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Abstract
Instance-dependent cost-sensitive (IDCS) learning methods have proven
useful for binary classification tasks where individual instances are associ-
ated with variable misclassification costs. However, we demonstrate in this
paper by means of a series of experiments that IDCS methods are sensitive
to noise and outliers in relation to instance-dependent misclassification
costs, and their performance strongly depends on the cost distribution of
the data sample. Therefore, we propose a generic three-step framework
to make IDCS methods more robust: (i) detect outliers automatically, (ii)
correct outlying cost information in a data-driven way, and (iii) construct
an IDCS learning method using the adjusted cost information. We apply
this framework to cslogit, a logistic regression-based IDCS method, to
obtain its robust version, which we name r-cslogit. The robustness of this
approach is introduced in steps (i) and (ii), where we make use of robust
estimators to detect and impute outlying costs of individual instances. The
newly proposed r-cslogit method is tested on synthetic and semi-synthetic
data and proven to be superior in terms of savings compared to its non-
robust counterpart for variable levels of noise and outliers. All our code is
made available online at https://github.com/SimonDeVos/Robust-IDCS.

Keywords: Cost-sensitive learning, Instance-dependent costs, Classification,
Robust
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1 Introduction
Classification is a well-studied machine learning task that involves the assign-
ment of instances to a predefined set of outcome classes. Cost-sensitive
classification methods take into account asymmetric costs related to incor-
rectly classifying instances across various classes (Elkan, 2001; Verbeke,
Olaya, Berrevoets, Verboven, & Maldonado, 2020). Such misclassification
costs may either be class-dependent, i.e., equal for all instances of a class, or
instance-dependent, i.e., vary across instances.

Classification methods are adopted to support or automate business decision-
making, e.g., for credit scoring (Petrides, Moldovan, Coenen, Guns, & Verbeke,
2020) or customer churn prediction (Lessmann, Haupt, Coussement, & De Bock,
2021). Note that in both applications, misclassified instances involve variable
costs. For instance, the cost of a misclassified churner equals the future customer
lifetime value, whereas a misclassified non-churner typically involves a much
smaller cost, i.e., the cost of targeting the customer with the retention campaign.
Either or both may be instance-dependent or class-dependent depending on
the characteristics of the particular application setting.

A broad variety of cost-sensitive (CS) and instance-dependent cost-sensitive
(IDCS) classification methods have been proposed in the literature as reviewed
and experimentally evaluated by Petrides and Verbeke (2022) and Vander-
schueren, Verdonck, Baesens, and Verbeke (2022). A prominent approach that
is adopted by both CS and IDCS methods for taking misclassification costs
into account is to weigh instances proportionally with the misclassification cost
involved when learning a classification model.

In this article, we raise the question of whether IDCS classification methods
are sensitive to outliers and noise in the data. No prior work seems to have
addressed this question, which nonetheless is of significant practical importance
given the broad adoption and potential monetary impact of using biased
classification models for decision-making.

To address these shortcomings, we present the results of a series of experi-
ments to evaluate the robustness of IDCS classification methods with respect to
outlying costs in the data, which highlight the potential bias and vulnerability
of IDCS classification methods. We propose a robust approach to IDCS classifi-
cation by extending the existing cslogit approach (?). An important benefit is
the automatic and reliable detection of outliers in the data. These outliers may
not only spoil the resulting analysis (as illustrated in this article) but can also
contain valuable information. A robust analysis can thus provide better insight
into the structure of the data.

The following section outlines related work on IDCS learning and discusses
both cslogit and robustness. Next, in Section 3, a series of simulations on
synthetic data is presented that motivate the need for robust IDCS learning
which we develop in Section 4. Section 5 presents the results of a series of
experiments that illustrate the excellent performance of the proposed robust
IDCS learning method, denoted r-cslogit, in comparison with both logit and
cslogit. We conclude and present directions for future research in Section 6.
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2 Related work
Elkan (2001) introduces a learning paradigm where different misclassification
errors incur different penalties depending on the predicted and actual class,
with applications to, for example, detecting transaction fraud and credit scor-
ing. The benefits and costs of different predictions can be summarized in a
two-dimensional instance-dependent cost matrix with one dimension for the pre-
dicted value and another dimension for the ground truth. Given these benefits
and costs, each new instance should be assigned to the class that leads to the
lowest expected cost, which is calculated by means of conditional probabilities.

