
On the Verification of Polynomial System Solvers

Changbo Chen, Marc Moreno Maza, Wei Pan and Yuzhen Xie

University of Western Ontario, London N6A 1M8, Canada

Abstract. We discuss the verification of mathematical software solving polyno-
mial systems symbolically by way of triangular decomposition. Standard verifi-
cation techniques are highly resource consuming and apply only to polynomial
systems which are easy to solve. We exhibit a new approach which manipulates
constructible sets represented by regular systems. We provide comparative bench-
marks of different verification procedures applied to four solvers on a large set
of well-known polynomial systems. Our experimental results illustrate the high
efficiency of our new approach. In particular, we are able to verify triangular de-
compositions of polynomial systems which are not easy to solve.

Key words: Software verification, polynomial system solver, triangular decom-
position.

1 Introduction

Solving systems of non-linear, algebraic or differential equations, is a fundamental
problem in mathematical science. It has been studied for centuries and has stimulated
many research developments. Algorithmic solutions can be classified into three cate-
gories: numeric, symbolic and hybrid numeric-symbolic. The choice for one of them
depends on the characteristics of the system of equations tosolve. For instance, it de-
pends on whether the coefficients are known exactly or are approximations obtained
from experimental measurements.This choice depends also on the expected answers,
which could be a complete description of all the solutions, or only the real solutions, or
just one sample solution among all of them.

Symbolic solvers are powerful tools in scientific computing: they are well suited for
problems where the desired output must be exact and they havebeen applied success-
fully in areas like digital signal processing, robotics, theoretical physics, cryptology,
dynamical systems, with many important outcomes. See [7] for an overview of these
applications.

Symbolic solvers are also highly complex software. First, they implement sophis-
ticated algorithms, which are generally at the level of on-going research. Moreover, in
most computer algebra systems, thesolve command involves nearly the entire set of
libraries in the system, challenging the most advanced operations on matrices, polyno-
mials, algebraic and modular numbers, polynomial ideals, etc.

Secondly, algorithms for solving systems of polynomial equations are by nature
of exponential-space complexity. Consequently, symbolicsolvers are extremely time-
consuming when applied to large examples. Even worse, intermediate expressions can
grow to enormous size and may halt the computations, even if the result is of moderate

size. The implementation of symbolic solvers, then, requires techniques that go far be-
yond the manipulation of algebraic or differential equations, such as efficient memory
management, data compression, parallel and distributed computing, etc.

Last, but not least, the precise output specifications of a symbolic solver can be quite
involved. Indeed, given an input polynomial systemF , defining what a symbolic solver
should return implies describing what the geometry of the solution setV(F) of F can
be. For an arbitraryF , the setV(F) may consist of components of different natures
and sizes: points, lines, curves, surfaces. This leads to the following difficult challenge.

Given a polynomial systemF and a set of componentsC1, . . . , Ce, it is hard, in
general, to tell whether the union ofC1, . . . , Ce corresponds exactly to the solution set
V(F) or not. Actually, solving this verification problem is generally (at least) as hard
as solving the systemF itself.

Because of the high complexity of symbolic solvers, developing verification algo-
rithms and reliable verification software tools is a clear need. However, this verification
problem has received little attention in the literature. Inthis paper, we present new
techniques for verifying a large class of symbolic solvers.We also report on intensive
experimentation illustrating the high efficiency of our approach w.r.t. known techniques.

We assume that each component of the solution setV(F) is given by a so-called
regular system. This is a natural assumption in symbolic computations, well-developed
in the literature under different terminologies, see [1, 22] and the references therein. In
broad words, a regular system consists of several polynomial equations with a triangular
shape

p1(x1) = p2(x1, x2) = · · · = pi(x1, x2, . . . , xn) = 0

and a polynomial inequality

h(x1, . . . , xn) 6= 0

such that there exists (at least) one point(a1, . . . , an) satisfying the above equations
and inequality. Note that these polynomials may contain parameters.

