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Abstract

As its name suggests, sufficient dimension reduction (SDR) targets to estimate
a subspace from data that contains all information sufficient to explain a depen-
dent variable. Ample approaches exist to SDR, some of the most recent of which
rely on minimal to no model assumptions. These are defined according to an
optimization criterion that maximizes a nonparametric measure of association.
The original estimators are nonsparse, which means that all variables contribute
to the model. However, in many practical applications, an SDR technique may
be called for that is sparse and as such, intrinsically performs sufficient variable
selection (SVS). This paper examines how such a sparse SDR estimator can
be constructed. Three variants are investigated, depending on different mea-
sures of association: distance covariance, martingale difference divergence and
ball covariance. A simulation study shows that each of these estimators can
achieve correct variable selection in highly nonlinear contexts, yet are sensitive
to outliers and computationally intensive. The study sheds light on the subtle
differences between the methods. Two examples illustrate how these new esti-
mators can be applied in practice, with a slight preference for the option based
on martingale difference divergence in the bioinformatics example.

Keywords: (Sufficient) Dimension Reduction, (Sufficient) Variable Selection,
Nonparametric Multivariate Statistics, Sparse estimators.
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1. Introduction

Owing to increased data storage, data transmissions speed and computing
power, big data analytics have gradually become prevalent over the last five
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years. The bigger data are, the more difficult it will be to grasp the data by
looking at the numbers, or to analyze them visually by plotting fractions of
them. That notwithstanding, it can already be a challenge to get a grip on the
information contained in small data as well, as soon as dimensionality exceeds
what can be visualized. Therefore, dimension reduction has been a mainstay
topic of research for the past century and it continues to intrigue researchers up
to the present day.

Different approaches to dimension reduction are justified depending on the
objectives of the analysis and the structure of the data. Many methods for di-
mension reduction have been developed to detect structures in one block of data
as such, without any external information. A very commonly applied method
in that context is principal component analysis (PCA), but sparse variants, or
nonlinear methods like autoencoders, will resort under this umbrella as well.
However, as soon as there is a dependent variable (or more than one), it be-
comes more interesting to know which information in the data explains that
dependent variable, as opposed to summarizing the data onto a set of latent
variables according to a pre-specified criterion, which PCA or autoencoders do.
Exactly for this purpose, sufficient dimension reduction (SDR) has been devel-
oped. In SDR, one aims to estimate a set of latent variables that are linear
combinations of the original variables T = XW in such a way that the subspace
spanned by them contains all information relevant to the dependent variable:

Y ⫫ X ∣ T. (1)

Here, X is a sample of n cases of a p variate random variable and Y is a sam-
ple of the dependent variable, whereas ⫫ denotes statistical independence. The
space that satisfies (1) is called the central subspace. There is over twenty years
of literature on how the central subspace can be estimated most efficiently ac-
cording to a wide range of assumptions. The interested reader is referred to
Li (2018) for a recent reference work on SDR. It is not intended to provide a
comparison of SDR methods in this article. However, it is noted that some
of the most recent approaches to estimate the central subspace are based on
maximization of an appropriate nonparametric measure of association. These
require no distributional assumptions, and distributional independence (1) fol-
lows from absence of association. Because of the latter elegance, that approach
will also be the foundational layer for the material developed here, as outlined
in Section 2.

Sufficient dimension reduction does identify a subspace whose complement
is statistically independent of the predictand. However, SDR is by definition
a dense method: when X is p variate, so is W and the elements wij will
generally be nonzero. When all variables can reasonably be assumed to con-
tain information relevant for the predictand y, it makes sense that the infor-
mation contained in them carries through to the latent variables. However,
when uninformative variables are present, they should be detected as such and
they should not contribute to the model, with the corresponding estimated
ŵij = 0 ∀i ∈ [1, p] ∀j ∈ [1, h], with h ∈ [1,min(n, p)] denoting the dimension
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of the central subspace. Such models are sparse dimension reduction models
and they are in widespread use, with justifications ranging from a better inter-
pretability to the sparse estimate being less prone to noise, just to name a few.
Sparse PCA (Zou et al., 2006) is a well established sparse dimension reduction
technique. However, sparse sufficient dimension reduction is still a nascent field
of research. When uninformative variables are present, the objective becomes
to estimate the central subspace in (1) in such a way that the space estimated
does not contain contributions from the uninformative variables. Several ap-
proaches have been published to achieve variable selection for SDR, either using
hypothesis tests based on the estimated latent variables (Cook, 2004), called
sufficient variable selection (SVS), or by a sure independence screening (Fan
and Lv, 2008) procedure prior to the analysis. More recently, a sparse method
to estimate the central subspace has been proposed, based on a criterion that
maximizes distance covariance (Székely et al., 2007) to the dependent variable
in the presence of a sparsity penalty (Chen et al., 2018). This method relies on
fewer assumptions than its predecessors, and as it is based on a nonlinear mea-
sure of association, will achieve dimension reduction with respect to nonlinear
dependencies.