2.1 IDCS learning
For certain applications, benefits and costs depend not only on the class but
also on the instance itself. Therefore, instance-dependent cost-sensitive learning
considers a more detailed, lower level of granularity than class-dependent
costs. For these applications, using instance-dependent costs instead of class-
dependent costs leads to a decreased total misclassification cost (Brefeld, Geibel,
& Wysotzki, 2003; Vanderschueren et al., 2022).

Several instance-dependent cost-sensitive methodologies have been proposed
in the literature, with recent overviews given by Petrides and Verbeke (2022)
and Vanderschueren et al. (2022). Especially relevant to our work are method-
ologies that adjust the learning algorithm to incorporate instance-dependent
costs. Instance-dependent cost-sensitive variants have been proposed for several
common machine learning classifiers, such as boosting (Fan, Stolfo, Zhang, &
Chan, 1999; Zelenkov, 2019; ?), support vector machines (Brefeld et al., 2003),
decision trees (Bahnsen, Aouada, & Ottersten, 2015; Sahin, Bulkan, & Duman,
2013), and logistic regression (Bahnsen, Aouada, & Ottersten, 2014; ?).

2.2 Cslogit: a logistic regression-based IDCS method
In this work, we will build upon an instance-dependent cost-sensitive version of
logistic regression. Following ?, we will refer to this method as cslogit. Logistic
regression is a widely used method for binary classification tasks. To extend
logistic regression to its IDCS counterpart, Bahnsen, Aouada, Stojanovic,
and Ottersten (2016) and ? propose an objective function that combines
both cost-sensitivity and instance-dependent learning, resulting in instance-
dependent costs for optimization. The application of this objective function
yields significant improvements in terms of higher savings (Equation (5))
compared to cost-insensitive or class-dependent cost-sensitive models in the
context of, for example, credit scoring and transaction fraud detection.

2.3 Robustness
Classical nonrobust methods for regression, such as least squares or maximum
likelihood techniques, try to fit the model optimally to all the data. As a result,
these methods are heavily influenced by data outliers. This implies that outliers
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may bias the parameter estimates and confidence intervals and thus hypothesis
tests may become unreliable and/or uninformative. In contrast, robust methods
can resist the effect of outliers to avoid distorted results and false conclusions.
As an important benefit, they allow the automatic detection of outliers as
observations that deviate substantially from the robust fit. It is important
to note that the detected outliers are not necessarily errors in the data. The
presence of outliers may reveal that the data are more heterogeneous than
has been assumed and that it can be handled by the original statistical model.
Outliers can be isolated or may come in clusters, indicating that there are
subgroups in the population that behave differently. Many different approaches
to robust regression have been proposed and a good overview can be found
in reference works such as Huber and Ronchetti (2009), Maronna, Martin,
Yohai, and Salibián-Barrera (2006) and Rousseeuw and Leroy (1987). In the
context of generalized linear models (GLMs), various robust alternatives have
been presented, such as Cantoni and Ronchetti (2001), Bergesio and Yohai
(2011), Valdora and Yohai (2014), Ghosh and Basu (2016) and Štefelová, Alfons,
Palarea-Albaladejo, Filzmoser, and Hron (2021). Robust logistic regression
has been studied by Künsch, Stefanski, and Carroll (1989), Morgenthaler
(1992), Carroll and Pederson (1993), Bianco and Yohai (1996), Croux and
Haesbroeck (2003), Bondell (2005), Bondell (2008), Monti and Filzmoser (2021)
and Hosseinian and Morgenthaler (2011).

