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Abstract

Normalizing flows are objects used for modeling complicated probability density functions, and have

attracted considerable interest in recent years. Many flexible families of normalizing flows have been de-

veloped. However, the focus to date has largely been on normalizing flows on Euclidean domains; while

normalizing flows have been developed for spherical and other non-Euclidean domains, these are generally

less flexible than their Euclidean counterparts. To address this shortcoming, in this work we introduce a

mixture-of-normalizing-flows model to construct complicated probability density functions on the sphere.

This model provides a flexible alternative to existing parametric, semiparametric, and nonparametric, finite

mixture models. Model estimation is performed using the expectation maximization algorithm and a variant

thereof. The model is applied to simulated data, where the benefit over the conventional (single component)

normalizing flow is verified. The model is then applied to two real-world data sets of events occurring on the

surface of Earth; the first relating to earthquakes, and the second to terrorist activity. In both cases, we see

that the mixture-of-normalizing-flows model yields a good representation of the density of event occurrence.

1 Introduction

Finite mixture models are widely used to model and analyze heterogeneous data. Of the several variants

that appear in the literature, the parametric finite mixture models are the most popular; efficient estimation

strategies to fit them to data are widely available, and their theoretical properties are well understood. It is

common to model the mixture components using flexible density functions; for example both finite mixtures

of skew normal densities as well as finite mixtures of t-densities have been used (Frühwirth-Schnatter and

Pyne, 2010; Lin et al., 2014; Hejblum et al., 2019), while on the sphere both von Mises-Fisher densities and

Kent densities have been used (Banerjee et al., 2005; Peel et al., 2001; Gopal and Yang, 2014) as building

blocks. The mixture component densities of these models are reasonably flexible, however they still rely

on strong model assumptions that may not be satisfied in some practical settings. Semiparametric and

nonparametric finite mixture models have been proposed in order to relax the strong assumptions implicit

to fully parametric mixture models. The semiparametric and nonparametric models replace one or more
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of the mixture components by a nonparametric density with possible constraints such as symmetry and

log-concavity (Chang and Walther, 2007; Hunter et al., 2007; Bordes and Vandekerkhove, 2010; Levine

et al., 2011). The process of fitting semiparametric and nonparametric mixture models tends to be more

computationally intensive than that of fitting parametric ones.

An alternative, straightforward mechanism for modeling complicated probability distributions is the

normalizing flow. Normalizing flows only require the specification of a simple “base” distribution (e.g., a

standard normal or a uniform distribution) and a series of invertible and differentiable transformations (see,

e.g., Papamakarios et al., 2021). The density of a sample can be evaluated by computing the product of the

density of the transformed sample under the base distribution and the associated change in volume induced

by the series of transformations. The latter term is the product of the absolute Jacobian determinants for

each transformation. Many flexible families of normalizing flows on the Euclidean space have been developed

(Kobyzev et al., 2020), some of which exhibit a “universal property” (Huang et al., 2018; Jaini et al., 2019;

Ng and Zammit-Mangion, 2023), in the sense that they can be used to approximate a large class of density

functions arbitrarily well.

Despite their popularity and efficacy, normalizing flows have a weakness: they require large and/or deep

architectures to approximate complex target distributions with arbitrary precision (Cornish et al., 2020). To

address this shortcoming, Izmailov et al. (2020) proposed to model the reference density function as a mixture

of Gaussian density functions with unknown mean and covariance parameters, while Dinh et al. (2019)

proposed a framework involving domain partitioning and locally invertible functions. In the latter approach,

the transport map is no longer required to be fully invertible but only piecewise invertible, leading to greater

flexibility. Ciobanu (2021) took a different approach, and proposed using a mixture-of-normalizing-flows

model, where each component of the mixture model is a density parameterized by a normalizing flow with

its own parameters. Pires and Figueiredo (2020) proposed a variational mixture-of-normalizing-flows model,

which combines the flexibility of normalizing flows with the ability to exploit class-membership structure.