Let us consider the following well-known systemF taken from [5].






x31 − x6 − x − y = 0
x8 − z = 0
x10 − t = 0

We aim at solving this system forx > y > z > t, that is, expressingx as a function of
y, z, t, theny as a function ofz, t andz as a function oft. One possible decomposition
is given by the three regular systems below:






(
t4 − t

)
x − ty − z2 = 0

t3y2 + 2t2z2y +
(
−t6 + 2t3 + t − 1

)
z4 = 0

z5 − t4 = 0
t4 − t 6= 0

,






x2 − z4 = 0
y + t2z2 = 0

z5 − t = 0
t3 − 1 = 0

,






x = 0
y = 0
z = 0
t = 0

Another decomposition is given by these other three regularsystems:






(
t4 − t

)
x − ty − z2 = 0

tzy2 + 2z3y − t8 + 2t5 + t3 − t2 = 0
z5 − t4 = 0

z
(
t4 − t

)
6= 0

,






zx2 − t = 0
ty + z2 = 0
z5 − t = 0
t3 − 1 = 0

tz 6= 0

,






x = 0
y = 0
z = 0
t = 0

These two decompositions look slightly different (in particular, the second components)
and one could think that, if each of them was produced by a different solver, then at
least one of these solvers has a bug. In fact, both decompositions are valid, but proving
respectively that they encode the solution setV(F) is not feasible without computer
assistance. However, proving that they define the same set ofpoints can be achieved by
an expert hand without computer assistance. This is an important observation that we
will guide us in this paper.

Let us consider now an arbitrary input systemF and a set of componentsC1, . . . , Ce

encoded by regular systemsS1, . . . , Se respectively. The usual approach for verifying
thatC1, . . . , Ce correspond exactly to the solution setV(F) is as follows.

(1) First, one checks that each candidate componentCi is actually contained inV(F).
This essentially reduces to substitute the coordinates of the points given byCi into
the polynomials ofF : if all these polynomials vanish at these points, thenCi is a
component ofV(F), otherwise, (and up to technical details that we will skip inthis
introduction)Ci is not a component ofV(F).

(2) Secondly, one checks thatV(F) is contained in the union of the candidate compo-
nentsC1, . . . , Ce by:

(2.1) computing a polynomial systemG such thatV(G) corresponds exactly to
C1, . . . , Ce, and

(2.2) checking that every solution ofV(F) cancels the polynomials ofG.

Steps(2.1) and (2.2) can be performed using standard techniques based on compu-
tations of Gröbner bases, as we discuss in Section 6.1. These calculations are very
expensive, as shown by our experimentation, reported in Section 7.

In this paper, we propose a different approach, summarized in non-technical lan-
guage in Section 2. The main idea is as follows. Instead of comparing a candidate set of
componentsC1, . . . , Ce against the input systemF , we compare it against the output
D1, . . . , Df produced by another solver. Both this solver and the comparison process
are assumed to be validated. Hence, the candidate set of componentsC1, . . . , Ce cor-
responds exactly to the solution setV(F) if and only if the comparison process shows
thatD1, . . . , Df andC1, . . . , Ce define the same solution set.

The technical details of this new approach are given in Sections 3, 4, 5 and 6. In
Section 3, we review the fundamental algebraic concepts andoperations involved in
our work. In particular, we specify the kind of solvers that we consider in this study,
namely those solving polynomial systems by means oftriangular decompositions.

The key computational concept behind these triangular decomposition computed is
that of aconstructible set, so we dedicate Section 4 to it. Section 5 is a formal and com-
plete presentation of our process for comparing triangulardecompositions. In Section 6,

we summarize the different verification procedures that areavailable for triangular de-
compositions, including our new approach. In Section 7, we report on experimentation
with these verification procedures. Our data illustrate thehigh efficiency of our new
approach.

2 Methodology

Let us consider again an arbitrary input polynomial systemF and a set of compo-
nentsC1, . . . , Ce encoded by regular systemsS1, . . . , Se respectively. As mentioned in
the Introduction, checking whetherC1, . . . , Ce corresponds exactly to the solution set
V(F) of F can be done by means of Gröbner bases computations. This verification
process is quite simple, see Section 6, and its implementation is straightforward, Thus,
if the underlying Gröbner bases engine isreliable, such verification tool can be regarded
as safe. See [2] for details.

Unfortunately, this verification process is highly expensive. Even worse, as shown
by our experimental results in Section 7, this verification process is unable to check
many triangular decompositions that are easy to compute.

We propose a new approach in order to overcome this limitation. Assume that we
have at hand a reliable solver computing triangular decompositions of polynomial sys-
tems. We believe that this reliability can be acquired over time by combining several
features.

