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Abstract
In order to investigate exchanges between objects, a clustering model for skew-
symmetric data is proposed, which relies on the between-cluster effects of the
skew-symmetries that represent the imbalances of the observed exchanges between
pairs of objects. The aim is to detect clusters of objects that share the same behaviour
of exchange so that origin and destination clusters are identified. The proposed model
is based on the decomposition of the skew-symmetric matrix pertaining to the imbal-
ances between clusters into a sum of a number of off-diagonal block matrices. Each
matrix can be approximated by a skew-symmetric matrix by using a truncated Singu-
lar Value Decomposition (SVD) which exploits the properties of the skew-symmetric
matrices. The model is fitted in a least-squares framework and an efficient Alternating
Least Squares algorithm is provided. Finally, in order to show the potentiality of the
model and the features of the resulting clusters, an extensive simulation study and an
illustrative application to real data are presented.
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1 Introduction

Asymmetric data pertaining to pairwise exchanges or flows between objects are
observed and analysed in order to investigate on their intrinsic asymmetry; some exam-
ples are commercial exchanges, brand switching, migration data, or confusion data.
Several methodologies have been proposed to deal with such an asymmetry when the
main interest is to investigate on the directions of the exchanges. Specifically, relying
on the decomposition of the asymmetry into symmetric and skew-symmetric effects,
many models have been proposed which either estimate only the skew-symmetric part
or fit the two components.

In order to visualise and explore asymmetric data, different methodologies have
been introduced; in particular, in Gower (1977) and Constantine and Gower (1978)
a decomposition of any asymmetric matrix is introduced which allows to obtain a
graphical representation of the objects on a plane where the areas of the triangles
formed by all triplets of objects are proportional to the amounts of the imbalances of
the exchanges observed between objects. In addition, to jointly display the symmetric
and skew-symmetric components of the data, several models have been proposed, e.g.
Zielman and Heiser (1996); Rocci and Bove (2002); Bove and Okada (2018); Bove
and Vicari (2023) and, for an extensive review, see also Saito and Yadohisa (2005)
and Bove et al. (2021).

In a non-hierarchical clustering context, an asymmetric version of the k-means algo-
rithm is proposed in Olszewski (2012), while a centroid-based approach is proposed
in Olszewski and Ster (2014) using an asymmetric dissimilarity.

In this work, the focus concerns the analysis of the imbalances of the exchanges
observed between pairs of objects that are described by the skew-symmetric compo-
nent of the data and the main interest is to investigate the exchanges or flows between
data. A skew-symmetric matrix can derive from the skew-symmetric component of an
observed asymmetric proximity matrix (Gower 1977), or from a transformation of the
observed asymmetries that incorporates the average amounts of the data (Saito and
Yadohisa 2005). In some cases skew-symmetric data can be observed directly, such
as where the symmetric component of an observed asymmetric matrix is constant and
therefore noninformative. Again, when the data itself is skew-symmetric such as, for
example, in the analysis of comparative judgments in which an individual could be
asked to evaluate the difference between pairs of stimuli and to make a judgment on
their degree of preference.

Note that “imbalances" play a fundamental role in this context, because the depar-
tures fromsymmetry, in termsofmagnitudes and signs, provide informationonboth the
intensities and directions of the exchanges between objects. For this reason, analysing
imbalances is the main objective of clustering asymmetric data.

Cluster analysis methodologies for skew-symmetric data search for either dominant
objects or clusters of objects with similar behaviours in terms of both magnitude and
direction of the exchanges. The basic idea is that clusters of objects can share common
behaviours not only in terms of average intensities but also in the directions of the
exchanges: some clusters of objects can mainly either originate exchanges directed to
other clusters or receive from other clusters.
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A between-cluster approach for clustering skew-symmetric data 165

In order to account for the within- and between- cluster effects, a different approach
has been proposed in Vicari (2014) where a partition of the objects is jointly identified
from the symmetric and skew-symmetric components of the data. In Vicari (2018) an
extension of model (Vicari 2014) has been presented by introducing the possibility
to incorporate external variables in order to explain the imbalances between objects.
Within the same framework, in Vicari (2020) an alternative model is proposed which
jointly fits both the symmetric and the skew-symmetric component by using two
clustering structures depending on two partitions of objects: a complete (standard)
partition, from the symmetric component, and an incomplete partition, to fit the skew-
symmetric component, which is nested into the complete one and where objects are
allowed to remain possibly unassigned.

In this paper, a new clustering model for skew-symmetric data is proposed, which
aims to detect clusters of objects that share the same behaviour of exchange in terms of
both amounts and directions so that origin and destination clusters can be identified.

The model relies on the decomposition of the skew-symmetric matrix into a sum
of a number of off-diagonal block matrices which contain the pairwise exchanges
between clusters. They are optimally reconstructed in the least-squares sense by using
separate truncated Singular Value Decompositions (SVD) which provide their best
low-rank matrix approximations.

Interestingly, since the resulting singular vectors allow objects to be mapped into
low-dimensional (possibly two-dimensional) spaces, graphical representations can
facilitate the interpretation of the exchanges between objects.

The model is fitted in a least-squares framework and an efficient Alternating Least
Squares (ALS) algorithm is provided.

The rest of the paper is organized as follows. In order to motivate our model, an
illustrative example is described in Sect. 2. The clustering model is introduced and
formalized in Sect. 3 and, in order to fit the model, an appropriate ALS algorithm is
provided in Sect. 4. In Sect. 5 an extensive simulation study is carried out on artificial
data to assess the potentiality and the effectiveness of the proposal. In Sect. 6 an
application to real data is presented. Finally in Sect. 7 some concluding remarks are
provided.

2 Illustrative example

In order to give both a flavour of the problem dealt with and an intuition of the
model fully formalized in Sect. 3, we consider here an artificial example with 12
objects (denoted by A-L) which can motivate the method and illustrate its features and
potentiality.

Without loss of generality, let us suppose that the artificial (N×N ) skew-symmetric
matrix K � (

ki j
)
i , j�1, ..., N in Table 1 contains the imbalances observed or derived

from asymmetric dissimilarity data pertaining to pairwise exchanges between 12
objects. From the heat map in Fig. 1 associated with the data in Table 1, some features
of the objects are evident:

123



166 D. Vicari, C. D. Nuzzo

Table 1 Artificial skew-symmetric data

K A B C D E F G H I J K L

A 0 − 1 2 21 24 30 33 43 − 25 − 32 − 41 − 41

B 1 0 3 29 35 39 52 52 − 14 − 24 − 24 − 29

C − 2 − 3 0 33 40 49 55 66 − 18 − 22 − 32 − 35

D − 21 − 29 − 33 0 − 1 − 3 0 0 − 16 − 15 − 18 − 14

E − 24 − 35 − 40 1 0 2 4 1 − 43 − 34 − 51 − 29

F − 30 − 39 − 49 3 − 2 0 − 3 − 1 − 29 − 25 − 38 − 20

G − 33 − 52 − 55 0 − 4 3 0 0 − 39 − 30 − 43 − 26

H − 43 − 52 − 66 0 − 1 1 0 0 − 23 − 17 − 26 − 17

I 25 14 18 16 43 29 39 23 0 − 4 0 − 2

J 32 24 22 15 34 25 30 17 4 0 − 2 − 1

K 41 24 32 18 51 38 43 26 0 2 0 − 3

L 41 29 35 14 29 20 26 17 2 1 3 0

Skew-symmetric matrix K of imbalances between 12 objects

Fig. 1 Artificial skew− symmetric data. Heatmap of K

• {A, B, C} have large imbalances both outgoing towards {I , J , K , L} and incoming
from {D, E , F , G, H};