This article will build on the sparse SDR method in Chen et al. (2018), but
will explore different measures of association. Distance covariance is the oldest
association measure that belongs to the class of energy statistics (Székely and
Rizzo, 2013). However, more recently, further measures of association have been
proposed. Martingale difference divergence (Shao and Zhang, 2014), an energy
statistic as well, is a related measure of association that, when zero, ascertains
conditional mean independence of two stochastic variables. Ball statistics, in-
troduced in the form of sure independence screening in Pan et al. (2019), on
the other hand, comprise an entire different class of statistics, that encompass
measures of association as well. While SDR methods based on these more recent
measures of association have been developed, sparse variants have not yet been
pursued. The latter could be particularly interesting, because the nonsparse
variants have been reported to have desirable properties, e.g. SDR based on
ball covariance has been reported to be statistically robust and to lead to a
straightforward generalization that allows categorical variables as input (Zhang
and Chen, 2019). Based on this motivation, this paper will introduce sparse
SDR based on MDD, as well as based on ball covariance. Section will reca-
pitulate the definitions of the association measures and SDR based on them 2.
Section 3 will introduce sparse SDR based on these measures and will describe
how to compute the resulting estimators. Their properties will be investigated
in Section 4. Eventually, in Section 5, the practical use will be shown for two
data set known to contain uninformative variables. The main findings and sug-
gestions for further research are summarized in the conclusion.

2. Sufficient dimension reduction through energy and ball statistics

As stated in the Introduction, SDR aims to identify a subspace of the orig-
inal data space by constructing a set of latent variables as linear combinations
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of the original variables, such that the complement of resulting space spanned
by the latent variables is independent of the predictand (1). There is ample
literature on how to estimate the resulting central subspace (see e.g. Li (2018)).
Some of the most recent developments in this direction estimate the central sub-
space by maximizing a nonparametric and nonlinear measure of association, as
that requires minimal assumptions and works in the context of highly nonlinear
dependencies.

To estimate the central subspace using a measure of association P, the fol-
lowing objective is maximized:

Wh = argmax
B

P
2 (XB,Y) , (2a)

subject to:

B
T
X
T
XB = Ih, (2b)

where B is an arbitrary p × h matrix, h ∈ [1,min(n, p)]. Here, P can be any
statistic that applies to a set of an h variate and a univariate variable, but of
course, in practice, only those statistics estimate a subspace whose complement
is independent of y make sense in this context. As such, three options have
been proposed recently:

• SDR by maximizing squared distance covariance (Sheng and Yin, 2016);

• SDR by maximizing squared martingale difference divergence (MDD, Zhang
et al., 2019);

• SDR by maximizing squared ball covariance (Zhang and Chen, 2019)

Each of these measures of association will briefly be explained in this Section.

Remark 1. This optimization objective is, in fact, reminiscent of projection
pursuit Huber (1985), targeting to find directions wi that maximize a certain
objective. In the PP literature, the objective would be called the projection index.
The difference between criterion (2a) and the typical PP criterion, is that P is
allowed to be a statistic that operates on multivariate variables.

Remark 2. Setting P to the classical covariance in conjection with a univariate
b will in fact produce the first latent variable of partial least squares (PLS).
Successive PLS latent variables can be obtained by maximizing the same objective
on deflated data.

2.1. Distance covariance

Distance covariance (DCOV, Székely and Rizzo, 2013) is a measure of de-
pendence between random variables that can detect both linear and non linear
associations. Let random variables X ∈ Rp and Y ∈ R such that E∣X∣ and E∣Y ∣
are finite. Here, p is a positive integer and the norm ∣.∣ is defined for complex
valued functions f (.), as∣f ∣ = ff̄ , where f̄ is the complex conjugate of f . The
squared distance covariance between X and Y , is defined as :
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V
2(X,Y ) = E∣X −X ′∣∣Y − Y ′∣ + E∣X −X ′∣E∣Y − Y ′∣

−E∣X −X ′∣∣Y − Y ′′∣ − E∣X −X ′′∣∣Y − Y ′∣. (3)

with (X ′
, Y

′), (X ′′
, Y

′′), being iid copies of (X,Y ). A fundamental reason
for using distance covariance in 2a, is that it has the zero equivalence property
in Euclidean spaces : V(X,Y ) = 0 ⟺ X ⫫ Y . In practice, given the

iid observations (X,Y) = (Xk,Yk)nk=1, and the matrix B ∈ Rp×h, the sample

version of V
2(XB,Y) is given by :

V
2(XB,Y) = 1

n2

n

∑
k,l=1

Akl(B)Ckl. (4)

In (4), the entities Akl and Ckl are given by:

Akl(B) = akl(B) − āk.(B) − ā.l(B) + ā..(B), (5a)

where:
akl(B) = ∣XkB −XlB∣, (5b)

āk.(B) = 1
n

n

∑
l=1

akl(B), (5c)

ā.l(B) = 1
n

n

∑
k=1

akl(B) (5d)

and

ā..(B) = 1

n2

n

∑
k,l=1

akl(B). (5e)

with ∣.∣ denoting the Euclidean norm. Similarly, define ckl = ∣Yk −Yl∣ and
Ckl = ckl − c̄k. − c̄.l + c̄...