Model fitting is done via optimization of a variational objective, for which the variational posterior over

class membership latent variables is parameterized by a neural network. While normalizing flows have been

extensively studied and utilized on the Euclidean domain, there are several cases where the data should be

treated and analyzed as elements of a non-Euclidean manifold. A popular example is directional statistics

which involves the analysis of data on the unit sphere, and this is the case we focus on in this work. Spherical

data arise in many application domains including gene expression analysis (Banerjee et al., 2005), protein

bioinformatics (Mardia et al., 2022), and astronomy (Jupp, 1995). While normalizing flows on the sphere

and more general manifolds have been considered (e.g., Gemici et al., 2016; Rezende et al., 2020), they are

generally less flexible than their Euclidean counterparts. This is a direct consequence of the difficulties that

arise when working on arbitrary manifolds with complex geometric structure, which in turn leads to both

modeling and computational challenges.

To address these limitations, in this work we propose adapting the mixtures-of-normalizing-flows models

that have been developed for the Euclidean domain (Pires and Figueiredo, 2020; Ciobanu, 2021) for use

on a widely used non-Euclidean manifold: the sphere. Specifically, we develop a mixture modeling frame-

work where each mixture component is a spherical normalizing flow. Our spherical normalizing flows are

constructed using exponential map flows (Sei, 2013; Rezende et al., 2020; Ng and Zammit-Mangion, 2022);
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however, the proposed framework can be adapted to any spherical normalizing flow. We give the requisite

background on normalizing flows on Euclidean spaces and spheres in Section 2. In Section 3 we then present

the proposed mixture modeling framework along with the expectation-maximization (EM) algorithm (and

a variant thereof) for model estimation, which we implement efficiently using mini-batch stochastic gradi-

ent descent. In this section we also briefly discuss approaches for mixture-components-order selection. We

showcase the proposed methodology through a simulation study, density estimation of earthquake events,

and density estimation of terrorist activity on the surface of Earth in Section 4. Section 5 discusses potential

future research directions and concludes.

2 Background

Given two probability measures µ0(·) and µ1(·) defined on spaces X and Z, respectively, a transport map

T : X → Z is said to push forward µ0(·) to µ1(·) if, for any Borel subset B ⊂ Z,

µ1(B) = µ0(T−1(B)), (1)

where the inverse T−1(·) is set valued; specifically, T−1(z) = {x ∈ X : T (x) = z}. For an injective transport

map T (·), (1) can be re-formulated as µ0(A) = µ1(T (A)), for any Borel subset A ⊂ X . Suppose that the

measures µ0(·), µ1(·) are absolutely continuous with respect to the Lebesgue measure, with densities f0(·)

and f1(·), respectively. If the map T (·) is bijective with a differentiable inverse T−1(·), we obtain the familiar

change-of-variables formula

f0(x) = f1(T (x))|det(∇T (x))|, x ∈ X , (2)

which expresses a complicated probability density f0(·) in terms of a simpler density f1(·) and a transport map

T (·). The reference density f1(·) typically has no unknown parameter, and the multivariate standard normal

density and the uniform density on a compact domain are common choices. Marzouk et al. (2016) discuss

various strategies for parameterizing the transport map T (·), which has also been done using deep learning

models (e.g., Papamakarios et al., 2017; Kobyzev et al., 2020). It has been proved that under mild conditions

arbitrarily complex probability density functions can be well approximated by neural network based transport

maps (Huang et al., 2018; Ng and Zammit-Mangion, 2023). Recent approaches introduce more flexibility by

defining T (·) as a composition of multiple transformations, that is, as T (·) ≡ T (K)◦· · ·◦T (1)(·), where T (k)(·)

transforms z(k−1) into z(k), with z(0) ≡ x and z(K) ≡ z. The composition of multiple transformations is

called a normalizing flow in the machine learning literature. Given two bijective maps T (1)(·), T (2)(·) with

differentiable inverses, their composition T (2) ◦ T (1)(·) remains bijective with a differentiable inverse. The

Jacobian determinant of the resulting composition remains computationally tractable since, by the chain

rule,

det(∇(T (2) ◦ T (1)(x))) = det(∇T (1)(x))det(∇T (2)(T (1)(x))), x ∈ X .

While normalizing flows have largely been studied and used in Euclidean spaces, data are often naturally

described on Riemannian manifolds such as spheres and tori. A number of normalizing flow techniques for

Riemannian manifolds have been proposed; some of these, such as the technique proposed by Gemici et al.

(2016), involve projecting to the Euclidean space before projecting back to the original manifold. These
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approaches, however, lead to singularities if the manifold is not diffeomorphic to Rd, as in the case of the

sphere. Projections can be avoided by constructing normalizing flows directly on the manifold of interest.