2.4 Preliminaries
The dataset D consists of N observed predictor-response pairs {(xi, yi)}Ni=1

and is used to train a binary classification model s(.). The costs Ci correspond
to the cost matrix defined in Table 1. This binary classification model predicts
a probability score si ∈ [0, 1] for each instance i based on the features xi.
Depending on the classification threshold t∗i , si is converted to a predicted
class ŷi ∈ {0, 1}. For models trained with AEC (Equation (3)), savings remain
relatively stable across different thresholding strategies (Vanderschueren et al.,
2022). Therefore, we use a default threshold of 0.5.

A binary logistic regression predicts a probability score that an observation
belongs to the positive class. This probability score is calculated by Equation
(1), where β0 is the bias term, β1 . . . βd the learned weights and xi are the
features of a particular observation i:

pi = p(xi) =
1

1 + e−z
where z = β0 + β1xi1 + β2xi2 + . . .+ βdxid. (1)

This probability score is then compared to a threshold to categorize each of these
observations into classes. The objective function of a logistic regression is the
likelihood that is maximized or the cross-entropy loss that is minimized. For a
single sample with true label yi ∈ {0, 1} and a probability score pi = P (Y = 1),
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the cross-entropy loss is presented by Equation (2):

Llog(yi, pi) = −
(
yi log(pi) + (1− yi) log(1− pi)

)
. (2)

Note that this equation does not take into account any costs. Because this
objective function assigns equal weights to each misclassification, it does not
necessarily correspond to the underlying business problem where costs are
to be minimized. The reason for this is twofold: misclassification costs are
different per class and per instance. The real business objective is to minimize
the average expected total cost of the binary classifier.

We build upon the instance-dependent cost-sensitive logistic (cslogit) model
as proposed by Bahnsen et al. (2016) and ?. Cslogit minimizes an instance-
dependent cost-sensitive objective function corresponding to the real business
objective of minimizing costs in domains such as customer churn predic-
tion, credit scoring, and direct marketing (Claude Sammut, 2017; Thai-Nghe,
Gantner, & Schmidt-Thieme, 2010).

Equation (3) shows the average expected cost (AEC), the cost-sensitive
objective function that is used by cslogit, given a symmetric cost matrix, as
shown in Table 1:

AEC(s(D)) = 1

N
E[Cost(s(D)) |X]

=
1

N

N∑
i=1

(
yi[siCi(1 | 1) + (1− si)Ci(0 | 1)]

+ (1− yi)[siCi(1 | 0) + (1− si)Ci(0 | 0)]
)

=
1

N

N∑
i=1

(
Ai(yi(1− si) + (1− yi)si)

)
.

(3)

In Equation (3), each observation i is a pair of d features xi = (xi1, ..., xid)
and a binary response label yi ∈ {0, 1}.

Table 1: Cost matrix for cslogit

Actual 0 Actual 1

Predicted as 0 Ci(0 | 0) = 0 Ci(0 | 1) = Ai

Predicted as 1 Ci(1 | 0) = Ai Ci(1 | 1) = 0

Across multiple models, the total cost as a metric is not unambiguously inter-
pretable, as datasets with high instance-dependent costs might have a higher
total misclassification cost but still have a better relative score. Proceeding
with the idea of normalizing the total classification costs of a model presented
in Whitrow, Hand, Juszczak, Weston, and Adams (2009), Bahnsen et al. (2014)
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introduce a more interpretable metric: Savings. This metric represents the
relative improvement of the cost of a newly proposed model, Cost(s(D)), com-
pared to the cost of using an empty model that assigns all instances to a single
class, Costempty(D). Costempty(D) is calculated by taking the minimum of the
costs incurred when classifying all instances as either belonging to the negative
or positive class:

Costempty(D) = min {Cost (s0(D)) , Cost (s1(D))} . (4)

Using the Costempty(D) of an empty model as a factor to normalize total costs,
Savings of the model s(D) are calculated by Equation (5):

Savings(s(D)) = 1− Cost(s(D))
Costempty(D)

. (5)

3 Sensitivity analysis
Data can contain outliers in terms of misclassification costs due to various
reasons, such as missing data, invalid observations, or typos. By incorporating
instance-dependent costs in the learning algorithm, outliers in these misclas-
sification costs could potentially have a large impact on instance-dependent
cost-sensitive learning methodologies such as cslogit. Therefore, we test the
sensitivity of cslogit to these outliers and examine to what extent this is a
shortcoming of this method.