• {I , J , K , L} have only incoming imbalances, i.e., they are destinations from all
other objects;

• {D, E , F , G, H} have only outgoing imbalances, i.e., they are origins for all other
objects;

• only small pairwise imbalances are present within blocks {A, B, C},
{D, E , F , G, H} and {I , J , K , L}.
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A between-cluster approach for clustering skew-symmetric data 167

Fig. 2 Artificial skew-symmetric
data.Map from metric MDS on
abs(K). Drift vectors attached to
objects are estimated from K

As a preliminary analysis, Fig. 2 shows the map obtained from the standard metric
MultiDimensional Scaling (MDS) of the symmetricmatrix abs(K), where abs denotes
the absolute value of matrixK. In addition to the amounts of the imbalances, informa-
tion on their directions is incorporated into the map by drawing drift vectors from any
object-point having lengths and directions proportional to the average row totals (aver-
age outgoing imbalances), see Bove et al. (2021). Thus, the positions of the objects
in the map identify three main clusters G1 � {A, B, C}, G2 � {D, E , F , G, H},
G3 � {I , J , K , L} having similar amounts of exchange on average. Moreover, in
Fig. 2 the directions of the imbalances can also be identified on average: drift vectors
of the objects inG2 point toG1 andG3, while drift vectors inG3 are directed upwards,
because they have incoming imbalances from all other objects.

In summary, from this preliminary analysis it is evident that the artificial data
define a situation with a clear clustering structure where objects in the same cluster
share common behaviours towards objects in different clusters in terms of amount
and direction of the imbalances, i.e., objects exhibit large imbalances directed towards
objects in different clusters (between imbalances) and small imbalances with objects
in the same cluster (within imbalances).

In order to identify such a clustering structure of the data, the model proposed
in Vicari (2018) has been applied to the skew-symmetric matrix K in Table 1
and the best three-cluster solution (goodness-of-fit1 equal to 93%), retained in

1 goodness-of-fit�
(
1 − ‖K−K̂‖2

‖K‖2
)
100, where hereafter K̂ generally denotes the skew-symmetric matrix

estimated by the model.
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168 D. Vicari, C. D. Nuzzo

100 runs of the algorithm from different random starts, gives the partition G∗
1 �

{A, B, C , D, E , F , G, H}, G∗
2 � {I , J , L} and G∗

3 � {K }.
Model in Vicari (2018) returns vector b � (−9.27, −9.27, −9.27, −9.27, −9.27,

−9.27, −9.27, −9.27, 17.17, 17.17, 22.67, 17.17) with as many different values
as there are clusters representing the average imbalances of all objects of a cluster
towards any other object not belonging to the same cluster. Therefore, vector b reveals
the directions: G∗

1 results to be an origin cluster, while G
∗
2 and G

∗
3 are two destination

clusters. Therefore, thismodel fails to fully capture the underlying clustering structure,
as it is unable to reveal the differences between {A, B, C} and {D, E , F , G, H} in
terms of directions of their imbalances.

In order to detect the underlying clustering structure and better explain the between-
cluster variability, the model proposed here, which will be fully formalized in Sect. 3,
has been fitted to the artificial data of Table 1. The best resulting partition (obtained
in different runs of the algorithm from 100 random starts) correctly identifies clusters
G1, G2 and G3 with a goodness-of-fit equal to 99.6%. Interestingly, given the optimal
partition into C clusters, the proposed model provides as output pairs of singular
vectors that allow to graphically represent the objects in C Gower diagrams (Gower
2018), from which useful information is obtained about the amount and direction of
the skew-symmetries between clusters. Specifically, for any cluster Gc it is possible
to map all objects belonging to either Gc or any other cluster Gc̃ (c, c̃ � 1, . . . , C ,
c < c̃) onto a low-dimensional space (a plane in this case) spanned by the optimal
pairs of singular vectors where the directions of the exchanges between objects in Gc

and Gc̃ can be identified.
In general, one major advantage of the Gower diagrams (Gower 2018) is the inter-

pretation in terms of the area of the triangle with vertices corresponding to any pair of
objects and the origin O (see Fig. 3a), because such area is approximatively propor-
tional to the size of their pairwise skew-symmetry.

As an example from the proposed model, Fig. 3a displays the map of the pairwise
imbalances (1) between objects in cluster G1 (red circles) and objects in clusters
G2 (red squares) and (2) between objects in cluster G1 (blue circles) and objects in
cluster G3 (blue stars). Therefore, for example, the area of the red triangle (O, A, D)
is proportional to the size of the imbalance kAD (Table 1).

We may observe that two close points represent small values of skew-symmetry
because the area of the corresponding triangle is small, as well as pairs of points either
nearly collinear with or very close to the origin also display small skew-symmetries.
Conversely, pairs of points far from the origin represent large imbalances (for further
details, see Gower 1977, 2018).

Moreover, since triangles (O, A, D) and (O, D, A) are the same but with their labels
permuted and give the same areas, by convention, a clockwise direction denotes a
negative area, while an anticlockwise direction indicates a positive area (in accordance
with the basic property of skew-symmetric matrices that kAD � −kDA). Thus, for
example, the red triangle (O, A, D) has an area greater than the blue triangle (O, B, I),
i.e., regardless of the sign, the imbalance between A andD is greater than that between
B and I; as for the directionality, kDA is negative (D together with all objects in G2 is
the origin for all objects in G1), while kI B is positive (I is the destination for G1 as
well as all objects in G3).
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A between-cluster approach for clustering skew-symmetric data 169

Fig. 3 Artificial skew-symmetric data. Scatter plot of objects for cluster: a G1; b G2; c G3. Directions
of imbalances between clusters are represented by arrows. Areas of triangles represent skew-symmetries
between objects
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Fig. 4 Artificial skew-symmetric
data. Summary graph of the
clusters with average fitted
imbalances between clusters

The three Gower diagrams for the optimal three-cluster solution are displayed in
Fig. 3. The directions of the exchanges between cluster G1 and the others are shown
in Fig. 3a: cluster G1 � {A, B, C}(blue circles) has negative skew-symmetries with
cluster G3 � {I , J , K , L} (blue stars), i.e. {A, B, C} have outgoing flows towards
{I , J , K , L}, while G1 � {A, B, C} (red circles) has positive skew-symmetries with
G2 � {D, E , F , G, H} (red squares), i.e. {A, B, C} have incoming flows from {D,
E , F , G, H}. Similarly, the amounts and directions of the imbalances between either
cluster G2 or G3 and the others can be derived from Figs. 3b and c, respectively.

Finally, the summary graph in Fig. 4 reports the average fitted imbalances between
clusters to highlight how the proposed model is able to account for the relationships
between objects in terms of between-cluster exchanges by correctly reconstructing the
imbalances in Table 1.