Rezende et al. (2020) proposed constructing normalizing flows on spheres and tori using Möbius transforma-

tions and spherical splines. Mathieu and Nickel (2020) proposed constructing continuous normalizing flows

for Riemannian manifolds by solving ordinary differential equations on manifolds. Here, we focus on the

exponential map flow, which was first proposed by Sei (2013), then extended by Rezende et al. (2020), and

then adapted to a (spherical) spatial point process setting by Ng and Zammit-Mangion (2022).

Let φ(·) be a wrapping potential function (see Sei (2013) for a definition), and let expx(·) denote the

exponential map; then expx(∇φ(x)) is a valid exponential map flow for x ∈ Sd−1. Let p ∈ Z+, βi > 0,mi ∈

Sd−1, and ηi > 0 for i = 1, . . . , p, such that
∑p
i=1 ηi = 1. The wrapping potential function we use in this

work is given by (Rezende et al., 2020; Ng and Zammit-Mangion, 2022)

φ(x) =

p∑
i=1

ηi
βi
eβi(cos d(x,mi)−1), x ∈ Sd−1, (3)

where βi,mi and ηi, i = 1, . . . , p, are model parameters that need to be estimated. For an intuitive de-

scription of exponential maps and their behavior on the sphere, see Ng and Zammit-Mangion (2022). A

normalizing flow on the sphere can be constructed by stringing together several exponential map flows of

the form expx(∇φ(x)) through composition.

We note that while we restrict ourselves to the sphere, Cohen et al. (2021) has generalized the exponential

map flow to arbitrary Riemannian manifolds. While the parameterization of the normalizing flows in Cohen

et al. (2021) leads to a universal property where arbitrary c-concave functions on compact manifolds can be

approximated arbitrarily well, their construction leads to a piecewise smooth map which is not differentiable

everywhere, and hence difficult to fit in practice.

3 Methodology

3.1 Mixture-of-normalizing-flows model for spherical data

We consider the case where the target measure µ0(·) and reference measure µ1(·) admit densities with respect

to the Lebesgue measure on Sd−1, and model the target density as a mixture of G component densities. Let

f0,g(·) be the g-th mixture component of the target density of interest, and τg the corresponding weight,

where τg ≥ 0, g = 1, . . . , G, and
∑G
g=1 τg = 1. We model f0(·) as

f0(x) =

G∑
g=1

τgf0,g(x), x ∈ Sd−1,

where each f0,g(·), g = 1, . . . , G, is constructed using a normalizing flow. For ease of exposition we consider

the case where the normalizing flows have the same functional form, but different parameters; that is, the

case where f0,g(·) ≡ f(· ; Θg), g = 1, . . . , G, where Θg is the set of parameters corresponding to the g-th

component. Let the reference measure for each component be the uniform density. From (2) we then have

that

f0,g(x) ≡ f(x; Θg) ∝ |det(∇T (x; Θg))|, x ∈ Sd−1,
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where for S2 the constant of proportionality is equal to 1
4π

, and where we have explicitly notated the

dependence of the transport map T (·) on the component-specific parameters Θg. Now, consider a set

of K transport maps, T (1)(· ; Θg,1), . . . , T (K)(· ; Θg,K) parameterized using parameters collected in Θg ≡

{Θg,1, . . . ,Θg,K}. We model the transport map for each mixture component as a composition of K maps:

T (x; Θg) = T (K) ◦ · · · ◦ T (1)(x; Θg), g = 1, . . . , G,

where each T (k)(· ; Θg,k) = expx(∇φ(x; Θg,k)) is an exponential map with wrapping potential function of

the form (3). Specifically, this wrapping potential function is given by

φ(x; Θg,k) =

p∑
i=1

η
(g,k)
i

β
(g,k)
i

eβ
(g,k)
i (cos d(x,m

(g,k)
i )−1), x ∈ Sd−1. (4)

Therefore, for g = 1, . . . , G, Θg ≡ {β(g,k)
i ,m

(g,k)
i , η

(g,k)
i : k = 1, . . . ,K; i = 1, . . . , p} are the model parameters

for the g-th mixture component that together construct a composition of K radial flows, where the k-th

map in the composition has model parameters {β(g,k)
i ,m

(g,k)
i , η

(g,k)
i : i = 1, . . . , p}. Note that since we are

assuming that each mixture component has the same functional form, we are fixing the number of layers

K and the number of basis functions p that are used for each mixture component; this choice is made for

convenience and is not a model requirement. In our previous work (Ng and Zammit-Mangion, 2022), we

showed that a small value of p (i.e., p = 1 or p = 2) and a moderate to large value of K (between 20 and 40)

led to good performance in practice; we found that this was the case with our mixture-of-normalizing-flows

model as well (see Section 4).