3.1 Simulation setup
We analyze the sensitivity to outlying costs through a series of simulations on
synthetic data. The different synthetic datasets all share the following properties.
Each observation is visualized by a dot, with the size of the dot corresponding
to its misclassification cost. The positive class is presented in red and the
negative class in blue. Each observation has, other than its misclassification cost
and label, two features: X1 and X2. X1 is the feature for the misclassification
cost A. For the positive class, this cost is positively related to X1. Cases of
the negative class have a negative relation between X1 and their cost. The
underlying function is given by Equation (6):

A =

{
20 + 2X1 for the positive class,
20− 2X1 for the negative class. (6)

Panel (b) and (c) in Figure 1 visualize this equation.
X2 is the feature that determines the two distributions of classes 0 and

1. The two class distributions are a 2-dimensional Gaussian, sharing the
same standard deviations. Observations from the negative class are sam-
pled from N(µ0, σ

2
0 , ν0, τ

2
0 , ρ) and observations from the positive class from

N(µ1, σ
2
1 , ν1, τ

2
1 , ρ).
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Robust IDCS - ADAC 2022/Img/Toy Examples/setting/class distribution.png

(a) Class distribution

Robust IDCS - ADAC 2022/Img/Toy Examples/setting/contour plot amount class 0.PNG

(b) Generated costs: Neg-
ative class

Robust IDCS - ADAC 2022/Img/Toy Examples/setting/contour plot amount class 1.PNG

(c) Generated costs: Posi-
tive class

Fig. 1: The setup for synthetic data. Panel (a) displays the distri-
bution of the negative and positive class, dependent on X2. Panels (b)
and (c) represent the misclassification costs of observations from the
negative and positive classes as a linear function of X1, generated by
Equation (6). The three panels all show a sample of size 50 per class.

µ0 and µ1 are both equal to 0, while ν0 = −5 and ν1 = 5. The variances
σ2
0 , τ

2
0 , σ

2
1 and τ21 are equal to 4. As there is no correlation between the two

dimensions X1 and X2, ρ is equal to 0. The cases of the positive class have
a higher X2 value than the cases of the negative class. Panel (a) in Figure 1
displays these class distributions by which data are generated.

Given these settings for instance-dependent costs and class distribution,
observations of the negative class with a high associated cost are expected to be
located in the third quadrant and observations of the positive class with a high
associated cost in the first quadrant. The symmetric cost matrix used for the
examples on synthetic data is presented in Table 1 as introduced in Section 2.4.

3.2 Results
Within each setting, two classifiers are compared: logit and cslogit. They are
both linear classifiers and propose a distinctly different decision boundary based
on the training data. Since the data are only two-dimensional, these decision
boundaries can be visually represented by lines. The logit and cslogit model’s
proposed boundaries are respectively coloured in red and blue. The normal
behavior of both models in the default settings of examples on synthetic data
is visualized in Panel a of Figure 2.
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Robust IDCS - ADAC 2022/Img/Toy Examples/toy example 1 - two methods.png