Note that since the model presented in Sect. 3 accounts for the between-cluster
variability, the resulting Gower diagrams in Fig. 3 have some nice peculiar features:

• objectswithin the same cluster have the same coordinate (either abscissa or ordinate)
equal to zero, i.e., they all lie either on the x- or y-axis;

• all pairs of objects in different clusters generate right-angled triangles;
• objects within the same cluster determine degenerate triangles with null areas;
• all objects in a cluster generate imbalances of the same sign towards objects in a
different cluster, i.e., all objectswithin a cluster share a common exchange behaviour
towards objects in another cluster so that origin and destination clusters can be
identified.

To sum up, the model, which is fully formalised and discussed in the next Sections,
provides a partition of the objects and a reduced number of dimensions for each cluster
(two dimensions in this application) which allow to map the objects and represent the
imbalances between all objects in one cluster and all objects in different clusters in
terms of right-angled triangles areas.

Remark 1 It is worth noting that when the observed asymmetric data are similarities
(instead of dissimilarities), the signs of the imbalances take on the reverse meaning.
Therefore, in Gower diagrams derived from similarity data a clockwise direction from
one object to another denotes a positive area, i.e., a positive imbalance, which qualifies
the first object as the origin.

3 Themodel

In this Section the between-cluster model for skew-symmetric data is formalised.
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Let � � {
ωi j

}
be an (N × N ) asymmetric matrix, which can be uniquely decom-

posed into a sum of a symmetric matrix S and a skew-symmetric matrix K as follows

� � S +K � 1

2

(
� + ��)

+
1

2

(
� − ��)

,

where S and K have size (N × N ) and are orthogonal to each other, i.e., tr (SK) � 0.
The entry si j ∈ S represents the average amount of the exchange between objects i and
j, while the entry ki j ∈ K represents the imbalance between i and j, i.e., the amount
by which ki j differs from the mean si j (i , j � 1, . . . , N ). Thus the skew-symmetric
matrix K � (ki j ) is such that ki j � −k ji by definition.

The goal is to cluster the (N × N ) skew-symmetric matrix K by considering a
partition of theN objects intoC disjoint clusters which can be identified by an (N×C)
binarymembershipmatrixU � (uic) such that uic � 1 if i belongs to cluster c, uic � 0
otherwise, for c � 1, . . . , C and

∑C
c�1 uic � 1 for all i � 1, . . . , N .

Note that, given a partitionU, matrixK can be decomposed as the sum of its within
and between parts, as follows

K � B +W, (1)

where B is an (N × N ) skew-symmetric off-diagonal block matrix depending on
partition U and represents the imbalances between clusters; W is the (N × N ) skew-
symmetric block diagonal matrix of the imbalances within clusters. As an example,
for the sake of clarity, Fig. 5 graphically shows the decomposition (1) of a matrix K
into its within and between components for a given partition into three clusters.

Here, we are interested in modelling the between part of the exchanges. The idea
is to identify clusters of objects having similar behaviour in terms of amounts and
directions of the imbalances directed towards other clusters so that each cluster is
mainly either origin or destination.

In order to identify the directed relationships between clusterswhich can be possible
origins/destinations, the between component B is modelled as follows.

Let C � {1, . . . , c, . . . , C} ⊂ N be the set of the indices of the clusters and
G � {G1, . . . , Gc, . . . , GC } be the set of the clusters.

We can consider the (N × N ) skew-symmetric matrix B(c, c̃) (c, c̃ ∈ C, c < c̃) of
the imbalances between any pair of clusters Gc and Gc̃ which has all elements equal
to zero except for two rectangular blocks corresponding to the objects belonging to
cluster either Gc or Gc̃ (see Fig. 5 as an example). Note that all matrices B(c, c̃) (c,
c̃ ∈ C, c < c̃) are orthogonal to each other by construction.

Let us recall that, due to its special form, any skew-symmetric matrix of size N can
always be decomposed in canonical form as the sum of a number of skew-symmetric
matrices of rank 2 (Gower 2018) by using its

[ N
2

]
distinct singular values λ1 ≥

λ2 ≥ . . . ≥ λ[N/2], where [·] denotes the integer part (see Appendix 1 for details).
Specifically, in the view of a dimension reduction and given a partition U, any matrix
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Fig. 5 Decomposition of matrix K for a given partition into three clusters

B(c, c̃) can be optimally approximated by using the truncated SVD:

B(c, c̃) � P(c, c̃)
(R) �

(c, c̃)
(R) JP(c, c̃)�

(R) + �
(c, c̃)
(R) , c, c̃ ∈ C, c < c̃, R ≤

[
N

2

]
, (2)

where P(c, c̃)
(R) denotes the (N × 2R)matrix of the first 2R left singular vectors ofB(c, c̃),

�
(c, c̃)
(R) is the (2R × 2R) diagonal matrix with elements equal to the first 2R singular

values of B(c, c̃), J is an (N × N ) block diagonal matrix with matrices

(
0 1

−1 0

)
along

its diagonal and �
(c, c̃)
(R) is the (N × N ) residual matrix of the truncated SVD.

Note that the theoretical justification of the use of the SVD in (2) comes from
the well-known general result of Eckart and Young (1936) on the problem of matrix
approximation of reduced rank, whose least-squares solution turns out to be the SVD.

Thus, the off-diagonalmatrixB of the imbalances between clusters can be expressed
as the sum of all approximatedmatricesB(c, c̃) (c, c̃ ∈ C, c < c̃) for all pairs of clusters,
i.e.,

B �
∑

c, c̃∈C, c<c̃

B(c, c̃) � (3)

�
∑

c, c̃∈C, c<c̃

R∑

n�1

λ(c, c̃)n

(
p(c, c̃)2n−1 p

(c, c̃)�
2n − p(c, c̃)2n p(c, c̃)�2n−1

)
+ � � (4)

�
∑

c, c̃∈C, c<c̃

R∑

n�1

(
v
(c, c̃)
2n−1v

(c, c̃)�
2n − v

(c, c̃)
2n v

(c, c̃)�
2n−1

)
+ �, (5)

where � is the (N × N ) residual matrix due to the truncated SVD, λ(c, c̃)n (n � 1, . . . ,
R) is the n-th distinct singular value of B(c, c̃), p(c, c̃)j ( j � 1, . . . , 2R) is the j-th left
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singular vector of B(c, c̃), and

v
(c, c̃)
2n−1 �

√
λ
(c, c̃)
n p(c, c̃)2n−1, v

(c, c̃)
2n �

√
λ
(c, c̃)
n p(c, c̃)2n , (n � 1, . . . , R). (6)

It is worth noting that p(c, c̃)2n−1 and p(c, c̃)2n are the singular vectors associated to the n-th

singular value λ
(c, c̃)
n (n � 1, . . . , R) of B(c, c̃), see Appendix 1 for details.

As an approximation of B, model (5) optimally reconstructs, in the least-squares
sense, the imbalances between objects belonging to different clusters in a low-
dimensional space by using R bimensions (see Appendix 1).