Let Θ ≡ {Θ1, . . . ,ΘG} and τ ≡ (τ1, . . . , τG)′. The problem of density estimation on the sphere using our

mixture-of-normalizing-flows model reduces to the problem of estimating Θ and τ from data. We do this

using the EM and related algorithms, that are often used when fitting mixture models.

3.2 Parameter estimation using the EM Algorithm

In this section we present both the standard EM algorithm, as well as an adaptation of it that is often

referred to as the hard EM algorithm (e.g., Samdani et al., 2012). Both algorithms could be used to fit the

mixture-of-normalizing-flows model; however the hard EM algorithm is more computationally efficient and

offers a solution to the problem of determining the order (i.e., the number of components) of the mixture.

3.2.1 The standard (soft) EM algorithm

Given N observations X ≡ (x1, . . . ,xN ) where each xj ∈ Sd−1, j = 1, . . . , N , the likelihood function for the

unknown parameters is given by

L(Θ, τ ; X) =

N∏
j=1

(
G∑
g=1

τgf(xj ; Θg)

)
. (5)

To facilitate estimation with the EM algorithm, we introduce the latent variables Z ≡ (z1, . . . , zN ) that

denote the latent assignment of observations to mixture components, where zj ≡ (zj,1, . . . , zj,G)′ and zj,g = 1

if observation j belongs to the g-th mixture component and zj,g = 0 otherwise (see, e.g., Bishop, 2006,
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Ch. 9). Then, the so-called complete-data likelihood function is given by

Lc(Θ, τ ; X,Z) =

N∏
j=1

G∏
g=1

(
τgf(xj ; Θg)

)zj,g . (6)

Taking logarithms of (6) we obtain the complete data log-likelihood function:

`c(Θ, τ ; X,Z) ≡ logLc(Θ, τ ; X,Z) =

N∑
j=1

G∑
g=1

zj,g
(

log τg + log f(xj ; Θg)
)
. (7)

The EM algorithm can now be readily applied to predict the latent mixture component assignments Z in

the E-step, and to estimate the unknown model parameters Θ and τ in the M-step. At the (t+1)-th iteration,

the E-step computes π̂
(t+1)
j,g ≡ P(zj,g = 1 | xj , Θ̂(t), τ̂ (t)), that is, the probability of the latent assignment for

each observation when conditioning on the data xj and the estimates of the model parameters at the t-th

iteration (Θ̂(t) and τ̂ (t)):

π̂
(t+1)
j,g =

τ̂
(t)
g f(xj ; Θ̂

(t)
g )∑G

h=1 τ̂
(t)
h f(xj ; Θ̂

(t)
h )

, j = 1, . . . , N ; g = 1, . . . , G. (8)

We collect these latent probability parameters in the N ×G matrix Π̂(t+1).

At the (t+ 1)-th iteration, the M-step maximizes the conditional expectation of the complete data log-

likelihood in (7) with respect to the parameters Θ and τ , where the expectation is taken with respect to the

conditional distribution of Z given the observations X and parameter estimates Θ̂(t), τ̂ (t). This expectation,

which we denote by Q({Θ, τ}; {Θ̂(t), τ̂ (t)}), is given by

Q({Θ, τ}; {Θ̂(t), τ̂ (t)}) = E
(
`c(Θ, τ ; X,Z) | X, Θ̂(t), τ̂ (t)) (9)

=

N∑
j=1

G∑
g=1

π̂
(t+1)
j,g

(
log τg + log f(xj ; Θg)

)
. (10)

The update for τg, obtained by maximizing (10) with respect to τg, can be derived analytically for g =

1, . . . , G:

τ̂ (t+1)
g =

∑N
j=1 π̂

(t+1)
j,g

N
, g = 1, . . . , G. (11)

The optimization of the conditional expected complete data log-likelihood (10) with respect to Θ does not

result in a closed-form update rule for Θ̂(t+1), and therefore the optimization needs to be done numerically.