(a) Example of synthetic data: Optimal
behavior of logit and cslogit

Robust IDCS - ADAC 2022/Img/Toy Examples/toy example 2 - two methods.png

(b) Example of synthetic data: Influence
of outliers on cslogit

Robust IDCS - ADAC 2022/Img/Toy Examples/toy example 3 - two methods.png

(c) Example on synthetic data: Influence
of noise on cslogit

Fig. 2: The instability of cslogit’s decision boundary. This figure
motivates the need for a robust version of cslogit. Three examples
of synthetic data where logit and cslogit are tested are shown. Panel
a shows the normal behavior of cslogit and logit in the default case.
Panel b displays the case where a large outlier is added. The blue
decision boundary of cslogit shifts, while the red decision boundary of
logit remains stable. Panel c displays the case where random noise is
added to the misclassification costs. The decision boundary of cslogit
shifts even further, resulting in an almost perpendicular boundary in
comparison with Panel a. We further elaborate on the exact setting of
the examples on synthetic data in Section 5.1.
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4 Robust IDCS
To overcome the sensitivity of instance-dependent cost-sensitive classifiers to
outlying costs, we introduce a three-step framework to make IDCS methods
robust by detecting outliers and adapting their cost matrix. Hence, the final
model will be trained using a less volatile and more rigid set of costs. The
resulting robust classification model will also yield automatic outlier detection.
The concrete implementation of this framework is represented by algorithm 1.

Algorithm 1 Robust IDCS
Input: D = {(Xi, Ai, yi) : i = 1, . . . , N} where Xi is a feature vector, Ai is
the associated misclassification cost and yi ∈ {0, 1} is the response label of an
observation i.
Output: Robust IDCS predictions ŷ of label y

1: Step 1: Detect outliers.
2: Train a linear regression model with Huber loss so that: Â = f(X, y)
3: Initialize set Soutlier := ∅
4: for each observation i do
5: if absolute value of the standardized residuals > 3 then
6: add observation (Xi, Ai, yi) to set Soutlier
7: remove observation (Xi, Ai, yi) from D
8: end if
9: end for

10: Step 2: Impute instance-dependent misclassification cost.
11: for each observation i in Soutlier do
12: replace Ai with Âi
13: end for
14: D′ := D ∪ Soutlier
15: Step 3: Apply the IDCS method.
16: Apply cslogit to the new set D′.

To estimate the misclassification costs of observations in a robust manner
in step 1, a regression with Huber loss is applied. A formalization of robustness
in statistics started with the work of Huber (1964). Interestingly, his ground-
breaking results and well-known loss function are still widely used today in the
field of statistics and machine learning. The Huber loss function is defined by
Equation (7). This results in a regression that is less sensitive to outliers than
traditional regression methods, which often use a squared error loss.

Lδ(a) =

{
1
2a

2 for |a| ≤ δ,
δ
(
|a| − 1

2δ
)

otherwise. (7)

Next, to detect outliers, we compare the absolute value of the standardized
residuals with a cutoff value of a normal distribution (Rousseeuw & Hubert,
2011). If this value exceeds 3, we consider it an outlier and add it to the initially
empty set Soutlier.
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By doing so, the costs A that are outliers, conditional on their features
X and label y, are detected. In step 2, the observed outlying costs A of all
observations in Soutlier are imputed with their estimated counterpart Â. This
results in a robust cost matrix (Table 2).

Table 2: Cost matrix for r-cslogit

y = 0 y = 1

ŷ = 0 Ci(0 | 0) = 0 Ci(0 | 1) =
{

Âi = f(Xi, yi) if outlier,
Ai otherwise

ŷ = 1 Ci(1 | 0) =
{

Âi = f(Xi, yi) if outlier,
Ai otherwise

Ci(1 | 1) = 0

5 Results
This section discusses the performance of logit, cslogit and the novel r-cslogit on
synthetic data and tests their sensitivity on real data with additional outliers.

5.1 Synthetic data
In this subsection, we reuse the examples on synthetic data introduced in
Section 3.1 to demonstrate how the possible shortcomings of cslogit can be
countered by deploying the more robust r-cslogit. Figure 4 displays the decision
boundaries of logit, cslogit and r-cslogit in red, blue and green, respectively.