2.2. Martingale difference divergence

Martingale Difference Divergence (Shao and Zhang, 2014) is a measure of
conditional mean independence between two random variables. Let Y ∈ R and
X ∈ Rp such that E(∣Y ∣2+ ∣X∣2) <∞ and recall that (X ′

, Y
′) denotes an iid copy

of (X,Y ). The squared MDD of Y given X is given by

M
2(Y ∣X) = −E [(Y − EY )(Y ′

− EY ′)∣X −X
′∣] . (6)

MDD is a particularly useful measure of association between Y and X in
presence of heteroskedasticity (Zhang et al., 2019). Indeed, in that case, maxi-
mizing distance covariance will lead to incorrect estimation of the basis for the
central subspace. An attractive property of MDD, which makes it particularly
useful in SDR, is that M

2(Y ∣X) = 0 ⟺ E(Y ∣X) = E(Y ). This is a form of
zero equivalence property for the conditional mean. In practice, given the iid
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observations (X,Y) = (Xk,Yk)nk=1, and the matrix B ∈ Rp×h, the sample version

of MDD, M
2(Y ∣X), is given by (Park et al., 2015):

M
2(Y∣XB) = 1

n2

n

∑
k,l=1

Akl(B)Gkl, (7)

where Akl is defined as in the sample version of DCOV and

Gkl = gkl − ḡk. − ḡ.l + ḡ.., (8a)

where:

gkl =
1

2
∣Yk −Yl∣2 (8b)

and the remaining terms can be found analogously to Equations (5c) through
(5e), replacing akl by gkl.

Equations (5) and (8), show that the sample versions of both DCOV and
MDD are based on the matrices of pairwise Euclidean distances of Y and XB.
By consequence, the algorithms are O(n2), with a shortcut available for pairs of
univariate variables (Huo and Székely, 2016). However, in the context of SDR,
at least XB is typically multivariate and sometimes, so is Y, such that one has
to revert to the O(n2) algorithm.

2.3. Ball covariance

Ball covariance (Pan et al., 2020) is a general measure of dependence between
random variables in metric spaces. It was developed to overcome the fact that
distance covariance does not have the zero equivalence property in general metric
spaces (Lyons, 2013). It has also been shown that distance covariance can be
sensible to outliers (Raymaekers and Rousseeuw, 2019), a disadvantage that ball
covariance (BCOV) claims not to have. Formally, let X and Y be two random
vectors defined respectively in two separable Banach spaces (X, ζX ) and (Y, ζY ),
where ζX and ζY are norms defined on X and Y respectively. Let θ, µ and ν
be Borel probability measures on X × Y , X and Y , respectively. (X,Y ) is a
Banach-valued random vector defined on a probability space (Ω,F,P) such that
(X,Y ) ∼ θ, X ∼ µ and Y ∼ ν. Denote a closed ball with center x1 and radius
ζX (x1, x2) in X by B̄ζX (x1, x2). B̄ζY (y1, y2) is then similarly defined in Y.

The squared ball covariance (BCOV) is defined by

B
2(X,Y ) = ∫ ∫

X×Y
[θ − µ ⊗ ν]2(B̄ζX (x1, x2) × B̄ζY (y1, y2))θ(dx1, dx2)θ(dy1, dy2)

(9)
An interesting property of SDR based on ball covariance is that it is claimed

to be robust to outliers Zhang and Chen (2019), even though a formal proof to
that claim is not provided (e.g. bounded influence function). Ball covariance
also possesses the zero equivalence property : BCOV (X,Y ) = 0 ⟺ X ⫫ Y ,
which makes it a usable statistic in the optimization problem for SDR (2a).
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To compute the sample version of BCOV, let (X,Y) = (Xk,Yk)nk=1, be an iid

sample and given the matrix B ∈ Rp×h, then:

B
2(XB,Y) = 1

n6

n

∑
i,j,k,l,s,t=1

ξ
XB
ij,klstξ

Y
ij,klst. (10)

Here,

ξ
XB
ij,klst =

1

2
(δXB
ij,kl + δ

XB
ij,st − δ

XB
ij,ks − δ

XB
ij,lt), (11a)

δ
XB
ij,kl = δ

XB
ij,kδ

XB
ij,l , (11b)

and
δ
XB
ij,k = I(XkB ∈ B̄ζXB

(XiB,XjB)) (11c)

and ξ
Y
ij,klst is similarly defined. Unlike DCOV and MDD, the computation of

the empirical BCOV is not based on the matrix of pairwise Euclidean distances
and is more time consuming than either of the other measures of association.

To obtain sufficient dimension reduction based on DCOV, MDD or BCOV,
it suffices to set P equal to V, M or B in (2a), respectively.