As with τ , the parameters Θ for each mixture component can be updated separately. Specifically, we define

Qg(Θg; Θ̂(t)
g ) ≡

N∑
j=1

π̂
(t+1)
j,g log f(xj ; Θg). g = 1, . . . , G, (12)

and optimize Qg(Θg; Θ̂
(t)
g ) with respect to Θg, g = 1, . . . , G. To facilitate this step we use mini-batch

stochastic gradient descent (SGD) with automatic differentiation (AutoDiff) in PyTorch (Paszke et al.,

2017). Mini-batch SGD updates model parameters using small batches of data rather than the entire

dataset. Hence, each step performs a descent based on an unbiased estimate of the gradient rather than the

exact gradient; however it is more computationally efficient than exact gradient descent, and the introduced
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Algorithm 1 Soft (standard) EM Algorithm
Input: G, {xj}Nj=1

Output: Estimated parameters Θ̂, τ̂ , and the estimated component probabilities, Π̂

Initialise {Θ̂(0)
g , τ̂

(0)
g }Gg=1

Set t = 0

do
E-Step

for j = 1, . . . , N do
for g = 1, . . . , G do

Compute π̂
(t+1)
j,g according to (8)

end for
end for

M-Step

for g = 1, . . . , G do

Compute τ̂
(t+1)
g according to (11)

Find Θ̂
(t+1)
g by optimizing (12) with respect to Θg using SGD with AutoDiff

end for

t← t+ 1
while Not Converged

Π̂← Π̂(t)

τ̂ ← τ̂ (t)

Θ̂← Θ̂(t)

stochasticity helps to avoid local optima. As in Ng and Zammit-Mangion (2022), we found that SGD works

very well with this model. Once estimates for Θg, g = 1, . . . , G, are found, the E-step is repeated, followed

by the M-step again, and so on until convergence. We summarise this EM algorithm, which we term the

soft EM algorithm to contrast it with the hard EM algorithm that we discuss next, in Algorithm 1.

3.2.2 The hard EM algorithm

The hard EM algorithm, also known as the classification maximization algorithm, is a practical alternative to

the standard (soft) EM algorithm. In the soft EM algorithm, the E-step is used to find the full conditional

distribution of zj,g, for j = 1, . . . , N and g = 1, . . . , G. In the hard EM algorithm, this distribution is

summarized as a Kronecker delta function centered at the mode of the true conditional distribution. That

is, at the (t+ 1)-th iteration, the E-step approximates P(zj,g = 1 | xj , Θ̂(t), τ̂ (t)) ≈ I(zj,g = ẑ
(t+1)
j,g ), where

ẑ
(t+1)
j,g =


1 g = argmax

g′
{π̂(t+1)

j,g′ }
G
g′=1

0 otherwise,

(13)

for j = 1, . . . , N , and g = 1, . . . , G, where π̂
(t+1)
j,g is defined in Equation (8). We collect these estimated

mixture component assignments in the N ×G matrix Ẑ(t+1). The M-step is done similarly to the standard

EM algorithm, except that now expectations in (9) are taken with respect to this degenerate conditional

distribution rather than the full (true) conditional distribution. For the M-step, the update for τ̂ becomes

τ̂ (t+1)
g =

N
(t+1)
g

N
, g = 1, . . . , G, (14)
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Algorithm 2 Hard EM Algorithm
Input: G, {xj}Nj=1,

Output: Estimated parameters Θ̂, τ̂ , and the estimated mixture component assignments, Ẑ

Initialise {Θ̂(0)
g , τ̂

(0)
g }Gg=1

Set t = 0

do
E-Step

for i = 1, . . . , N do
for g = 1, · · · , G do

Compute π̂
(t+1)
j,g according to (8)

Compute ẑ
(t+1)
j,g according to (13)

end for
end for

M-Step

for g = 1, . . . , G do

Compute τ̂
(t+1)
g according to (14)

Find Θ̂
(t+1)
g by optimizing (15) with respect to Θg using SGD with AutoDiff

end for

t← t+ 1
while Not Converged

Ẑ← Ẑ(t)

τ̂ ← τ̂ (t)

Θ̂← Θ̂(t)

whereN
(t+1)
g ≡ |{j : ẑ

(t+1)
j,g = 1}| is the number of observations allocated to the g-th mixture component. The

update Θ̂(t+1) can be done separately for each mixture component g by optimizing the following objective

function

Qg(Θg; Θ̂(t)
g ) =

∑
{
j:ẑ

(t+1)
j,g =1

} log f(xj ; Θg) (15)

with respect to Θg, g = 1, . . . , G. Note how (15) involves a summation over N
(t+1)
g rather than over N points

as in (12). This leads to a simpler optimization with SGD that in turn leads to improved computational

efficiency (and, in practice, also more stable estimates). Furthermore, the hard EM algorithm offers a simple

solution to the problem of determining the number of mixture components; this is discussed in Section 3.3.