Synthetic data: Three settings. The basic setting of the examples on
synthetic data in Panel a is the same as explained in Subsection 3.1. In Panel b,
an additional outlier of the positive class is added in the third quadrant with a
cost equal to 400. The robust method first estimates its cost with a linear Huber
regression to be 13.75 and flags it as outlier. Next, the cost for this instance of
400 is changed to its estimated cost of 13.75. In Panel c, we add noise to the
costs. Hence, the misclassification costs are generated by Equation (8), where
the noise εi is sampled from a lognormal distribution with parameters µ = 2
and σ = 1.5, as shown in Figure (3) and Equation (9).

Ai =

{
20 + 2X1 + εi for the positive class,
20− 2X1 + εi for the negative class. (8)

f(x; µ, σ) =
1

xσ
√
2π

exp

(
− (lnx− µ)2

2σ2

)
with x > 0 and σ > 0 (9)
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Robust IDCS - ADAC 2022/Img/Toy Examples/setting/lognormal distribution.png

Fig. 3: Lognormal distribution with µ = 2 and σ = 1.5.

Description of results. Figure 4 visualizes the decision boundaries of the
three models. In Panel a, the decision boundaries of cslogit and r-cslogit overlap
as regression with Huber Loss can perfectly predict the underlying function of
associated misclassification costs as a function of X1 in the absence of noise
or outliers. Panel b displays the case where one outlier is added. The decision
boundary of the logit model is not affected by the size of misclassification costs.
Hence, it is not influenced by the outlier and remains unchanged, demonstrating
normal behavior as defined before. The blue decision boundary of the cslogit
model is strongly influenced by outliers. The objective function takes into
account the full misclassification costs of the observations in the training set,
including the excessive outliers. As a consequence, the behavior of the cslogit
model has been completely disrupted. This is strongly in conflict with its normal
behavior, as the decision boundary is almost tilted by a quarter turn. This tilted
decision boundary results in poor predictive classification power, making the
cslogit model to be of inferior quality. The green decision boundary of r-cslogit
remains largely unchanged, as it is robust against the single added outlier.

Performance metrics are summarized in Tables 3 to 5. We consider the cost-
sensitive metric savings introduced in Section 2.4 and cost-independent metrics
F1 and AUC. r-cslogit outperforms logit and cslogit in terms of savings when we
add noise and an outlier. Moreover, the performance in terms of savings remains
unchanged after adding an outlier. In the default case of setting one, r-cslogit
and cslogit are equivalent, as they make the exact same predictions. When
considering cost-insensitive metrics such as F1 and AUC, r-cslogit performs
best. In terms of AUC, classical logistic regression performs best.

5.2 Sensitivity analysis on real data
In this subsection, we analyze the sensitivity of the three methods in an experi-
ment with real data where we add an additional outlier, gradually increasing
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Table 3: Results: Synthetic example - Default case

logit cslogit r-cslogit

Savings 0.4461 0.8495 0.8495
F1 0.7826 0.7499 0.7499
AUC 0.7987 0.7616 0.7616

Table 4: Results: Synthetic example with one outlier

logit cslogit r-cslogit

Savings 0.4461 0.6260 0.8495
F1 0.7826 0.7857 0.7616
AUC 0.7987 0.7745 0.7499

Table 5: Results: Synthetic example with noise

logit cslogit r-cslogit

Savings 0.4461 0.0852 0.5069
F1 0.7826 0.7346 0.8023
AUC 0.7987 0.7431 0.8172

in size. To add outliers, we randomly select an observation and change its class
label and instance-dependent misclassification cost.

This setup is similar to the second setup with synthetic data as presented
in the previous subsection. The performance is measured by the cost-sensitive
metric savings as described before as well as the cost-insensitive F1-score and
AUC. The measurement of performance makes use of five-fold cross-validation
with a stratified split on class distribution that is repeated twice with a different
random initialization.