3. Sparse Sufficient Dimension Reduction

The SDR methods presented in the previous section suffer from the fact that
all the original variables in X are present in the linear combination XB. This
can be a problem when only a few variables are informative and one would like
to select only those variables that are informative. In this section, we consider
the extension of the Coordinate Independent Sufficient Variable Selection pro-
cedure (Chen et al., 2010) to the distribution free SDR methods proposed in
the previous section. To estimate the central variable selection space, consider
maximizing the following objective:

Wh = argmax
B

P
2 (XB,Y) − ρ(B), (12a)

subject to:

B
T
X
T
XB = Ih, (12b)

where ρ(B) = ∑p
i=1 θi∣Bi∣, Bi denotes the ith row vector of B, and the θi ≥ 0,

i ∈ [1, p], serve as penalty parameters. Note that in practice, the dimension of
the central subspace h needs to be estimated, and to that end the bootstrap
method proposed in Sheng and Yin (2016) can be applied. As statistic P, we
will consider the three options presented in the previous section, which lead to
sufficient variable selection by distance covariance (DCOV—SDR, Chen et al.,
2018), Martingale Difference Divergence (MDD—SDR) and Ball Covariance
(BCOV—SDR), respectively, the latter two options being introduced in this
paper. Note that the sparse sufficient dimension reduction techniques all intrin-
sically achieve variable selection, and for that purpose, will interchangeably be
referred to as sparse variable selection as well, e.g. DCOV—SVS.
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To choose the penalty parameters, the approach from Chen et al. (2018) is
followed. Consider parameters of the form

θi = θ∣Bi∣−a, (13)

where Bi is the ith row vector of the solution to problem (2) and a is a real
number in [0, 1]. This strategy is practical, since it turns a p-dimensional tun-
ing parameter problem into a one-dimensional problem. To choose the tuning
parameter θ, a BIC-type criterion is maximized (Li, 2007):

argmax
θ

log (P2 (XB̃θ,Y)) − log(n)(pθ − h)h
n , (14)

with B̃θ denoting the sparse solution given by θ and pθ the number of nonzero
rows of B̃θ. Given that ρ is not differentiable, the local quadratic approximation
(LQA) is applied as in Fan and Li (2001) and the penalty function is approxi-
mated by a quadratic function at every step of the iteration. More precisely, if
B
n
= (Bn

1 , . . . ,B
n
p )T is the solution to of the optimization problem in (12) at the

nth iteration, then the first derivative of ρ(B) around B
n

can be approximated
as:

∂ρ

∂B
≈ diag (θ∣B

n
1 ∣−a

∣Bn
1 ∣

, . . . ,
θ∣Bn

p ∣−a

∣Bn
p ∣

)B ∶= H
n
B. (15)

Using a second-order Taylor expansion of ρ(B) about B
n

results in

ρ(B) ≈ 1

2
tr(BT

H
n
B) + Cn, (16)

with Cn a constant with respect to B. This LQA is then plugged in (12a) to
obtain the sparse SDR procedure presented in Algorithm 1 below. In practice,
a is set to 0.5, 0.2 and 0.8 for DCOV—SVS, MDD—SVS and BCOV—SVS,
respectively. It is practicable to fix the upper bound of iterations N to 200. The
tolerance τ is set 0.001 as in Chen et al. (2018) and the starting point B

0
is taken

to be the nonsparse solution from (2) obtained in python through the direpack
package (Menvouta et al., 2020).To choose the penalty parameter θ, values in
[0, 0.5] spaced by 0.01 are considered in algorithm 1 and the solution to (14)
is selected. When the structural dimension h is unknown, it can be estimated
using the bootstrap method of Sheng and Yin (2016) with 200 replications. The
subspaceAngle method in algorithm 1 refers to the principal angle between
subspaces of Knyazev and Argentati (2002).

4. Simulation study

4.1. Simulation and evaluation setup

This section aims to answer a few questions regarding the properties of dif-
ferent SVS methods in a data driven way. The main question to be investigated
is up to which extent the individual SVS methods are able to identify the right
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Algorithm 1 SVS algorithm

procedure sparseSDR(X,Y,B
0
, h, θ, τ, a,N)

2: s ← 0p.

V
0
← B

0

4: X
0
← X

for i = 1 to N do

6: H
0
← diag ( θ∣V

0
1 ∣−a

∣V0
1 ∣ , . . . ,

θ∣V0
p∣−a

∣V0
p∣ )

V ← argmaxV P
2 (X0

V,Y) − 1
2

tr(VT
H

0
V) s.t. V

T
X

0,T
X

0
V = Ih

8: if subspaceAngle(V0
,V) ≤ τ then break

for j = 1 to p do
10: if ∣Vj ∣ ≤ τ then

sj ← 1

12: if s = 1p then break

l ← 1
14: for j = 1 to p do

if sj = 0 then

16: V
0
l ← Vj

X
0
l ← Xj

18: l ← l + 1
V
sol
← 0 ∈ Rp×h

20: k ← 0
for j = 1 to p do

22: if sj = 0 then

V
sol
j ← V

0
k

24: k ← k + 1
return V

sol
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subset of informative variables, based on data generated according to different
mechanisms. As such, the methods from Section 3 will be compared as well to es-
tablished sparse variable selection tools. For the latter purpose, Sparse NIPALS,
also called SNIPLS (Hoffmann et al., 2016), as well as its outlier robust coun-
terpart, sparse partial robust M (SPRM, Hoffmann et al., 2015), are selected.
SPRM is a sparse variant of the older partial robust M-regression (Serneels
et al., 2005), a well established robust alternative to partial least squares, which
on its turn is proven to estimate the central subspace (Cook et al., 2016). This
will allow to evaluate up to which extent the different methods perform well
when the data are generated according to linear and nonlinear models, as well
as with or without outliers.