The hard EM algorithm is summarized in Algorithm 2.

3.3 Order Selection

Having a strategy to determine the number of mixture components G in a finite mixture model is important.

Many frequentist and Bayesian approaches have been proposed to select the optimal G for finite mixtures of

parametric distributions; these include modified likelihood ratio tests (Dacunha-Castelle and Gassiat, 1999;

Gassiat, 2002), bootstrapping (McLachlan, 1987), information criteria approaches (Spiegelhalter et al., 2002;

Drton and Plummer, 2017), classification-based information criteria approaches (Biernacki et al., 2000), and

marginal-likelihood-based methods (Chib, 1995; Green, 1995). Determining the number of components for

mixtures of normalizing flows is more challenging since in addition to choosing G, one also needs to choose
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K (the number of layers for the normalizing flows) and p (the number of basis functions constructing the

wrapping potential functions). While one may try to adapt some of the existing order selection approaches

mentioned above to this context to find, jointly, optimal values for G, K and p, these new approaches

would need to be investigated both theoretically and practically. This lies beyond the scope of this paper. A

potential computational bottleneck we envision with several of these approaches is that they typically require

comparisons across a large number of fitted models; this could be prohibitive with mixture-of-normalizing-

flows models.

In this work we sideline the issue of tuning K, p, and especially G as follows. First, we leverage the good

results we obtained from empirical studies with a conventional (single component) normalizing flow on S2

with p = 1 and K = 20 to fix p and K to those values, respectively. Second, for G, we fit the mixture-

of-normalizing-flows model with a large number of mixture components (we set G = 10 in our simulation

studies and G = 20 in our studies on real data) using the hard EM algorithm, and then remove mixture

components that have no observations allocated to them. This approach to mixture modeling is commonly

referred to as ‘mixture overfitting’ (e.g., Rousseau and Mengersen, 2011; van Havre et al., 2015) and takes

advantage of a tendency of mixture models to not assign observations to superfluous mixture components.

We find this approach works well with our mixture-of-normalizing-flows model in the empirical studies of

Section 4.

4 Empirical Studies

This section showcases the mixture-of-normalizing flows model on S2 for a variety of point patterns. Sec-

tion 4.1 is a simulation study using a known density function that illustrates the potential benefit of having

a mixture of normalizing flows rather than a single component normalizing flow when modeling data on the

sphere. Sections 4.2 and 4.3 then show how our model can fit complex densities on the surface of Earth well

through the use of an earthquake dataset and a terrorism dataset, respectively.

4.1 Simulation Study

In this section we conduct a simulation experiment to compare the mixture-of-normalizing-flows model to

the standard, single component, normalizing flow model (Rezende et al., 2020) on S2. We generate synthetic

data by simulating random observations from a mixture of von Mises-Fisher (vMF) densities on S2:

J∑
j=1

πjfvMF(· ;µj , κj),

where J is the number of mixture components for the mixture of vMF densities, πj , j = 1, . . . , J, are the

mixture weights, and where fvMF(· ;µ, κ) is the density of a vMF distribution with mean direction µ and

concentration parameter κ. The density fvMF(· ;µ, κ) converges to the uniform distribution on S2 when

κ goes to 0, and becomes increasingly concentrated at µ as κ becomes larger. We randomly draw the

mean directions from the uniform distribution on S2, and randomly draw the concentration parameters

from the exponential distribution with rate parameter λ. We consider four different simulation setups by

varying the number of mixture components J and the rate paramter λ; specifically, we consider the cases
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Table 1: Average and empirical standard deviation (in parentheses) of the 20 L1 distances between the true
density function and the estimated density function in the simulation experiment for each simulation setting.