– Checking the solver with a verification tool based on Gröbner bases for input sys-
tems of moderate difficulty.

– Using the solver for input systems of higher difficulty wherethe output can be
verified by theoretical arguments, see [3] for an example of such input system.

– Involving the library supporting the solver in other applications.
– Making the solver widely available to potential users.

Suppose that we are currently developing a new solver computing triangular decompo-
sitions. In order to verify the output of this new solver, we can take advantage of the
reliable solver.

This may sound natural and easy in the first place, but this is actually not. Indeed,
as shown in the Introduction, two different solvers can produce two different, but valid,
triangular decompositions for the same input system. Checking that these two triangular
decompositions encode the same solution set boils down to compute the differences of
two constructible sets. This is a non-trivial operation, see the survey paper [16].

The first contribution of our paper is to provide a relativelysimple, but efficient,
procedure for computing the set theoretical differences between two constructible sets.
See Section 5. Such procedure can be used to develop a verification tool for our new
solver by means of our reliable solver. Moreover, this procedure is sufficiently straight-
forward to implement such that it can be trusted after a relatively short period of testing,
as the case for the verification tool based on Gröbner bases computations.

The second contribution of our work is to illustrate the highefficiency of this new
verification tool. In Section 7, we consider four solvers computing triangular decompo-
sition of polynomial systems:

– the commandTriangularizeof theRegularChainslibrary [11] in MAPLE

– the TRIADE solver of theBasicMathlibrary [8] in ALDOR

– the commandsRegSerandSimSerof theEpsilonlibrary [19] in MAPLE.

We have run these four solvers on a large set of well-known input systems from the
data base [12, 17, 21]. For those systems for which this is feasible, we have verified
their computed triangular decompositions with a verification tool based on Gröbner
bases computations. Then, for each input system, we have compared all its computed
triangular decompositions by means of our new verification tool.

Based on our experimentation data reported in Section 7 we make the following
observations.

– All computed triangular decompositions, that could be checked via Gröbner bases
computations, are correct.

– However, the verification tool based on Gröbner bases computations failed to check
many examples by running out of computer memory.

– For each input systemF , most pairs of triangular decompositions ofF could be
compared successfully by our new verification tool.

– Moreover, for any systemF to which all verification tools could be applied, our
new approach runs much faster.

This suggests that our four solvers and our new verification tool have a good level of
reliability. Moreover, our verification tool allows to process cases that were previously
out of reach.

3 Preliminaries

In this section we introduce notations and review fundamental results in the theory of
regular chains and regular systems [1, 4, 10, 13, 18, 21]. We shall use some notions from
commutative algebra (such as the dimension of an ideal) and refer for instance to [15]
for this subject.

3.1 Basic notations and definitions

Let K[Y] := K[Y1, . . . , Yn] be the polynomial ring over the fieldK in variablesY1 <
· · · < Yn. Let p ∈ K[Y] be a non-constant polynomial. Theleading coefficientand the
degreeof p regarded as a univariate polynomial inYi will be denoted by lc(p, Yi) and
deg(p, Yi) respectively. The greatest variable appearing inp is called themain variable
denoted by mvar(p). The separantsep(p) of p w.r.t mvar(p), is ∂p/∂mvar(p). The
degree, the leading coefficient, and the leading monomial ofp regarding as a univariate
polynomial in mvar(p) are called themain variable, theinitial , and therank of p; they
are denoted by mdeg(p), init(p) and rank(p) respectively.

Let F ⊂ K[Y] be a finite polynomial set. Denote by〈F 〉 the ideal it generates in
K[Y] and by

√
〈F 〉 the radical of〈F 〉. Let h be a polynomial inK[Y], thesaturated

ideal 〈F 〉 : h∞ of 〈F 〉 w.r.t h, is the set

{q ∈ K[Y] | ∃m ∈ N s.t.hmq ∈ 〈F 〉},

which is an ideal inK[Y].
A polynomialp ∈ K[Y] is a zerodivisormodulo〈F 〉 if there exists a polynomial

q such thatpq is zero modulo〈F 〉, andq is not zero modulo〈F 〉. The polynomial is
regularmodulo〈F 〉 if it is neither zero, nor a zerodivisor modulo〈F 〉. Denote byV(F)
thezero set(or solution set, or algebraic variety) ofF in K

n
. For a subsetW ⊂ K

n
,

denote byW its closure in the Zariski topology, that is the intersection of all algebraic
varietiesV(G) containingW for all G ⊂ K[Y].