The optimization problem (12) is solved by dint of IPOPT (Wächter and
Biegler, 2006), with the MUMPS solver embedded. Setting n = 120 p = 24,
assuming that the dimension h of the central subspace is known, and consider-
ing standard normally distributed error terms independent from the predictors,
eight different data models are investigated by generating a hundred simulated
datasets from each data model. The performance of each of the proposed meth-
ods is investigated for the different data models. To assess the quality of the
methods, three metrics are reported:

• the True Positive Rate (TPR), defined as the proportion of correctly iden-
tified active variables,

• the False Positive Rate (FPR), defined as the proportion of inactive vari-
able identified as active and

• the F1-score, F1 =
tp

tp+0.5(fp+ fn) , where tp denotes the number of correctly

identified active variables, fp the number of inactive variables identified as
active and fn the number of active variables identified as inactive.

Beyond reporting the F1-score for each method, the Kruskal-Wallis non para-
metric ANOVA (Kruskal and Wallis, 1952) and the Conover (Conover, 1999)
post-hoc tests are performed. This allows to take into account the uncertainty
and error in the estimates when comparing different methods. Methods perform
similarly if the p-value of the corresponding pairwise post-hoc test is greater than
0.05.
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4.2. Data generating models

Table 1 shows the distribution of X, the structure of the covariance matrix
Σ, the basis for the central subspace B and the expression for Y for each of the
eight simulation study setups. The error terms ε, ε1 and ε2 follow independent
standard normal distributions and are independent from X. For studies A, B

and E we have Σi,j = 0.5
∣i−j∣

and for studies C and D Σ is taken to be the
identity matrix. The setup in Study A was taken from Chen et al. (2018), in
study B from Zhang et al. (2019), in Study C from Sheng and Yin (2016), in
Study D from Yin and Hilafu (2015) and in Study E from Zhang and Chen
(2019). Studies F, G and H are set up as Study E, but 10% of some variables
are replaced by outliers 2 ⋅ t1, where t1 is a Cauchy distributed random variable.
The aim is to investigate which method performs best when outliers are present
in the informative and/or uninformative variables, or both. In study F, outliers
are added in the informative variables alone, which presumably should still lead
to those variables being detected as informative and contributing to the model.
Study G investigates the effect of outlying cells in the uninformative variables,
which should not be selected as informative. Study H generates casewise outliers
in both informative and uninformative variables.

4.3. Results

The simulation results for the eight studies are presented in Tables 2 through
4. One cannot expect a specific method to have better performance than all the
other ones across all simulation studies. However, the SVS methods obtained
from solving (12) are superior to the linear dimension reduction methods SNI-
PLS and SPRM as they return a better F1-score than the linear methods across
all 8 studies.

Studies A, B and C illustrate that increasing the level of non-linearity in the
expression of Y favors DCOV—SVS and BCOV—SVS over MDD—SVS. Effec-
tiveness with respect to nonlinearity is reflected in their F1-scores and FPRs,
which are consistently better than those of MDD—SVS. The fact that MDD—
SVS performs worst is to be expected as DCOV and BCOV can detect more
general forms of associations than MDD. Accounting for the mean and stan-
dard deviation of the estimated F1-score, DCOV-SVS and BCOV-SVS perform
similarly.

In the sparse categorical setting (Study D) DCOV—SVS, MDD—SVS and
BCOV—SVS perform similarly in terms of F1-score. This is an indication that
although these non-linear methods are more general and are able to detect
general forms of associations, they perform better when the dependent variable
is continuous.

Studies E through H assess the effect outliers have on the resulting sufficient
variable selection. In the absence of outliers (Study E), DCOV-SVS performs
best as it is able to correctly detect the nonlinear associations between X and
Y. Study F presents the case where outliers are added to the active variables.
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In this case, DCOV—SVS and BCOV—SVS perform similarly with an average
F1-score of 0.921 and 0.923, respectively. This implies that both methods show
similar sensitivity to outliers in the active variables. When outliers are added to
the inactive variables (Study G), DCOV—SVS performs best with an F1-score
of 0.896, showing that it is less sensitive to outliers in the inactive variables than
both other variants. When outliers are added to all variables (Study H), the 3
nonlinear methods and SNIPLS perform similarly. This indicates that all the
nonlinear methods under consideration are the most sensible to outliers when
these outliers occur on a casewise basis.