Model J = 10, λ = 10−2 J = 10, λ = 10−3 J = 20, λ = 10−2 J = 20, λ = 10−3

NF 1.42 (0.04) 1.44 (0.04) 1.50 (0.05) 1.67 (0.07)
Mix NF 0.60 (0.03) 0.67 (0.04) 0.88 (0.15) 0.94 (0.16)

{J, λ} = {10, 10−2}, {J, λ} = {10, 10−3}, {J, λ} = {20, 10−2}, and {J, λ} = {20, 10−3}. We note that the

expected value of κ under the simulation is inversely proportional to the rate parameter λ.

We fit both the mixture-of-normalizing-flows model with G = 10 mixture components, and the standard

(single component) normalizing flow model (Rezende et al., 2020) to the simulated datasets. For both models,

we set the number of compositions to K = 20 and let p = 1 in the wrapping potential function (4). We

fit the (single component) normalizing flow model using the “committee of networks” approach adopted by

Ng and Zammit-Mangion (2022) in the point process setting. This strategy involves training several models

(in our case 50) with random initializations, and then averaging their outputs; this was necessary since the

fit of a normalizing flow tends to be highly sensitive to the initial parameter settings. We fit the mixture-

of-normalizing-flows model using the hard EM algorithm; a committee of networks was not needed with

the mixture-of-normalizing-flows model, likely because of the relative ease with which it can fit complicated

densities due to the increased model flexibility. It took approximately 30 seconds to train the (single

component) normalizing flow model, and approximately 15 minutes to train the mixture-of-normalizing-

flows model; this increase in computing time was expected given that the mixture-of-normalizing-flows model

contains an order of magnitude more parameters to estimate than the (single component) normalizing flow

model.

For each simulation setting (combination of J and λ), we repeated the simulation and fitting procedure

20 times, and computed the average and empirical standard deviation of the L1 distance between the true

and the estimated density functions for both approaches. The results are shown in Table 1: The mixture-of-

normalizing-flows model consistently outperforms the (single component) normalizing flow model. Note that

both the (single component) normalizing flow model and the mixture-of-normalizing-flows model perform

better for the “simpler” density functions, corresponding to when J is smaller and when λ is larger (which

in turn leads to smaller mixture concentration parameters).

4.2 Earthquake locations

To showcase the flexibility of the mixture-of-normalizing-flows model we also apply it real data that exhibits

a complex structure. In our first setting we consider the locations of 7354 known earthquake events with

body-wave magnitude above 6.0 that occurred between the years 1960 to 2018 across the globe. These data

were extracted from the Geocoded Disasters (GDIS) dataset (Rosvold and Buhaug, 2021). For each mixture

component, we set the number of compositions to K = 20 and let p = 1 in the wrapping potential function

(4). We fit the mixture-of-normalizing-flows model to the data with G = 20 mixture components with the

hard EM algorithm. The hard EM algorithm identified 17 non-empty mixture components.

The density (relative to the uniform distribution on the unit sphere) using our model is shown in Figure 1.

The two orientations of Earth shown are chosen to depict the two most active regions on Earth: the western
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Figure 1: Earthquake events (blue dots) and estimated density of earthquake locations obtained using the
mixture-of-normalizing-flows model with G = 20 mixture components (red shading). (Left panel) View of
Earth centered on 140◦E. (Right panel) View of Earth centered on 90◦W.

edge of the Pacific plate (left panel) and the western edge of the South American plate (right panel).

Earthquakes largely occur where the tectonic plates meet, and thus predominantly follow long narrow paths

along the surface of Earth; using a parametric model to fit the density of such data is extremely challenging

(and would not be possible using most conventional parametric mixture models). Yet, we can see that

the estimated density using the mixture-of-normalizing-flows model provides a very good fit to the data.

We also show the fitted density at a selection of locations on Earth in Figure 2; note how the mixture-of-

normalizing-flows model is able to easily pick up multiple modes on the sphere of varying orientation, scale,

and intensity.

We also attempted to fit a (single component) normalizing flows model fitted to the data using a “com-

mittee of networks” approach, where we average 50 models trained with random initializations. The fit we

obtained, however, was inadequate and a poor representation of the data.

4.3 Terrorism event locations

In our second setting we consider the locations of 8378 known terrorist events with known locations that

occurred in the year 2020 across the globe. The data was extracted from the Global Terrorism Database

(GTD).1 Like the earthquake dataset, these data are challenging to fit as terrorist activity tends to be highly

clustered and largely influenced by geopolitical borders. For each mixture component, we set the number

of compositions to K = 20 and let p = 1 in the wrapping potential function (4). We fit the mixture-of-

normalizing-flows model to the dataset with G = 20 mixture components using the hard EM algorithm. In

this case, the hard EM algorithm identified 11 non-empty mixture components.

