dataset a researcher might choose to use k as a
tuning parameter, fitting the whole procedure with different values of k and selecting
the one with best classification performance. Another strategy is to define an even
larger set of base-learners where for every combination of features p and q, base-
learners are trained with varying value of k. The meta-learner then makes a selection
out of this enlarged set of base-learners.

In the simulation studies, we compare SUBiNN to other nearest neighbor classifiers
and two methods that usually classify very accurately, Random Forests and Support
VectorMachines.Wegenerated data following a quadratic discriminant analysismodel
where we varied the covariance matrices and the number of uninformative features.
One strong result for SUBiNN is its robustness with respect to noise features. SUBiNN

123

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 871

never selected a base-learner involving an uninformative feature. In comparison to
other NN classifiers, SUBiNN performed relatively good if there exist pairs of features
that separate the observations of the two classes quite well, such as in experiment 2
and 3. When the separating information is mainly available in higher dimensional
subspaces the performance of SUBiNN is not that good (such as in experiment 1).

The comparison in terms of classification performance of SUBiNN with RF and
SVM point out that overall RF is the best classifier. There have been further improve-
ments on ensembles of classification trees that we did not study, such as (extreme)
gradient boosted trees. Theymight even be a bit better in terms of classification perfor-
mance, but require more tuning in order to outperform RF. Such tuning also carries the
risk of overfitting. RF and other classification tree ensembles, however, are often con-
sidered black-box techniques (similar to SVM). Recently, there have been advances in
developing interpretational tools for RF and other black box techniques (Sies and Van
Mechelen 2020; Ribeiro et al. 2016). Others have adapted ensemble methods with
trees to increase interpretability (Meinshausen 2010) and searched for optimal tree
ensembles (Khan et al. 2020, 2021). We note that both in our simulation experiments
as well as in the benchmark data set, there was at least one dataset or condition for
which SUBiNN outperformed RF.

A clear disadvantage of SUBiNN is its considerable execution time (see Table 3)
when the number of (uninformative) features was increased. As a result of the sparsity
created by Lasso, this long execution time only applies to the training stage and
not to the final task of predicting the outcome. High performance computing can
be used to parallelize computations, that is, every base learner can be trained on a
different computer/core. Methods to approximate the kNN distance mapping could be
implemented, such as Locality Sensitive Hashing (Andoni and Indyk 2008).

We focussed on binary classification. Many classification problems have more than
two classes and kNN is well suitable for such situations. To generalize SUBiNN
for multiclass classification, the only thing that is needed is to have a good meta-
learner. Two options are regularized linear discriminant analysis (Clemmensen et al.
2011; Trendafilov and Jolliffe 2007) or polytomous logistic regression with lasso-type
penalty (Friedman et al. 2010). Further research is needed.

The choice for only using univariate and bivariate base-learners stems from the
wish to identify the main- and interaction effects of the input. Base-learners could be
fit on subsets of three, four, or more features, thereby introducing three-way, four-way,
and higher-order interactions of features. However, in practice three-way interaction
term are often difficult to interpret, let alone interactions of a higher order. Moreover,
the two-dimensional subspaces with classification boundaries can be relatively easy
visualized, which becomes more difficult for three or higher-dimensional subspaces.

In all our analysis we used the Euclidean distance to find the neighbors. The
Euclidean distance is a simple choice, but might not be an optimal choice in all sit-
uations. Other distance measures have been developed, see Cox and Cox (2000) for
many types of proximity measures for different kind of features and Gower (1971) for
a general distance measure for features with different characteristics. Another choice
we made is to standardize the features to have zero mean and unit variance. Although
distance measures need some kind of standardized features, other choices could result

123

872 T. Elsten, M. de Rooij

in different conclusions. Different scaling methods have been studied mainly in the
context of cluster analysis (Schaffer and Green 1996; Steinley 2004).

We choose to use Lasso linear regression as the meta-learner. Lasso tends to arbi-
trarily select a single base-learner among a group of highly correlated base-learners.
Zou and Hastie (2005) note that an Elastic Net regularization has the potential of
alleviating this problem by either including or excluding groups of highly correlated
variables.