Tables 5 and 6 show the average penalty parameter and the average time
taken for one simulation run in seconds. Regarding the penalty parameter θ, on
average BCOV—SVS selects a lower penalty parameter than both other options.
Howbeit, in 6 of the 8 studies considered, BCOV—SVS takes longer to fit. That
said, when outliers are present in the active variables, MDD—SVS takes longer
to fit. Expectedly, SPRM and SNIPLS are much faster to fit than the other
methods, since they do not rely on a numerical nonlinear optimization.

5. Real data application

5.1. Boston housing data

The Boston housing data (Harrison and Rubinfeld, 1978) present a well
studied data set in regression and dimension reduction analysis, which allows
to compare the results to prior literature. Many reports have been published
on the data, but generally an objective of interest when analyzing these data, is
to understand how median house prices are impacted by a set of predictors in
each of the 506 census tracts that the Boston Standard Metropolitan Statistical
Area was composed of. This list of properties describing each census tract, is
listed in Table 7.

The Boston Housing data are known to be skewed, particularly with respect
to crime rate, which can be mitigated by removing observations greater than 3.2
for that variable, as was also suggested in Chen et al. (2018). Upon trimming,
374 observations out of the original 506 census tracts, remain.

To understand how the variables listed in Table 7 bear relation to the median
house price per census tract, the central subspace can be estimated, which
by definition (1) contains all information relevant to describe the dependent
variable. However, in this analysis, one cannot rule out that not all of the
predictors originally considered, should contribute the central subspace, as was
surmised by Chen et al. (2018) as well. These authors proceeded to apply sparse
DCOV—SDR in order to obtain a sparse estimate of the central subspace and
report the resulting coefficients. These results will now be compared to sparse
MDD—SDR and sparse BCOV—SDR.

Following Zhou and He (2008), the dimension of the central subspace of the
Boston Housing data is h = 2. The coefficients of the loading vectors of the
SDR central subspace estimates, are presented in table 8. The optimal penalty
parameters for DCOV—SVS, MDD—SVS and BCOV—SVS, were estimated to
be 0.49, 0.48 and 0.17, respectively.
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Due to the trimming of the crime rate variable, it makes sense that that
variable no longer significantly contributes to the central subspace. Further-
more, further variables that do not contribute to explaining the median house
prices are: Charles river proximity, nitric oxide concentration in ambient air,
the average number of rooms per dwelling, weighted distances to employment
centers, as well as radial highways. Up to some extent, one can interpret why
these variables could be less important than the other ones set forward. The
BCOV and DCOV based variants add two additional variables to the list: the
proportion of nonretail business area and the pupil—teacher ratio, whereas the
MDD based variant does capture these, which illustrates that conditional mean
independence does not have the same practical implications as distributional
independence. MDD does add both variables with a negative sign, which corre-
sponds to what one would, maybe subjectively, expect. Finally, it is noted that
BCOV estimates some variables with an opposite sign compared to both other
techniques. These are the proportion of African Americans in the population,
which as hard to interpret as this may be in 2020, may have been seen as a
negative factor back in the seventies. Also, BCOV estimates the proportion of
poorer residents to be a positive instead of a negative. It is hard to say what
this should be on an average basis. A high ratio of low status residents may
indicate disrepair, but on a local level it may correspond to an ”up-and-coming”
redeveloping neighbourhood as well. The BCOV measure of association being a
more local estimate, based on a n-ball around each point, can yield a different
overall outcome.

5.2. Riboflavin data

To illustrate a high dimensional setting (n < p), a genomics example will be
put forward. The study, originally published by Bühlmann et al. (2014), aims to
model riboflavin production as the single real-valued response variable from 4088
variables that measure the logarithm of the expression level of the correspond-
ing genes. Roboflavin production is reported as the logarithm of the riboflavin
production rate. The data consist of n = 71 samples that were hybridized re-
peatedly during a fed-batch fermentation process, in which different engineered
strains and strains grown under different fermentation conditions were studied.
The data were split randomly into a training set of 49 samples and a test set
of 22 samples. Next, in order to reduce the dimensionality to tractable levels,
the training set was subjected to marginal variable screening based on the dis-
tance correlation t-test of independence (Székely and Rizzo, 2013) on a pairwise
basis between the predictors and the response. Variables that yield a p-value
lower than 0.01 were retained, effectively reducing the number of variables from
4088 to 854. Sparse SDR was applied 1 to the dimension reduced training set,
and the central subspace dimension was set to h = 1, as previously reported
by Hilafu and Yin (2017). Figure 1(a) illustrates that the absolute correlation
between the predictors is high, which further complicates the task of estimat-
ing the sparse central subspace. Figures 1 (b), (c), (d) show the predicted and
actual response for DCOV—SVS, MDD—SVS and BCOV—SVS, respectively.
The predicted responses are obtained by fitting a linear regression to the latent
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Figure 1: Panel (a) is the histogram of the absolute correlations for the 854 selected genes;
Panel (b) shows the test set predicted response vs actual response for DCOV—SVS ;Panel
(c) shows the test set predicted response vs actual response for MDD—SVS ; Panel (d) shows
the test set predicted response vs actual response for BCOV—SVS.