Note that we may also consider the full SVD of any skew-symmetric matrix B(c, c̃)

which derives from (5) by setting R � [ N
2

]
.

Without loss of generality and for the sake of parsimony, we consider hereafter the
special case where the truncated two-dimensional SVD, derives from (5) when R � 1,
i.e., when only the first two singular vectors (first bimension) are considered, i.e.

B �
∑

c, c̃∈C, c<c̃

[
v
(c, c̃)
1 v

(c, c̃)�
2 − v

(c, c̃)
2 v

(c, c̃)�
1

]
+ �, (7)

where, v
(c, c̃)
1 and v

(c, c̃)
2 are the two orthogonal vectors corresponding to the largest

singular value λ
(c, c̃)
1 .

Therefore, plugging (7) into (1), the model can be formulated as

K �
∑

c, c̃∈C, c<c̃

[
v
(c, c̃)
1 v

(c, c̃)�
2 − v

(c, c̃)
2 v

(c, c̃)�
1

]
+ E, (8)

subject to

uic ∈ {0, 1}, (c � 1, . . . , C ; i � 1, . . . , N ), (9)

C∑

c�1

uic � 1, (i � 1, . . . , N ), (10)

v
(c, c̃)�
1 v

(c, c̃)
2 � 0, (c, c̃ ∈ C, c < c̃), (11)

where the (N × N ) matrix E in (8) is the error term that represents the part of K
not accounted for by the model. Constraints (9) and (10) qualify U as a membership
matrix, while (11) are constraints of orthogonality. Note that E also incorporates the
within part W which is not modelled here.
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Model (8) is fitted in the least-squares sense by minimising the following relative
loss function

F

(
U,

{
v
(c, c̃)
j

}

j�1, 2, c, c̃∈C, c<c̃

)
�

�
∥∥
∥K − ∑

c, c̃∈C, c<c̃

(
v
(c, c̃)
1 v

(c, c̃)�
2 − v

(c, c̃)
2 v

(c, c̃)�
1

)∥∥
∥
2

‖K‖2 ,

(12)

subject to the sets of constraints (9), (10), and (11).
In order to minimise (12), an ALS algorithm is proposed which iteratively updates

each parameter while keeping all the others fixed as detailed in Sect. 4.

4 The ALS algorithm

In the general standard framework of ALS algorithms, an efficient algorithm is for-
mulated and appropriately designed for fitting model (8).

The constrained problem of minimising (12) subject to (9), (10), and (11) can
be solved by using an ALS algorithm which alternates between two main steps for
updating v

(c, c̃)
j ( j � 1, 2 and c, c̃ ∈ C, c < c̃) and U as follows:

Step 0. Initialization.
Step 1. Updating v

(c, c̃)
j ( j � 1, 2, c, c̃ ∈ C, c < c̃): given U, vectors v

(c, c̃)
j are

estimated as solutions of constrained regression problems.

Step 2. Updating U: given v
(c, c̃)
j ( j � 1, 2 and c, c̃ ∈ C, c < c̃), membership matrix

U is updated in a row-wise fashion by solving assignment problems.

Step 3. Stopping rule.
Steps 1 to 3 are alternated and iterated until convergence. The loss function (12)
cannot increase at each step, and the algorithm stops when the loss decreases less than
a fixed arbitrary positive and small threshold. In order to prevent from falling into local
optima, the best solution is retained from a number of different (random or rational)
starts. A detailed description of the steps of the algorithm implemented in MATLAB
R2022 follows.

Step 0. Initialization:Choose a random or rational starting partition Û of theN objects
into C non-empty clusters.
Step 1. Updating v(c, c̃)j ( j � 1, 2, c, c̃ ∈ C, c < c̃):

Given the current partition Û, the estimation of the orthogonal vectors minimising
(12) is obtained as the solution of thematrix fitting problem (8) subject to orthogonality
constraints (11). It results to be a special case of a regression problem of reduced rank
and it is known to come up to a truncated SVD (Ten Berge 2005). Therefore, given
partition Û, the optimal estimates v̂

(c, c̃)
j ( j � 1, 2 and c, c̃ ∈ C, c < c̃) result to be

proportional to the two singular vectors p̂(c, c̃)j ( j � 1, 2) associated with the largest
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singular value λ̂
(c, c̃)
1 of matrix B̂

(c, c̃)

v̂
(c, c̃)
1 �

√
λ̂
(c, c̃)
1 p̂(c, c̃)1 , v̂

(c, c̃)
2 �

√
λ̂
(c, c̃)
1 p̂(c, c̃)2 , (c, c̃ ∈ C, c < c̃). (13)

Step 2. Updating U: Given the current estimates of v̂
(c, c̃)
j ( j � 1, 2 and c, c̃ ∈ C,

c < c̃), the updating of the membership matrix Û is done by solving N assign-
ment problems which minimise the loss function (12). This problem is sequentially
solved for the different rows of U by taking ûi t � 1 if column t attains F([uit ],
·) � min{F([uih], ·) : h � 1, . . . , C} and ûi t � 0, otherwise.

When updated themembershipmatrix, a check for avoiding possible empty clusters
is carried out.

Step 3. Stopping rule: Compute the loss value F

(
Û,

{
v̂
(c, c̃)
j

}

j�1, 2, c, c̃∈C, c<c̃

)
, for

the current estimates according to (12). When such updated values have decreased
considerably (more than an arbitrary small convergence tolerance) the function value,
Û and v̂

(c, c̃)
j ( j � 1, 2) are updated once more according to Steps 1 and 2. Otherwise,

the process is assumed to have converged.

Remark 2 Note that the algorithm for fitting model (8) with more than one bimen-
sion (R > 1) can be generally obtained by retaining 2R singular vectors in Step 1
straightforwardly.

4.1 A computationally efficient estimation

An equivalent but much more computationally efficient form of SVD approximation
can be considered in Step 1. Given partition Û, let Gc and Gc̃ be a pair of clusters of
sizes nc and nc̃, respectively.

Interestingly, since matrices B̂
(c, c̃)

(c, c̃ ∈ C, c < c̃) are skew-symmetric off-
diagonal block matrices, vectors v̂

(c, c̃)
1 and v̂

(c, c̃)
2 take the following form by

construction

v̂
(c, c̃)
1i

{ 
� 0 if i ∈ Gc

� 0 otherwise,
v̂
(c, c̃)
2i

{ 
� 0 if i ∈ Gc̃

� 0 otherwise,

or

v̂
(c, c̃)
1i

{ 
� 0 if i ∈ Gc̃

� 0 otherwise,
v̂
(c, c̃)
2i

{ 
� 0 if i ∈ Gc

� 0 otherwise,
(14)

for i � 1, . . . , N and c, c̃ ∈ C, c < c̃.
Due to (14), any estimated matrix K̂

(c, c̃)
(c, c̃ ∈ C, c < c̃) results to be the (N ×N )

skew-symmetric matrix of the imbalances between clusters Gc and Gc̃, i.e., the non-
null entries correspond only to pairs of objects i ∈ Gc and j ∈ Gc̃ (c, c̃ ∈ C, c < c̃).
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Let β̂
(c, c̃)

denotes the submatrix of size (nc × nc̃) extracted from K̂
(c, c̃)

and con-
taining only its rectangular block of the imbalances from Gc to Gc̃ and let π̂ (c, c̃) and
ρ̂
(c, c̃) be the first left and right singular vectors of sizes nc and nc̃, respectively, of

the truncated SVD of β̂
(c, c̃)

. Then, the very elements of the singular vectors p̂(c, c̃)1

and p̂(c, c̃)2 of B̂
(c, c̃)

in (13) are actually π̂
(c, c̃) and ρ̂

(c, c̃) respectively, and they can be
written as

p̂(c, c̃)1i �
{

π̂
(c, c̃)
h if ûic � 1

0 otherwise,
p̂(c, c̃)2i �

{
ρ̂
(c, c̃)
l if ûi c̃ � 1

0 otherwise,
(15)

for h � 1, . . . , nc, l � 1, . . . , nc̃ and i � 1, . . . , N . Vectors v̂
(c, c̃)
1 and v̂

(c, c̃)
2 are

computed as in (13) accordingly.