The density (relative to the uniform distribution on the unit sphere) using our model is shown in Figure 3.

Similar to the earthquake dataset, we observe that the estimated density provides a good fit to the data. The

(single component) normalizing flow model was also fitted to the dataset using a “committee of networks”

approach; here, as with the earthquake data, the normalizing flow failed to achieve a reasonable fit to the

1https://www.start.umd.edu/gtd/
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Figure 2: Earthquakes between 1960 to 2018 (blue dots) and the corresponding estimated density obtained
using the mixture-of-normalizing-flows model with G = 20 mixture components (red shading). (Top-left panel)
Earthquakes in the region of the Pacific Islands, Papua New Guinea, Indonesia, and the Philippines. (Top-right
panel) Earthquakes in the region of Japan and the Kuril Islands. (Bottom-left panel) Earthquakes in South
America. (Bottom-right panel) Earthquakes in Europe and off the Liberian coast in the Atlantic Ocean.

data.

5 Conclusion

In this work we present a mixture modeling framework with normalizing flows for spherical density esti-

mation. The proposed approach offers an attractive alternative to existing parametric and nonparametric

mixture modeling approaches by leveraging the computational efficiency and the representational power

obtained when constructing deep hierarchies through function composition. The proposed EM algorithms

are computationally efficient and scalable when used with mini-batch stochastic gradient descent.

An important consideration with mixture models that we have not explored is parameter identifiability.

A necessary condition for identifiability is that there is a one-to-one map between the model parameters and

the corresponding probability law (up to permutations of the mixture components). There is a long history of

research on the identifiability conditions for finite mixtures of parametric distributions (Teicher, 1961, 1963;

Barndorff-Nielsen, 1965; Holzmann et al., 2006), and identifiability has been proved for various parametric
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Figure 3: Reported terrorist events in the year 2020 (blue dots) and the corresponding estimated density
obtained using the mixture-of-normalizing-flows model with G = 20 mixture components (red shading). (Top-
left panel) View of Earth centered on 60◦E. (Top-right panel) Events in Europe. (Bottom-left panel) Events in
the Philippines. (Bottom-right panel) Events in Afghanistan.

families under various conditions. More recently, there has been an increased interest in the identifiability of

nonparametric mixture models where each mixture component comes from a flexible, nonparametric family

of probability distributions. Identifiability has been established for some of these models under various

structural assumptions such as independence of marginal distributions and symmetry (Hall and Zhou, 2003;

Hall et al., 2005; Hunter et al., 2007; Levine et al., 2011; D’Haultfoeuille and Février, 2015) and more general

conditions (Aragam et al., 2020). Studying conditions under which identifiability holds for a mixture-of-

normalizing-flows model is a challenging task. In order for the mixture-of-normalizing-flows model to be

identifiable, each mixture component needs to be identifiable itself. Many popular normalizing flows models

are typically parameterized by (deep) neural networks where the formulation of identifiability conditions is

still in its early days (Phuong and Lampert, 2020; Bona-Pellissier et al., 2021).

While the focus in this paper is on density estimation on spherical domains, the proposed methodol-

ogy can be extended to more general manifolds. There are several open questions that warrant future

research efforts. Identifiability, as discussed above, is one such open question. Another open question con-

cerns interpretability: unlike parametric mixture models, the interpretation of the mixture components in a
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mixture-of-normalizing-flows model is challenging. Further, computationally-efficient ways for determining

the optimal number of mixture components also needs to be addressed; this is challenging with any mixture

model, but is particularly challenging with the mixture-of-normalizing-flows model where there are trade-offs

between the number of mixture components and the complexity of each mixture component (via the number

of compositions and the number of basis functions per wrapping potential function). Finally, model-based

approaches for density estimation have the advantage that they lend themselves well to uncertainty quantifi-

cation. With our mixture-of-normalizing-flows model one could, for example, employ the bootstrap (e.g., Ng

and Zammit-Mangion, 2022). One could also develop Bayesian methods to recover posterior distributions

over the model parameters as well as, potentially, the number of mixture components.
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