Let T ⊂ K[Y] be atriangular set, that is a set of non-constant polynomials with
pairwise distinct main variables. Denote by mvar(T) the set of main variables oft ∈ T .
A variable inY is calledalgebraicw.r.t. T if it belongs to mvar(T), otherwise it is
calledfreew.r.t. T . For a variablev ∈ Y we denote byT<v (resp.T>v) the subsets of
T consisting of the polynomialst with main variable less than (resp. greater than)v. If
v ∈ mvar(T), we sayTv is defined. Moreover, we denote byTv the polynomial inT
whose main variable isv, by T6v the set of polynomials inT with main variables less
than or equal tov and byT>v the set of polynomials inT with main variables greater
than or equal tov.

Definition 1 Let p, q ∈ K[Y] be two nonconstant polynomials. We sayrank(p) is
smaller thanrank(q) w.r.t Ritt orderingand we write,rank(p) <r rank(q) if one of
the following assertions holds:

– mvar(p) < mvar(q),
– mvar(p) = mvar(q) andmdeg(p) < mdeg(q).

Note that the partial order<r is a well ordering. LetT ⊂ K[Y] be a triangu-
lar set. Denote by rank(T) the set of rank(p) for all p ∈ T . Observe that any two
ranks in rank(T) are comparable by<r. Given another triangular setS ⊂ K[Y], with
rank(S) 6= rank(T), we write rank(T)<r rank(S) whenever the minimal element of the
symmetric difference(rank(T) \ rank(S)) ∪ (rank(S) \ rank(T)) belongs to rank(T).
By rank(T) 6r rank(S), we mean either rank(T) < rank(S) or rank(T) = rank(S).
Note that any sequence of triangular sets, of which ranks strictly decrease w.r.t<r, is
finite.

Given a triangular setT ⊂ K[Y], denote byhT be the product of the initials ofT
(throughout the paper we use this convention and whenT consists of a single element
g we write it in hg for short). Thequasi-componentW(T) of T is V(T) \ V(hT), in
other words, the points ofV(T) which do not cancel any of the initials ofT . We denote
by Sat(T) thesaturated ideal ofT : if T is empty then Sat(T) is defined as the trivial
ideal〈0〉, otherwise it is the ideal〈T 〉 : h∞

T .
Let h ∈ K[Y] be a polynomial andF ⊂ K[Y] a set of polynomials, we write

Z(F, T, h) := (V(F) ∩W(T)) \ V(h).

WhenF consists of a single polynomialp, we useZ(p, T, h) instead ofZ({p}, T, h);
whenF is empty we just writeZ(T, h). By Z(F, T), we denoteV(F) ∩ W(T).

Given a family of pairsS = {[Ti, hi] | 1 ≤ i ≤ e}, whereTi ⊂ K[Y] is a triangular
set andhi ∈ K[Y] is a polynomial. We write

Z(S) :=

e⋃

i=1

Z(Ti, hi).

We conclude this section with some well known properties of ideals and triangular
sets. For a proper idealI, we denote bydim(V(I)) the dimension ofV(I).

Lemma 1 LetI be a proper ideal inK[Y] andp ∈ K[Y] be a polynomial regular w.r.t
I. Then, eitherV(I)∩V(p) is empty or we have:dim(V(I)∩V(p)) ≤ dim(V(I))−1.

Lemma 2 LetT be a triangular set inK[Y]. Then, we have

W(T) \ V(hT) = W(T) and W(T) \ W(T) = V(hT) ∩ W(T).

PROOF. SinceW(T) ⊆ W(T), we have

W(T) = W(T) \ V(hT) ⊆ W(T) \ V(hT).

On the other hand,W(T) ⊆ V(T) implies

W(T) \V(hT) ⊆ V(T) \ V(hT) = W(T).

This proves the first claim. Observe that we have:

W(T) =
(
W(T) \ V(hT)

)
∪
(
W(T) ∩ V(hT)

)
.

We deduce the second one.

Lemma 3 ([1, 4]) LetT be a triangular set inK[Y]. Then, we have

V(Sat(T)) = W(T).