Note that such a solution involves the SVD of

(
C
2

)
matrices of sizes (nc × nc̃),

for c, c̃ ∈ C, c < c̃ which are generally much smaller than matrices B(c, c̃) of size
(N × N ).

Thus, in order to speed up the algorithm, the estimation of v̂
(c, c̃)
j ( j � 1, 2 and

c, c̃ ∈ C, c < c̃) in (13) can be done in a more computationally efficient way by
estimating their very elements π̂

(c, c̃)
h (h � 1, . . . , nc) and ρ̂

(c, c̃)
l (l � 1, . . . , nc̃),

respectively, as follows
h � 1 l � 1
for i � 1, . . . , N for i � 1, . . . , N

if ûic � 1 if ûi c̃ � 1

v̂
(c, c̃)
1i �

√
λ̂
(c, c̃)
1 π̂

(c, c̃)
h v̂

(c, c̃)
2i �

√
λ̂
(c, c̃)
1 ρ̂

(c, c̃)
l

h � h + 1 l � l + 1
else else

v̂
(c, c̃)
1i � 0 v̂

(c, c̃)
2i � 0

end end
end end

4.2 An equivalent form for the loss function

Due to SVD (Appendix 1), the relative loss function (12) is equivalent to

F
(
U, {λ(c, c̃)1 }c, c̃∈C, c<c̃

)
� 1 −

2
∑

c, c̃∈C, c<c̃

(
λ
(c, c̃)
1

)2

‖K‖2 . (16)

In the algorithm the computation of the relative loss function (16) in Steps 2 and 3 can
be profitably used, because it does not require to compute the singular vectors of size
N as in (12) and it turns out to be computationally more efficient.

Remark 3 It can be observed that the computational complexity of the algorithm is
given by its two main steps.
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• Given partition U, Step 1 actually consists of

(
C
2

)
truncated SVDs of “small"

matrices of size (nc × nc̃) (c, c̃ ∈ C, c < c̃).
• Given the singular vectors, Step 2 is the standard allocation step of all k-means-type
algorithms where the loss function is computed by using (16).

In order to provide details about the computational effort, the analysis of the compu-
tation time for the simulation study is reported in Sect. 5.3.

5 Simulation

In order to evaluate the performance of the model, a simulation study has been carried
out on artificial data (Sects. 5.1-5.3). A comparison with the CLUSKEXT model
(Vicari 2018), its closest least-squares-based competitor, is also reported in Sect. 5.4.

5.1 Simulation design andmeasures of performance

A number of skew-symmetric matrices have been generated from the true underlying
model (8) by setting N � 20, 40 objects and C � 2, 3, 4, 5 clusters of approximately
equal sizes.

Specifically, a random partition into C non-empty clusters has been drawn from
a discrete uniform distribution so that any object is randomly assigned to a cluster
with probability 1

C . Then, vectors v
(c, c̃)
1 and v

(c, c̃)
2 (c, c̃ ∈ C, c < c̃) have been

randomly generated by taking into account the special form (14). Specifically, the
non-null components of v

(c, c̃)
1 and v

(c, c̃)
2 have been computed as in (13) by setting

λ
(c, c̃)
1 � 1 and generating vectors p(c, c̃)1 , p(c, c̃)2 (c, c̃ ∈ C, c < c̃) from discrete

uniform distributions in [1, 10]. Then, any true skew-symmetric off-diagonal block
matrix K∗ has been computed as

K∗ �
∑

c, c̃∈C, c<c̃

[
v
(c, c̃)
1 v

(c, c̃)�
2 − v

(c, c̃)
2 v

(c, c̃)�
1

]

and then perturbed as follows

K � K∗ +
√

δE,

where δ has been set equal to 0.15, 0.25, 0.50, 0.75 to allow for different error levels;
as for the error matrix E, a matrix Ẽ of size (N × N ) has been firstly generated from a

standard normal distribution, and then it has been skew-symmetrised as E � Ẽ− Ẽ
�

and rescaled to have the same sum of squares as the error-free data.
For each cell of the experiment, 100 data sets have been generated as follows:

(a) 3 (number of clusters C � 2, 3, 4) × 4 (error levels)=12 data sets of sample size
N � 20,
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(b) 4 (number of clusters C � 2, 3, 4, 5) × 4 (error levels)=16 data sets of sample
size N � 40,

for a total of 2800 data sets. For each data set the best solution in terms of loss function
in 100 runs of the algorithm from different random starts has been retained so that the
algorithm was run 280000 times in total.

The simulation study has been performed on an AMD Epyc 7452 processor and
2GB RAM.

In order to evaluate the performance of the algorithm, for each cell of the experi-
mental design the following measures have been computed by averaging over the 100
data sets:

1. ARI: Adjusted Rand Index (Hubert and Arabie 1985) between true U and fitted Û
membership matrices: it measures the degree of agreement between two partitions
and takes its maximum value equals to 1 when the two partitions are coincident;

2. %(ARI=1): percentage of successes in recovering the true partitions, i.e. % of
times where ARI=1;

3. #(ARI=1): number of times where ARI=1;
4. #(ARI>0.85): number of times where ARI>0.85;
5. LOSS: relative loss function value (16): it takes values in [0, 1];
6. TIME: time per run (in seconds);
7. # ITER: number of iterations before convergence (tolerance value equal to 10−5);
8. TCC: Tucker’s Congruence Coefficient (Tucker 1951): squared cosine of the angle

between the subspaces spanned by the true v
(c, c̃)
1 and v

(c, c̃)
2 and the estimated v̂

(c, c̃)
1

and v̂
(c, c̃)
2 (c, c̃ ∈ C, c < c̃). It measures the degree of agreement between two

subspaces and takes values in [0, 1] where the maximum value indicates that the

two subspaces are coincident. Specifically, since there are

(
C
2

)
squared cosine

values corresponding to the

(
C
2

)
off-diagonal blocks of any matrix K, for each

data set the squared cosine values have been averaged.

5.2 Simulation results from themodel

The results of the simulation study are displayed in Tables 2 and 3 and Figs. 6, 7, 6,
8, 9, where the average measures of performance are reported for the two scenarios
with N � 20 and N � 40. Generally speaking, the tables show a good performance
of the algorithm for both cluster (Fig. 6a) and subspace recovery (Fig. 6b), even when
the error level is high and one can see that the performance dramatically drops only in
the more complex settings in the presence of many clusters and very high error level,
especially when the sample size is smaller.