Description of the dataset. The dataset on which the three methods
are tested is the Kaggle Credit Card Fraud Detection dataset (ULB, 2018).
The dataset dates from September 2013 and contains transactions made by
European credit-cardholders. A total of 492 out of 284,807 transactions are
fraudulent, resulting in a high class imbalance. The numerical input features
V 1, V 2, . . . V 28 are the results of a PCA transformation to anonymize the
dataset. Time and Amount have not been transformed. The feature Time is
not taken into consideration in this experiment and is therefore dropped in the
preprocessing phase. The feature Amount is the transaction amount, which is
of high importance in cost-sensitive instance-dependent learning and translates
into our setting as the instance-dependent misclassification cost. The feature
Class ∈ {0, 1} indicates whether a transaction is fraudulent or not.

Results. The results are visualized in Figure 5. Since the logit model is not
cost-sensitive, its performance remains constant after adding an outlier. The
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performance of cslogit is strongly disrupted after the cost of the outlier is
set to 1 M or larger. This corresponds with the shift of the two-dimensional
linear decision boundary, as shown by the findings of the examples on synthetic
data. Even though the dataset contains over 280,000 instances, a single outlier,
albeit a large outlier, can unhinge the cslogit method. When increasing the
misclassification cost of a single outlier, the performance of r-cslogit remains
stable. It is certainly more robust to this additional noise than its nonrobust
counterpart, as the individual outlier is detected and its cost is imputed with an
estimated, expected cost. The shaded areas in Figure 5 represent the variability
of performance over different folds in cross-validation. The variability of the logit
model remains constant, as it is not cost-sensitive. In contrast to the variability
of cslogit, which increases drastically, the variability in the performance of
r-cslogit remains stable.

6 Conclusion
Instance-dependent cost-sensitive (IDCS) learning methods take into account
variable misclassification costs across instances in the training data in learning a
classification model. This allows for optimizing the performance of the resulting
classification model in terms of the misclassification costs rather than the
classification accuracy.

In this article, we present the results of a series of experiments on synthetic
data to demonstrate the sensitivity of IDCS methods to outliers and noise in the
data. We show that the resulting classification model may be highly sensitive
to outlying instance-dependent costs, in learning an instance-dependent cost-
sensitive classification model. Consequently, using existing cost-sensitive models
in the presence of noise or outliers can result in large misclassification costs.

To address this potential vulnerability, we propose a generic, IDCS-method-
independent, three-step framework to develop robust IDCS methods with
respect to the effects of random variability and noise. In the first step, instances
with outlying misclassification costs are detected. In a second step, outlying
costs are corrected in a data-driven way. In a third step, an IDCS learning
method is applied using the adjusted instance-dependent cost information.

This generic framework is subsequently applied in combination with cslogit,
which is a logistic regression-based IDCS method, to obtain its robust version
named r-cslogit. The robustness of this approach is introduced in the first two
steps of the generic framework by making use of robust estimators to detect
and impute outlying costs of individual instances. The newly proposed r-cslogit
method is tested on synthetic and semi-synthetic data. The results show that
the proposed method is superior in terms of cost savings when compared to its
non-robust counterpart for variable levels of noise and outliers.
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Robust IDCS - ADAC 2022/Img/results synthetic data/toy example 1 - three methods.png

(a) Example on synthetic data: Default
case

Robust IDCS - ADAC 2022/Img/results synthetic data/toy example 2 - three methods.png

(b) Example of synthetic data: One outlier

Robust IDCS - ADAC 2022/Img/results synthetic data/toy example 3 - three methods.png

(c) Example of synthetic data: Additional
noise

Fig. 4: Superiority of r-cslogit. The red decision boundary of logit
remains unchanged, as it is not cost-sensitive. The blue decision bound-
ary of cslogit differs strongly per example, as the model is prone to
outliers and noise. The green decision boundary of r-cslogit is stable
against outliers and handles noise in misclassification costs quite well.
In Panel a, the blue and green decision boundaries coincide.
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Robust IDCS - ADAC 2022/Img/results semi-synthetic data/Performance in function of outlier size.png

Fig. 5: Sensitivity analysis on real data.
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