In sum, we proposed and evaluated a new stacking ensemble learner based on
univariate and bivariate kNNclassifiers.When themeta-learner selects a small number
of base-learners the results can be understood in terms of nonlinear main effects
and two-variable interaction effects. SUBiNN often performs better than other NN-
based classification methods and under certain conditions even outperformed Random
Forests.

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable feedback
and suggestions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. Commun ACM 51(1):117

Bay SD (1999) Nearest neighbor classification frommultiple feature subsets. Intell Data Anal 3(3):191–209
Bentéjac C, Csörgő A, Martínez-Muñoz G (2021) A comparative analysis of gradient boosting algorithms.

Artif Intell Rev 54(3):1937–1967
Breiman L (1996) Stacked regressions. Mach Learn 24(1):49–64
Clemmensen L, Hastie T, Witten D, Ersbøll B (2011) Sparse discriminant analysis. Technometrics

53(4):406–413
Cox T, Cox M (2000) Multidimensional scaling, 2nd edn. CRC monographs on statistics and applied

probability. CRC Press, Chapman & Hall, Boca Raton
Dietterich T (2000) An experimental comparison of three methods for constructing ensembles of decision

trees: bagging, boosting, and randomization. Mach Learn 40(2):139–157
Domeniconi C, Yan B (2004) Nearest neighbor ensemble. In: Proceedings of the 17th international confer-

ence on pattern recognition, 2004. ICPR 2004
Enas GG, Choi SC (1986) Choice of the smoothing parameter and efficiency of k-nearest neighbor classi-

fication. Comput Math Appl 12(2):235–244
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate

descent. J Stat Softw 33(1):1–22
García-Pedrajas N, Ortiz-Boyer D (2009) Boosting k-nearest neighbor classifier by means of input space

projection. Expert Syst Appl 36(7):10570–10582
Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27(4):857–871
Gul A, Perperoglou A, Khan Z, Mahmoud O, Adler W, Miftahuddin M, Lausen B (2015) ESKNN: ensem-

ble of subset of K-nearest neighbours classifiers for classification and class membership probability
estimation. R package version 1

123

http://creativecommons.org/licenses/by/4.0/

SUBiNN: a stacked uni- and bivariate kNN sparse ensemble 873

Gul A, Perperoglou A, Khan Z, Mahmoud O, Miftahuddin M, Adler W, Lausen B (2016) Ensemble of a
subset of KNN classifiers. Adv Data Anal Classif 12(4):827–840

Hassanat AB, Abbadi MA, Altarawneh GA (2014) Solving the problem of the k parameter in the KNN
classifier using an ensemble learning approach. Int J Comput Sci Inf Secur 12(8):33–39

Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning. Springer, Berlin
Hastie TJ, Tibshirani RJ (1990) Generalized additive models, vol 43. CRC monographs on statistics and

applied probability. CRC Press, Chapman & Hall, Boca Raton
Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab—an S4 package for kernel methods in R. J

Stat Softw 11(9):1–20
Khan Z, Gul A, Perperoglou A, Miftahuddin M, Mahmoud O, Adler W, Lausen B (2020) Ensemble of

optimal trees, random forest and random projection ensemble classification. Adv Data Anal Classif
14(1):97–116

Khan Z, Gul N, Faiz N, Gul A, Adler W, Lausen B (2021) Optimal trees selection for classification via
out-of-bag assessment and sub-bagging. IEEE Access 9:28591–28607

Leblanc M, Tibshirani R (1996) Combining estiamates in regression and classification. J Am Stat Assoc
91(436):1641

Leisch F, Dimitriadou E (2010) mlbench: Machine learning benchmark problems. R package version 2.1-1
Li S (2015) rkNN: Random KNN classification and regression. R package version 1.2-1
Li S, Harner EJ, AdjerohDA (2011) RandomKNN feature selection—a fast and stable alternative to random

forests. BMC Bioinform 12(1):450
Liaw A, Wiener M (2002) Classification and regression by randomforest. R News 2(3):18–22
Mcdermott J, Forsyth RS (2016) Diagnosing a disorder in a classification benchmark. Pattern Recognit Lett