To deepen the analysis of the performance of the algorithm, the average values of
ARI and TCC for each cell of the experimental design can be analysed in more detail.
Given the number of clusters C, the performance in terms of recovery of the true both
partition and subspace improves with the sample size and decreases with the error
level (Tables 2 and 3, Fig. 6a and b), as expected.
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Moreover, as evident from the boxplots in Figs. 7 and 8, the ARI and TCC distribu-
tions exhibit an increasing variability as the level of error δ and the number of groups
C increase, but the measures generally maintain good values except for the case with a
very high level of error and many clusters. Note that TCC has been used as a measure
of how well the algorithm correctly reveals the underlying clustering subspace and(
C
2

)
TCC values have been averaged for each cell of the experimental design: this

affects the variability of its distribution which is generally greater than that of ARI
(Fig. 8).

The trend of the loss values (Figs. 6c and 9) is consistent with both cluster and
subspace recovery, so the means and variability of the distributions increase with error
and decrease with sample size on average (Fig. 9). It can be observed that with the
same sample size and error, the relative loss decrease with the number of clusters (Fig.
9): this is due to the fact that as C increases, the between blocks become larger in
size and the residual within part of the data that remains unexplained gets smaller and
smaller.

As for the scalability, inTables 2 and3 the values of the average run time (in seconds)
and the number of iterations before convergence are reported. The number of iterations,
while increasing with the error, remains low and does not change remarkably as C and
N vary. As for the computation time per run, given the same number of clusters, the
increasing error does not seem to provide substantial differences. Conversely, when
the sample size doubles for the same number of clusters, the average run time is nearly
doubled (Fig. 6d). Specifically, for N � 40 the average run time is 2.77, 1.61 and 1.5
times higher than the case with N � 20 for C � 2, 3, 4, respectively.

Further details on computation time emerge by inspecting Tables 2 and 3. We can

Table 2 Simulation study: sample size equal to 20

N � 20

C δ ARI %(ARI=1) TCC LOSS TIME #ITER

2 0.15 1 100 0.991 0.117 0.07 2.04

0.25 1 100 0.984 0.182 0.07 2.07

0.50 1 100 0.969 0.301 0.07 2.05

0.75 0.998 99 0.952 0.384 0.08 2.19

3 0.15 1 100 0.982 0.105 0.37 2.50

0.25 0.995 97 0.966 0.163 0.40 2.60

0.50 0.936 69 0.898 0.264 0.46 3.25

0.75 0.729 11 0.721 0.337 0.50 3.57

4 0.15 0.995 97 0.970 0.093 1.48 3.17

0.25 0.961 75 0.928 0.143 1.77 3.77

0.50 0.591 6 0.585 0.224 1.74 4.32

0.75 0.328 0 0.340 0.265 1.79 4.29
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Table 3 Simulation study: sample size equal to 40

N � 40

C δ ARI %(ARI=1) TCC LOSS TIME #ITER

2 0.15 1 100 0.996 0.123 0.19 2.01

0.25 1 100 0.992 0.190 0.20 2.03

0.50 1 100 0.985 0.319 0.21 2.03

0.75 1 100 0.977 0.407 0.21 2.05

3 0.15 1 100 0.991 0.118 0.61 2.32

0.25 1 100 0.985 0.180 0.64 2.35

0.50 0.999 99 0.970 0.299 0.73 2.70

0.75 0.987 84 0.946 0.385 0.80 2.99

4 0.15 1 100 0.986 0.111 2.03 2.91

0.25 1 100 0.977 0.171 2.19 3.03

0.50 0.970 62 0.930 0.283 2.78 3.70

0.75 0.804 7 0.772 0.363 3.25 4.56

5 0.15 1 100 0.981 0.105 5.59 3.42

0.25 0.997 96 0.966 0.162 7.01 3.69

0.50 0.815 5 0.781 0.266 7.60 5.06

0.75 0.539 0 0.508 0.330 7.78 5.81

see that the average computation time per run increases with the complexity of the data
(i.e., sample size, error level and number of clusters) and the divergence between small
and large samples becomes more pronounced as the data becomes more complex in
terms of number of clusters, especially when data are very highly perturbed. In detail,
given N � 20, for C � 3 and C � 4 TIME increases by 3.45 and 12.75 times
compared to the case with C � 2, respectively. When N � 40, for C � 3 and C � 4
TIME increases by 6.14 and 24.14 times compared to C � 2, respectively.

5.3 Local optima and number of starts

In order to analyse the stability of the solution and investigate about the sensitivity to
local optima, further results are reported in Tables 4 and 5 which display the best ARI
values over an increasing number of random starts (10, 30, 50, 100). Let us recall that
at each run the algorithm starts from a random partition drawn from a discrete uniform
distribution so that any object is randomly assigned to a cluster with probability 1/C.
Given the number of starts, both the average ARI between true and fitted partitions
and the number of times where ARI � 1 show an improvement on average as δ

decreases, as expected. Thus, a very good performance in terms of average ARI is
already achieved when the optimal solution is retained over a few random starts when
it generally becomes stable. Specifically, when the error is low (δ � 0.15, 0.25), the
optimal solution is already achieved with 10 random starts. For high level of error
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Fig. 6 Measures of performance for C � 2, 3, 4, 5 and N � 20, 40: a ARI; b TCC; c LOSS; d TIME
(color figure online)

Fig. 7 Box plots of the ARI distributions for increasing δ and C � 2 (blue), C � 3 (red), C � 4 (yellow),
C � 5 (violet) for: a N � 20; b N � 40 (color figure online)

(δ � 0.50), small sample size and many clusters the chance to get the best solution,
although increasing with the number of starts, remains low. When the error is very
high (δ � 0.75) and with many clusters, the underlying clustering structure is masked
and the optimal solution is never obtained for both sample sizes.
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Fig. 8 Box plots of the TCC distributions for increasing δ and C � 2 (blue), C � 3 (red), C � 4 (yellow),
C � 5 (violet) for: a N � 20; b N � 40 (color figure online)

Fig. 9 Box plots of the LOSS distributions for increasing δ and C � 2 (blue), C � 3 (red), C � 4 (yellow),
C � 5 (violet) for: a N � 20; b N � 40

It is important to note that for C � 2 the optimal solution is found with only 10
starting points, this is due to the fact that in this case only one block of the orig-
inal exchanges between the two clusters have to be reconstructed and the optimal
approximation is easier to achieve.

In order to further analyse the trend of the ARI as the number of starts increases,
Tables 4 and 5 report the number of times where the ARI is higher than 0.85 which
denotes a pretty good partition with not many misclassified objects. In the more com-
plex cases, with many clusters and high error (δ � 0.5 and δ � 0.75), it can be
observed that the quality of the resulting partition improves with the number of starts.

It is important to note that for C � 2 and C � 3 the optimal solution is always
found with only 10 starting points, except for the case with a very high level of error
where, however, the chance to get either the true (ARI � 1) or at least a good partition
(ARI > 0.85) is still high.