Assume furthermore thatW(T) 6= ∅ holds. ThenV(Sat(T)) is a nonempty unmixed
algebraic set with dimensionn− |T |. Moreover, ifN is the free variables ofT , then for
every prime idealP associated withSat(T) we have

P ∩ Sat(T) = 〈0〉.

3.2 Regular chain and regular system

Definition 2 (Regular Chain) A triangular setT ⊂ K[Y] is a regular chainif one of
the following conditions hold:

– eitherT is empty,
– or T \{Tmax} is a regular chain, whereTmax is the polynomial inT with maximum

rank, and the initial ofTmax is regular w.r.t.Sat(T \ {Tmax}).

To deal with inequalities, one can introduce the notion of a regular system via that
of a regular chain.

Definition 3 (Regular System) A pair [T, h] is a regular system ifT is a regular chain,
andh ∈ K[Y] is regular w.r.tSat(T).

Remark 1 A stronger notion of a regular system was presented in [18]. For example,
the polynomial system[T, h], with T = [Y1Y4 − Y2] andh = Y2Y3, is still a regular
system in our sense but not in that of [18]. Our definition is more convenient for our
purpose in dealing with zerodivisors. We also note that in dimension zero (no free vari-
ables exist) the notion of a regular chain (as used in this paper) and that of a regular
set introduced in [18] coincide, see [1, 18] for details.

Proposition 1 For every regular system[T, h] we haveZ(T, h) 6= ∅.

PROOF. SinceT is a regular chain, by Lemma 3 we haveV(Sat(T)) 6= ∅. By definition
of regular system, the polynomialhhT is regular w.r.t Sat(T). Hence, by Lemma 1, the
setV(hhT) ∩ V(Sat(T)) either is empty, or has lower dimension thanV(Sat(T)).
Therefore, the set

V(Sat(T)) \ V(hhT) = V(Sat(T)) \ (V(hhT) ∩V(Sat(T)))

is not empty. Finally, by Lemma 2, the set

Z(T, h) = W(T) \ V(h) = W(T) \ V(hhT) = V(Sat(T)) \ V(hhT)

is not empty.

Notation 1 For a regular systemR = [T, h], we definerank(R) := rank(T). For a set
R of regular systems, we define

rank(R) := max{rank(T) | [T, h] ∈ R}.

For a pair of regular systems(L, R), we definerank((L, R)) := (rank(L), rank(R)).
For a pair of lists of regular systems, we define

rank((L,R)) = (rank(L), rank(R)).

For triangular setsT, T1, . . . , Te we writeW(T)
D
−→ (W(Ti), i = 1 . . . e) if one of

the following conditions holds:

– eithere = 1 andT = T1,
– or e > 1, rank(Ti) < rank(T) for all i = 1 . . . e and

W(T) ⊆
e⋃

i=1

W(Ti) ⊆ W(T).

3.3 Triangular decompositions

Definition 4 Given a finite polynomial setF ⊂ K[Y], a triangular decompositionof
V(F) is a finite familyT of regular chains ofK[Y] such that

V(F) =
⋃

T∈T
W(T).

For a finite polynomial setF ⊂ K[Y], the TRIADE algorithm [13] computes a
triangular decomposition ofV(F). We list below the specifications of the operations
from TRIADE that we use in this paper.

Let p, p1, p2 be polynomials, and letT , C, E be regular chains such thatC ∪ E is
a triangular set (but not necessarily a regular chain).

– Regularize(p, T) returns regular chainsT1, . . . , Te such that

• W(T)
D
−→ (W(Ti), i = 1 . . . e),

• for all 1 ≤ i ≤ e the polynomialp is either0 or regular modulo Sat(Ti).
– For a set of polynomialsF ,Triangularize(F, T) returns regular chainsT1, . . . , Te

such that we have

V(F) ∩W(T) ⊆ W(T1) ∪ · · · ∪W(Te) ⊆ V(F) ∩ W(T).

and for1 ≤ i ≤ e we have rank(Ti) < rank(T) wheneverF 6⊂ Sat(T).
– Extend(C ∪ E) returns a set of regular chains{Ci | i = 1 . . . e} such that we

haveW(C ∪ T)
D
−→ (W(Ci), i = 1 . . . e).