variables that span the central subspace. This approach is analogous to e.g.
principal component regression and can be used to predict the responses in the
test set. Table 9 confirms that all sparse solutions produce a better fit to the
data than the non sparse solutions and are more parsimonious, hence justifying
the need for sparse variable selection. MDD—SVS produces a better fit to the
data than DCOV—SVS and BCOV—SVS. This is further illustrated in table 9
below, where MDD—SVS has the lowest Median Absolute Error (MAE). Note
that the same pattern was present in the simulations of section 4: BCOV—
SVS selects the lowest penalty parameter and the lowest number of predictors.
Again, conditional mean independence presents a dimension reduction strategy
different from distributional independence. From this example, as well as from
the simulation study, it seems that MDD—SDR tends to lead to a less sparse
central subspace than BCOV—SDR. In bioinformatics, a phenomenon like ri-
boflavin production is rarely caused by the expression of a single gene, which
in this case, seems to advocate for the MDD based approach from a practical
perspective.

The 17 predictors selected by MDD-SVS are: ’ASD at’, ’DACA at’, ’ECSC at’,
’FLIJ at’, ’FLIY at’, ’FLIZ at’, ’FRUB at’, ’FTSE at’, ’GSIB at’, ’GUAB at’,
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’MURF at’, ’MUTL at’, ’PKSC at’, ’PKSD at’, ’PKSF at’, ’PKSG at’, ’PKSH at’.
The variables selected by the two other methods are ’GUAB at’, ’HEMA at’,
’PKSD at’ for DCOV-SVS and ’MRAY at’ for BCOV-SVS.

6. Conclusion and Outlook

In this article, sparse sufficient dimension reduction methods have been pre-
sented based on energy and ball statistics. The advantage of these methods
is that they are essentially nonparametric: they can be applied with little dis-
tributional assumptions. Three approaches were investigated: sparse sufficient
dimension reduction that maximizes distance covariance, martingale difference
divergence, or ball covariance. Whereas the first of these approaches had been
reported before (Chen et al., 2018), the two remaining approaches have been
put forward in this article. The paper has presented an extensive investigation
of how these approaches compare, both in a simulation setting that compares
different scenarios: linear and nonlinear dependencies, with clean data and data
that contain outliers, as well as in two real data examples. The approaches
are based on different statistical assumptions, each of which have their pros
and cons. Therefore, one cannot expect a clear winner from these investiga-
tions. However, some take home messages are that ball covariance tends to lead
to a more sparse estimate of the central subspace and may account for local
variations in the data. On the contrary, zero martingale difference divergence
guarantees conditional mean independence, which is an overall location prop-
erty, and therefore looks at the data as a whole. MDD tends to report less
sparse solutions, which can be an advantage when it makes sense to interpret
an interplay of variables, such as in the riboflavin production example shown.
However, some statement can be made across the different methods. All SDR
methods investigated have been shown to be able to detect nonlinear depen-
dencies. The DCOV and BCOV based options proved to lead to more accurate
SVS in highly nonlinear contexts. They do work with little distributional in-
formation, yet are still sensitive to outliers. To their advantage, each of the
methods can be applied equally well to data with more variables than predic-
tors and the other way around. Howbeit, while the implementations described
here and in Chen et al. (2018) may be the most efficient algorithms available,
all three methods tend to be computationally involved. Therefore, we see the
methods find immediate application in data sets of moderate sizes. Yet further
research may bring an even more effient algorithm, such that the methods may
find more widespread adoption. Future research could focus as well on more
robust optimization algorithms for solving problem (12) and different statistics
that could be used in Algorithm 1.
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Székely, G., Rizzo, M., 2013. Energy statistics: A class of statistics based on
distances. Journal of Statistical Planning and Inference 143, 1249–1272.
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A B C D

Method mean sd mean sd mean sd mean sd

DCOV-SVS 0.910 0.178 0.782 0.126 0.824 0.124 0.698 0.083
MDD-SVS 0.824 0.223 0.863 0.150 0.794 0.157 0.706 0.089
BCOV-SVS 0.925 0.165 0.792 0.228 0.848 0.174 0.680 0.226

SNIPLS 0.264 0.109 0.720 0.213 0.557 0.190 0.607 0.117
SPRM 0.281 0.140 0.592 0.141 0.552 0.185 0.585 0.140

E F G H

Method mean sd mean sd mean sd mean sd

DCOV-SVS 0.965 0.091 0.921 0.151 0.896 0.186 0.262 0.009
MDD-SVS 0.699 0.160 0.468 0.140 0.700 0.155 0.290 0.007
BCOV-SVS 0.689 0.200 0.923 0.082 0.597 0.227 0.283 0.002

SNIPLS 0.282 0.159 0.637 0.204 0.279 0.164 0.286 0.000
SPRM 0.155 0.162 0.161 0.148 0.180 0.168 0.210 0.017

Table 2: Mean and standard deviation of F1 score.