All in all, we may observe that the local minima problem does not result to be
generally crucial except for small datasets and many clusters where, in the presence
of a high level of noise that can mask the existing clustering structure, the percentage
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of times where the partitions are correctly recovered might need a large number of
random starts for a more relevant improvement.

5.4 Comparison with CLUSKEXTmodel

In order to make a comparison, the CLUSKEXTmodel (Vicari 2018) has been consid-
ered by fitting the unconstrained model (with no external information) which defines
the direct least-squares competitor of our model. Let us recall that while our proposal
aims at reconstructing the original between-cluster imbalances in low dimensions, the
CLUSKEXT model estimates the average imbalances.

The CLUSKEXT model has been fitted to the same datasets generated for the
simulation study and its performances in terms of ARI, %(ARI=1) and loss values
are reported in Tables 6 and 7 together with the measures from our between-cluster
model to facilitate the comparison. The recovery trends are similar when compared
with those described for our model: the cluster recovery gets worse when the amount
of error and the true number of clusters increase.

Anyway, the average values of ARI and %(ARI=1) are rather high only for the case
with two clusters while they dramatically drop for the cases with more clusters even
with small amount of error.

By comparing the performances of CLUSKEXT and our between-cluster model, it
can be observed that the latter outperforms the former: for any cell of the experimental
design, the average values of ARI and %(ARI=1) for our model are never lower than
the corresponding ones for CLUSKEXT.

In a few cases, the average loss values coincide or are almost the same and this often
occurs in conditions where (essentially) perfect recoveries are obtained. In some other
cases, the differences in the average values are much more pronounced and this holds
when the level of error is high or very high and, above all, whenC increases. All in all,
we therefore observe that different partitions are discovered by fitting CLUSKEXT
model and our between-cluster model, consistently with their different aims.

6 A real application: cola brand switching data

A real application of brand switching data derived from supermarket scanner data has
been considered, in order to investigate how households change in buying cola soft
drinks. The daily purchases of 15 different cola soft drinks were recorded for 488 US
households over a period of 104 weeks from June 1991 to June 1993 (Bell and Lattin
1998).

In the original data rows indicate cola brands bought before and columns indicate
cola brands that are currently bought; thus, changes are made from row to column
products. In the view of analysing the directions of the brand choices and to take into
account the information about the diagonal entries which measure the brand loyalty,
a skew-symmetric matrix K � (

ki j
)
has been built from the original data D � (

di j
)

by the following transformation: ki j � (di j − d ji + dii − d j j )/2, where the imbalance
between i and j is corrected for the imbalance between the loyalties of j and i (Saito
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Table 6 Comparison with CLUSKEXT

N=20

C δ Between-cluster model CLUSKEXT model

ARI %(ARI=1) LOSS ARI %(ARI=1) LOSS

2 0.15 1 100 0.117 1 100 0.117

0.25 1 100 0.182 0.98 98 0.183

0.50 1 100 0.301 0.767 76 0.3

0.75 0.998 99 0.384 0.517 50 0.381

3 0.15 1 100 0.105 0.441 3 0.116

0.25 0.995 97 0.163 0.449 4 0.178

0.50 0.936 69 0.264 0.422 1 0.286

0.75 0.729 11 0.337 0.383 0 0.359

4 0.15 0.995 97 0.093 0.361 0 0.153

0.25 0.961 75 0.143 0.356 0 0.202

0.50 0.591 6 0.224 0.331 0 0.295

0.75 0.328 0 0.265 0.294 0 0.364

Simulation study: sample size equal to 20

and Yadohisa 2005). This can be appropriate in the analysis of brand switching where
the direction of the switches is often related to the degree of brand loyalty as it usually
happens where the diagonal entries are large in comparison with the off-diagonal ones.

Here,we are interested in studying the asymmetry in changing the purchasedbrands.
The 15 colas are: Coke decaf (CD), Coke diet decaf (CdD), Pepsi diet decaf (PdD),
Pepsi decaf (PD), Canfield (Can), Coke (C), Coke classic (CCl), Coke diet (Cd),
Pepsi diet (Pd), RC diet (RCd), Rite diet (Rd), Pepsi (P), Private label (Pr), RC (RC),
Wildwood (Wil).

The proposed model is fitted by varyingC � 1, . . . , 6 and, from the analysis of the
scree plot of the model fit (Fig. 10), the partition into three clusters has been chosen
(goodness-of-fit� 97.73%) that corresponds to the the elbow of the scree plot.

The resulting partition of the brands is G1 � {CD, PdD, PD, Can, C , RCd,
Wil}, G2 � {CCl, Cd, P}, G3 � {CdD, Pd, Rd, Pr , RC}. In Figs. 11, 12, 13 the
plots of the colas in the planes of the optimal vectors v̂

(c, c̃)
1 and v̂

(c, c̃)
2 (c, c̃ ∈ {1, 2, 3},

c < c̃) are reported and the relations between cluster G1 (Fig. 11), G2 (Fig. 12) and
G3 (Fig. 13), with all the others are visualised, respectively, and different markers
denote different clusters: circles for objects in G1, squares for objects in G2 and stars
for objects in G3. Moreover, the arrows in different colours represent the pairwise
directions of the switches between clusters: red for (G1, G2), blue for (G1, G3) and
green for (G2, G3). According to the geometrical interpretation of the SVD of skew-
symmetric matrices (Constantine and Gower 1978), Fig. 11 shows an anticlockwise
direction from G1 to G2 and G3, i.e., since G1 has in-flows from G2 and G3, G1 is a
destination cluster. Similarly, the plot in Fig. 12 displays a clockwise direction from
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Table 7 Comparison with CLUSKEXT

N � 40

C δ Between-cluster model CLUSKEXT model

ARI %(ARI=1) LOSS ARI %(ARI=1) LOSS

2 0.15 1 100 0.123 1 100 0.124

0.25 1 100 0.190 1 100 0.19

0.50 1 100 0.319 0.99 99 0.319

0.75 1 100 0.407 0.799 80 0.407

3 0.15 1 100 0.118 0.433 0 0.123

0.25 1 100 0.180 0.436 1 0.187

0.50 0.999 99 0.299 0.438 0 0.309

0.75 0.987 84 0.385 0.442 0 0.396

4 0.15 1 100 0.111 0.303 0 0.158

0.25 1 100 0.171 0.293 0 0.221

0.50 0.970 62 0.283 0.377 0 0.330

0.75 0.804 7 0.363 0.391 0 0.409

5 0.15 1 100 0.105 0.381 0 0.181

0.25 0.997 96 0.162 0.346 0 0.241

0.50 0.815 5 0.266 0.338 0 0.344

0.75 0.539 0 0.330 0.323 0 0.419

Simulation study: sample size equal to 40

Fig. 10 Cola data. Scree plot of the percentage fit
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Fig. 11 Cola data. Scatter plot of the cola brands for cluster G1. Directions of the switches between clusters
are represented by arrows

Fig. 12 Cola data. Scatter plot of the cola brands for cluster G2. Directions of the switches between clusters
are represented by arrows

Fig. 13 Cola data. Scatter plot of the cola brands for cluster G3. Directions of the switches between clusters
are represented by arrows
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Fig. 14 Cola data. Graph of the clustering results where the values on the arrows represent the average brand
switches between clusters

G2 to both G1 and G3, i.e., G2 is an origin cluster, because it has out-flows towards
G1 and G3. Finally, in-flows from G2 and out-flows directed towards G1 qualify G3
as both a destination cluster from G2 and an origin cluster towards G1.