– Assume thatp1 andp2 are two non-constant polynomials with the same main vari-
ablev, which is larger than any variable appearing inT , and assume that the ini-
tials of p1 andp2 are both regular w.r.t. Sat(T). Then,GCD(p1, p2, T) returns a
sequence

([g1, C1], . . . , [gd, Cd], [∅, D1], . . . , [∅, De]),

wheregi are polynomials andCi, Di are regular chains such that the following
properties hold:

• W(T)
D
−→ (W(C1), . . . ,W(Cd),W(D1), . . . ,W(De)),

• dimV(Sat(Ci)) = dimV(Sat(T)) anddimV(Sat(Dj)) < dimV(Sat(T)),
for all 1 6 i 6 d and1 6 j 6 e,

• the leading coefficient ofgi w.r.t. v is regular w.r.t. Sat(Ci),
• for all 1 6 i 6 d there exists polynomialsui andvi such that we havegi =

uip1 + vip2 mod Sat(Ci),
• if gi is not constant and its main variable isv, then p1 and p2 belong to

Sat(Ci∪{gi}).

4 Representations of constructible sets

Constructible set [6, 9] is a classical concept in elimination theory. In this section, we
present two types of representations for constructible sets inK

n
.

Definition 1 (Constructible set).A constructible subset ofK
n

is any finite union

(A1 \ B1) ∪ · · · ∪ (Ae \ Be)

whereA1, . . . , Ae, B1, . . . , Be are algebraic varieties overK.

Let F be the set of all constructible subsets ofK
n

w.r.t K. From Exercise 3.18 in [9],
we have

– all open algebraic sets are inF ;
– the complement of an element inF is in F ;
– the intersection of two elements inF is inF .

Moreover, these three properties describeexactlyall constructible sets. Given a set of
polynomialF andf ∈ K[Y], we denoteD(F, f) the difference ofV(F)\V(f), which
is also called abasic constructible set. If F is the empty set, then we writeD(f) for
short. Note that for a regular system in [20], we haveD(T, h) = Z(T, h).

4.1 Gröbner basis representation

Now Gröbner bases have become a standard tool to deal with algebraic sets; and they
can be applied to manipulate constructible sets as well. Given a constructible setC,
according to the definition, one can representC by a unique sequence of closed alge-
braic sets whose defining ideals naturally can be characterized by their reduced Gröbner
bases [14].

However, the constructible sets are intrinsically geometrical objects. We pay extra
cost to manipulate them, since it is very hard to compute the intersection of two ideals
and even to compute the radical ideal of an ideal. Whatsoever, there exist effective
algorithms to manipulate constructible sets. We shall use regular systems to do the
same jobs in a more efficient manner.

4.2 Regular system representation

In this section, we show that (Theorem 2) every constructible setC can be represented
by a finite set of regular systems{[Ti, hi] | i = 1 . . . e}, that is,

C =

e⋃

i=1

Z(Ti, hi).

Combining with Lemma 1, we know that if a regular system representation of a con-
structible set is empty, then the constructible setC is empty. This fact leads to an impor-
tant application of verifying polynomial system solvers. The proof of Theorem 2 is con-
structive and relies on algorithms calledDifference andDifferenceLR, presented
in Section 5. As an immediate consequence of the specifications of these algorithms
formally proved in the next section, we obtain the followingtheorem.

Theorem 1. Given two regular systems[T, h] and [T ′, h′], there is an algorithm to
compute the regular system representations of:

(1) the differenceZ(T, h) \ Z(T ′, h′);
(2) the intersectionZ(T, h)

⋂
Z(T ′, h′).

PROOF. Clain(1) follows from the specifications of theDifference algorithm. Claim
(2) follows from (1), together with the fact that for any two setsA andB, we have
A ∩ B = A \ (A \ B).

Theorem 2. Every constructible set can be represented by a finite set of regular sys-
tems.

PROOF. Consider the following familỹF of subsets ofK
n
:

F̃ = {S | S =

e⋃

i=1

Z(Ti, pi)},

where[Ti, pi] are regular systems. First, every open subset can be decomposed into a
finite union of open subsetsD(f), wheref is a polynomial. EachD(f) can be repre-
sented by the regular system[∅, f] consisting of the empty regular chain andf . Hence
F̃ contains all open subsets. Secondly, consider two elementsS andT in F̃ ; and assume
that

S =
e⋃

i=1

Z(Si, pi) and T =

f⋃

j=1

Z(Tj , qj).

We have

S
⋂

T =

e⋃

i=1

f⋃

j=1

(
Z(Si, pi)

⋂
Z(Tj , qj)

)
.