73:41–43
Meinshausen N (2010) Node harvest. Ann Appl Stat 4(4):2049–2072
Meyer D, Dimitriadou E, Hornik K,Weingessel A, Leisch F (2019) e1071:Misc functions of the department

of statistics, probability theory groups (Formerly: E1071), TU Wien. R Package version 1.7.-3
Mirończuk MM, Protasiewicz J (2019) Recognising innovative companies by using a diversified stacked

generalisation method for website classification. Appl Intell 50(1):42–60
Neo TKC, Ventura D (2012) A direct boosting algorithm for the k-nearest neighbor classifier via local

warping of the distance metric. Pattern Recognit Lett 33(1):92–102
Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11:169–198
Peters A, Lausen B,Michelson G, Gefeller O (2003) Diagnosis of glaucoma by indirect classifiers. Methods

Inf Med 42(01):99–103
Peters A, Torsten H (2019) ipred: Improved predictors. R package version 0.9-9
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria
Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?” explaining the predictions of any

classifier. In:Proceedings of the 22nd ACMSIGKDD international conference on knowledge discovery
and data mining, pp 1135–1144

Schaffer C,Green P (1996)An empirical comparison of variable standardizationmethods in cluster analysis.
Multivar Behav Res 31(2):149–167

Shmueli G (2010) To explain or to predict. Stat Sci 25:289–310
Sies A, Van Mechelen I (2020) C443: a methodology to see a forest for the trees. J Classif 37:730–753
Spinhoven P, De Rooij M, Heiser W, Smit JH, Penninx BW (2009) The role of personality in comorbidity

among anxiety and depressive disorders in primary care and specialty care: a cross-sectional analysis.
Gen Hosp Psychiatry 31(5):470–477

Steinley D (2004) Standardizing variables in k-means clustering. In: Classification, clustering, and data
mining applications, pp 53–60. Springer, Berlin Heidelberg

Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Stat Methodol)
58(1):267–288

Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B
(Stat Methodol) 73(3):273–282

Trendafilov NT, Jolliffe IT (2007) Dalass: variable selection in discriminant analysis via the lasso. Comput
Stat Data Anal 51(8):3718–3736

Van Loon W, Fokkema M, Szabo B, De Rooij M (2020) Stacked penalized logistic regression for selecting
views in multi-view learning. Inf Fus 61:113–123

123

874 T. Elsten, M. de Rooij

Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York (ISBN
0-387-95457-0)

Wang Q, Zhao D, Wang Y, Hou X (2019) Ensemble learning algorithm based on multi-parameters for
sleepstaging. Med Biol Eng Comput 57(8):1693–1707

Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259
Wood SN (2017) Generalized additive models: an introduction with R. Chapman and Hall/CRC Press, Boca

Raton
Yadrintsev VV, Sochenkov IV (2019) The hybrid method for accurate patent classification. Lobachevskii J

Math 40(11):1873–1880
Zhou Z-H, Yu Y (2005) Adapt bagging to nearest neighbor classifiers. J Comput Sci Technol 20(1):48–54
Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Stat

Methodol) 67(2):301–320

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	SUBiNN: a stacked uni- and bivariate kNN sparse ensemble
	Abstract
	1 Introduction
	2 SUBiNN
	2.1 Base-learners: kNN
	2.2 Meta-learner: Lasso regression
	2.3 Final model and predictions for new data
	2.4 Empirical application

	3 Pilot study: the choice of k
	3.1 Setup
	3.2 Results and conclusion

	4 Simulation studies
	4.1 Data generation for main simulation experiments
	4.2 Software implementations
	4.3 Results
	4.3.1 Experiment 1: adding noise
	4.3.2 Experiment 2: varying covariance structure
	4.3.3 Experiment 3: correlation and noise
	4.3.4 Experiment 4: varying correlation structure

	4.4 Conclusion

	5 Benchmark data study
	5.1 Data
	5.2 Models
	5.3 Results

	6 Conclusion and discussion
	Acknowledgements
	References