Moreover, we recall that the area of the triangle formed by any pair of brands
in different clusters and the origin is proportional to the amount of the imbalance
between such pair of brands. Specifically, the areas of all triangles between brands
in G1 � {CD, PdD, PD, Can, C , RCd, Wil} and G2 � {CCl, Cd, P} are larger
than those between brands in G2 and G3 � {CdD, Pd, Rd, Pr , RC} (Fig. 12), i.e.,
the switching from G2 to G1 is always greater than the switching from G2 to G3.
Similarly, switches towards brands in G1 are generally higher when coming from G2
rather thanG3 (Fig. 11) and the switches from brands inG3 to brands inG1 are almost
all higher than those from G2 to G3 (Fig. 13)

Finally, the results are summarized in Fig. 14 so that the origin/destination clusters
are represented by arrowed lines according to what emerges from Figs. 11, 12, 13:
households tend to switch their purchases from brands in cluster G2 to brands in
clusters G3 and G1. Specifically, from the values on the arrows in Fig. 14 which are
computed as the average estimated switches between clusters, it results that households
tend to switch mainly from the most popular brands such as Coke classic, diet Coke
and Pepsi in favour to minor brand.

From the analysis of the cola features diet/non-diet and caff/Decaf , it can be
observed that diet colas tend to be switched, while Decaf colas tend to represent
the target of the switches, which is consistent with the results from the four-cluster
solution of CLUSKEXT in Vicari (2018). Thus, the switches between cola brands can
also be interpreted with respect to their features and using only a few clusters.

7 Concluding remarks

In this paper a novel clustering model oriented to exploit and convey the asymmetric
relationships between objects is proposed. The model is mainly focused on the recon-
struction of the pairwise imbalances between objects which, as a by-product, allows
to account for the between-cluster effects and identify origin/destination clusters of
objects.

The main strength of the proposal lies in the use of the SVD for skew-symmetric
matrices, not only for its simplicity but also for the possibility of providing a graph-
ical representation of the clustering results that are interpretable in terms of directed
exchanges between clusters: clusters are identified as origins and/or destinations of
the exchanges. The graphical representation is also able to visualise: (1) the amount of
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the imbalance between any pair of objects belonging to different clusters as the area
of the triangle formed by the objects and the origin; (2) the direction of the exchange.

The special form of the SVD of skew-symmetric matrices also allows to provide
an efficient ALS algorithm specifically designed for the estimation process.

Themethod has been analysed thanks to an extensive simulation studywhich shows
the good performance of the proposal and its ability in recovering the underlying
clustering structure even in the presence of a high level of error and also in comparison
with an existing method. However, as observed by one referee, a limitation of the
numerical simulation could be given by the choices for the number of objects which is
not large enough when the number of clusters is high. Therefore, it may be difficult to
fully evaluate the effects of the number of clusters on the simulation results because
the results of the cluster sizes are added to this effect, so this issue may deserve further
future investigation.

A real-life application of brand switching data has been also presented to highlight
the utility and simplicity of the cluster interpretation in terms of origin/destination
clusters by using the graphical representation.

Further methodological developments may concern the modelling of the within
component of the skew-symmetries which remains unexplained here in order to pos-
sibly reconstruct the exchanges within clusters.

Moreover, further insightsmay regard the analysis of the performance of themethod
in different real data applications to further investigate its capability and utility in
various domains.
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A singular value decomposition of a skew-symmetric matrix

Let us recall the special form of the Singular Value Decomposition (SVD) of any
skew-symmetric matrix (Gower 2018; Bove et al. 2021).

LetA � (ai j ) be an (N ×N ) skew-symmetric matrix, where ai j � −a ji represents
the imbalance between objects i and j (i , j � 1, . . . , N ).

Any skew-symmetric matrix can be written by using the full SVD as follows

A � P�Q� � P�JP�, (A1)

where
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• P andQ are the (N ×N ) matrices of the left and right singular vectors, respectively;
• � � diag(λ1, λ1, λ2, λ2, . . . , λ[N/2], λ[N/2]) is the diagonal matrix of the singular
values, where

[ N
2

]
denotes the integer part of N

2 ;

• J is an (N × N ) block diagonal matrix with matrices

(
0 1

−1 0

)
along its diagonal (if

N is odd, the last element of J is set to 1 to maintain orthogonality);

see (Bove et al. 2021; Gower 2018) for further details.
Note that singular values come in pairs and if N is odd the last one is zero. The

equivalence in (A1) is due to the form of the skew-symmetric matrices so that to
compute the SVD of A it is sufficient to determine matrices P and �. Specifically, the
presence ofmatrix J in (A1)makes the pairs of the right singular vectors corresponding
to the same singular value be a permutation and reflection of the corresponding left
singular vectors, i.e., for example, the first pair of the left singular vectors p1, p2
corresponds to the first pair of the right singular vectors, i.e., q1 � p2, q2 � −p1.
The pair (pn , qn) for n � 1, . . . , [N/2] is called the n-th bimension.

The full SVD of A can be written as

A �

[
N
2

]

∑

n�1

λn

(
p2n−1p

�
2n − p2np

�
2n−1

)
,

which in scalar notation is

ai j � λ1(p1i p2 j − p1 j p2i ) + λ2(p3i p4 j − p3 j p4i ) + · · ·+
+ λ[N/2](p(N−1)i pN j − p(N−1) j pNi ) �

�

[
N
2

]

∑

n�1

λn
(
p(2n−1)i p(2n) j − p(2n−1) j p(2n)i

)
, (i , j � 1, . . . , N ),

where p(2n−1)i denotes the i-th element of the singular vector p2n−1 of A (similarly
for p(2n) j ), λn is the n-th singular value of A.

The truncated form of the SVD of size 2R can be written as

A � P(R)�(R)JP�
(R) + E, R ≤

[
N

2

]
(A2)

whereP(R) denotes the (N × 2R)matrix containing the first 2R columns ofP,�(R) the
diagonal (2R × 2R) matrix with elements λ1, λ1, . . . , λR , λR , and E is the residual
matrix from the full SVD in (A1). In scalar notation the expression (A2) can be written
as

ai j �
R∑

n�1

λn
(
p(2n−1) i p(2n) j − p(2n−1) j p(2n) i

)
+ εi j , (i , j � 1, . . . , N ),

123



192 D. Vicari, C. D. Nuzzo

where εi j represents the residual term.
Finally, note that P(R)�(R)JP�

(R) in (A2) is the best approximation of rank 2R of
matrix A in the least-squares sense and the following equivalence holds (see (Ten
Berge 2005; Lütkepohl 1997))

∥∥∥A − P(R)�(R)JP�
(R)

∥∥∥
2 � 1 − 2

∑R
n�1 λ2n

‖A‖ .
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