By Theorem 1,S
⋂

T has a regular system representation, that is to say,S
⋂

T ∈ F̃ .
By induction, any finite intersection of elements ofF̃ is in F̃ . Finally, we shall prove
that the complement of an element iñF is in F̃ . Essentially, we only need to show that
for each1 ≤ i ≤ e, Z(Si, pi)

c is in F̃ . Indeed,

Z(Si, pi)
c = W(Si)

c
⋃

V(pi) = V(Si)
c
⋃

V(pihSi
)

is in F̃ , since bothV(Si)
c andV(pihSi

) have regular system representations.

5 TheDifference algorithms

In this section, we present an algorithm to compute the set theoretical difference of
two constructible sets given by regular systems. Two procedures are, actually involved,
in order to achieve this goal,Difference andDifferenceLR. Their specifications
and pseudo-codes can be found below. The rest of this sectionis dedicated to proving
the correctness and termination of these algorithms. For the pseudo-code, we use the
MAPLE syntax. However, each of the two functions below returns a sequence of values.
Individual value or sub-sequences of the returned sequenceare thrown to the flow of
output by means of anoutput statement. Hence anoutput statement does not cause the
termination of the function execution.

Algorithm 1 Difference([T, h], [T ′, h′])
Input [T, h], [T ′, h′] two regular systems.

Output Regular systems{[Ti, hi] | i = 1 . . . e} such that

Z(T, h) \ Z(T ′, h′) =

e⋃

i=1

Z(Ti, hi),

and rank(Ti) 6r rank(T).

Algorithm 2 DifferenceLR(L,R)
Input L := {[Li, fi] | i = 1 . . . r} andR := {[Rj, gj] | j = 1 . . . s} two lists of

regular systems,
Output Regular systemsS := {[Ti, hi] | i = 1 . . . e} such that

(
r⋃

i=1

Z(Li, fi)

)
\




s⋃

j=1

Z(Rj , gj)


 =

e⋃

i=1

Z(Ti, hi),

with rank(S) 6r rank(L)

To prove the termination and correctness of above two algorithms, we present a
series of technical lemmas.

Lemma 4 Letp andh be polynomials andT a regular chain. Assume thatp /∈ Sat(T).
Then there exists an operationIntersect(p, T, h) returning a set of regular chains
{T1, . . . , Te} such that

(i) h is regular w.r.tSat(Ti) for all i;
(ii) rank(Ti) <r rank(T);

(iii) Z(p, T, h) ⊆ ∪e
i=1Z(Ti, h) ⊆ (V(p) ∩ W(T)) \ V(h);

(iv) Moreover, if the product of initialshT of T dividesh then

Z(p, T, h) =

e⋃

i=1

Z(Ti, h).

PROOF. Let

S = Triangularize(p, T),

R =
⋃

C∈S

Regularize(h, C).

We then have
V(p) ∩W(T) ⊆

⋃

R∈R

⊆ V(p) ∩ W(T).

This implies

Z(p, T, h) ⊆
⋃

R∈R, h/∈Sat(R)

Z(R, h) ⊆ (V(p) ∩W(T)) \ V(h).

Rename the regular chains{R | R ∈ R, h /∈ Sat(R)} as{T1, . . . , Te}. By the specifi-
cation ofRegularize we immediately conclude(i), (iii) hold. Sinceh /∈ Sat(T), by
the specialization ofTriangularize, (ii) holds. By Lemma 2,(iv) holds.

Algorithm 1 Difference([T, h], [T ′, h′])

1: if Sat(T) = Sat(T ′) then
2: output Intersect(h′hT ′ , T, hhT)
3: else
4: Letv be the largest variable s.t. Sat(T<v) = Sat(T ′

<v)
5: if v ∈ mvar(T ′) andv /∈ mvar(T) then
6: p′ ← T ′

v

7: output [T, hp′]
8: output DifferenceLR(Intersect(p′, T, hhT), [T ′, h′])
9: else ifv /∈ mvar(T ′) andv ∈ mvar(T) then