A B C D

Method mean sd mean sd mean sd mean sd

DCOV-SVS 0.910 0.193 0.688 0.172 0.752 0.196 0.550 0.114
MDD-SVS 0.825 0.240 0.853 0.138 0.762 0.196 0.566 0.126
BCOV-SVS 0.895 0.217 0.747 0.276 0.820 0.256 0.595 0.284

SNIPLS 0.668 0.287 0.795 0.193 0.885 0.205 0.940 0.159
SPRM 0.513 0.298 0.625 0.199 0.883 0.190 0.910 0.220

E F G H

Method mean sd mean sd mean sd mean sd

DCOV-SVS 0.998 0.023 0.920 0.122 0.990 0.061 0.578 0.240
MDD-SVS 1.000 0.000 0.970 0.082 0.998 0.025 0.760 0.181
BCOV-SVS 0.760 0.293 0.878 0.135 0.8275 0.320 0.978 0.072

SNIPLS 0.530 0.365 1.000 0.000 0.525 0.353 1.000 0.000
SPRM 0.253 0.292 0.320 0.348 0.285 0.297 0.388 0.363

Table 3: Mean and standard deviation of TPR.
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A B C D

Method mean sd mean sd mean sd mean sd

DCOV-SVS 0.023 0.141 0.017 0.101 0.010 0.029 0.007 0.026
MDD-SVS 0.033 0.143 0.051 0.197 0.050 0.176 0.016 0.101
BCOV-SVS 0.001 0.01 0.017 0.038 0.013 0.025 0.032 0.059

SNIPLS 0.395 0.322 0.167 0.322 0.357 0.324 0.597 0.262
SPRM 0.262 0.284 0.154 0.268 0.369 0.336 0.598 0.281

E F G H

Method mean sd mean sd mean sd mean sd

DCOV-SVS 0.023 0.102 0.042 0.197 0.093 0.252 0.557 0.160
MDD-SVS 0.219 0.223 0.483 0.188 0.212 0.205 0.699 0.010
BCOV-SVS 0.087 0.114 0.003 0.017 0.190 0.155 0.987 0.031

SNIPLS 0.419 0.300 0.313 0.279 0.420 0.286 1.000 1.000
SPRM 0.322 0.277 0.404 0.307 0.307 0.248 0.389 0.332

Table 4: Mean and standard deviation of FPR.

A B C D

Method mean sd mean sd mean sd mean sd

DCOV-SVS 0.234 0.167 0.169 0.093 0.180 0.100 0.134 0.053
MDD-SVS 0.211 0.156 0.328 0.116 0.260 0.102 0.221 0.008
BCOV-SVS 0.136 0.152 0.063 0.091 0.131 0.147 0.061 0.100

SNIPLS 0.486 0.291 0.557 0.274 0.527 0.286 0.305 0.158
SPRM 0.600 0.280 0.553 0.247 0.519 0.293 0.297 0.180

E F G H

Method mean sd mean sd mean sd mean sd

DCOV-SVS 0.177 0.074 0.345 0.128 0.174 0.101 0.388 0.139
MDD-SVS 0.413 0.120 0.264 0.155 0.415 0.116 0.219 0.132
BCOV-SVS 0.054 0.079 0.120 0.125 0.042 0.076 0.201 0.166

SNIPLS 0.604 0.261 0.452 0.277 0.514 0.295 0.526 0.269
SPRM 0.681 0.260 0.601 0.257 0.670 0.220 0.604 0.279

Table 5: Mean and standard deviation of the sparsity parameter.
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Variable # Neighbourhood property
1 per capita crime rate by town
2 proportion of residential land zoned for lots over 25,000 sf
3 proportion of nonretail business acres per town
4 Charles River proximity (dichotomous)
5 nitric oxide concentration in ambient air
6 average number of rooms per dwelling
7 proportion of owner-occupied units built prior to 1940
8 weighted distances to five Boston employment centers
9 index of accessibility to radial highways
10 full-value property-tax rate
11 pupil-teacher ratio by town
12 proportion of African Americans per town
13 percentage of lower status of the population

Table 7: Description of predictors in the Boston Housing data set

Method DCOV-SVS MDD-SVS BCOV-SVS
x1 0 0 0 0 0 0
x2 0.268 0.040 0.310 0.198 0.006 -0.0002
x3 0 0 -0.044 -0.028 0 0
x4 0 0 0 0 0 0
x5 0 0 0 0 0 0
x6 0 0 0 0 0 0
x7 -0.240 -0.037 -0.246 -0.157 -0.001 0.001
x8 0 0 0 0 0 0
x9 0 0 0 0 0 0
x10 -0.874 -0.131 -0.687 -0.438 0.001 0.001
x11 0 0 -0.017 -0.011 0 0
x12 0.159 0.024 0.179 0.114 -0.392 0.047
x13 -0.162 -0.024 -0.175 -0.112 0.132 0.572

Table 8: Estimated SVS basis of the central subspace.

Method DCOV—SVS MDD—SVS BCOV—SVS
Sparse MAE 0.376 0.316 0.532

Non Sparse MAE 0.378 0.447 0.666
θ 0.22 0.10 0.01

Number of predictors 3 17 1

Table 9: Median Absolute Error(MAE), penalty parameter θ and number of selected variables
for SVS methods.
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