10: p← Tv

11: output DifferenceLR([T, h], Intersect(p, T ′, h′hT ′))
12: else
13: p← Tv

14: G ← GCD(Tv, T ′

v, T<v)
15: if |G| = 1 then
16: Let(g, C) ∈ G
17: if g ∈ K then
18: output [T, h]
19: else ifmvar(g) < v then
20: output [T, gh]
21: output DifferenceLR(Intersect(g, T, hhT), [T ′, h′])
22: else ifmvar(g) = v then
23: if mdeg(g) = mdeg(p) then
24: D′

p ← T ′

<v ∪ {p} ∪ T ′

>v

25: output Difference([T, h], [D′

p, h′hT ′])
26: else ifmdeg(g) < mdeg(p) then
27: q ← pquo(p, g,C)
28: Dg ← C ∪ {g} ∪ T>v

29: Dq ← C ∪ {q} ∪ T>v

30: output Difference([Dg , hhT], [T ′, h′])
31: output Difference([Dq , hhT], [T ′, h′])
32: output DifferenceLR(Intersect(hg , T, hhT), [T ′, h′])
33: end if
34: end if
35: else if |G| ≥ 2 then
36: for (g, C) ∈ G do
37: if |C| > |T<v| then
38: for E ∈ Extend(C, T>v) do
39: for D ∈ Regularize(hhT , E) do
40: if hhT /∈ Sat(D) then
41: output Difference([D, hhT], [T ′, h′])
42: end if
43: end for
44: end for
45: else
46: output Difference([C ∪ T>v, hhT], [T ′, h′])
47: end if
48: end for
49: end if
50: end if
51: end if

Algorithm 2 DifferenceLR(L, R)

1: if L = ∅ then
2: output ∅
3: else ifR = ∅ then
4: output L
5: else if|R| = 1 then
6: Let [T ′, h′] ∈ R
7: for [T, h] ∈ L do
8: output Difference([T, h], [T ′, h′])
9: end for

10: else
11: while R 6= ∅ do
12: Let [T ′, h′] ∈ R, R← R \ { [T ′, h′] }
13: S ← ∅
14: for [T, h] ∈ L do
15: S ← S ∪ Difference([T, h], [T ′, h′])
16: end for
17: L← S
18: end while
19: end if

Lemma 5 Let [T, h] and [T ′, h′] be two regular systems. IfSat(T) = Sat(T ′), then
h′hT ′ is regular w.r.tSat(T) and

Z(T, h) \ Z(T ′, h′) = Z(h′hT ′ , T, hhT).

PROOF. Since Sat(T) = Sat(T ′) andh′hT ′ is regular w.r.t Sat(T ′), h′hT ′ is regular
w.r.t Sat(T). By Lemma 2 and Lemma 3, we have

Z(T, hh′hT ′) = W(T) \ V(hh′hT ′)

= W(T) \ V(hh′hT hT ′)

= W(T ′) \ V(hh′hT hT ′)

= W(T ′) \ V(hh′hT)

= Z(T ′, hh′hT).

Then, we can decomposeZ(T, h) into the disjoint union

Z(T, h) = Z(T, hh′hT ′)
⊔

Z(h′hT ′ , T, hhT).

Similarly, we have:

Z(T ′, h′) = Z(T ′, hh′hT)
⊔

Z(hhT , T ′, h′hT ′).

The conclusion follows from the fact that

Z(T, hh′hT ′) \ Z(T ′, hh′hT) = ∅ and Z(h′hT ′ , T, hhT) ∩ Z(T ′, h′) = ∅.

Lemma 6 Assume thatSat(T<v) = Sat(T ′
<v). Then

(i) if p′ := T ′
v is defined but notTv, thenp′ is regular w.r.tSat(T) and

Z(T, h) \ Z(T ′, h′) = Z(T, hp′)
⊔

(Z(p′, T, hhT) \ Z(T ′, h′)) .

(ii) if p := Tv is defined but notT ′
v, thenp is regular w.r.tSat(T ′) and

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(p, T ′, h′hT ′).

PROOF. (i) As init(p′) is regular w.r.t Sat(T ′
<v), it is also regular w.r.t Sat(T<v). Since

Tv is not defined, we knowv /∈ mvar(T). Therefore,p′ is also regular w.r.t Sat(T). On
the other hand, we have a disjoint decomposition

Z(T, h) = Z(T, hp′)
⊔

Z(p′, T, hhT).

By the definition ofp′, Z(T ′, h′) ⊆ V(p′) which implies

Z(T, hp′)
⋂

Z(T ′, h′) = ∅.

The conclusion follows.
(ii) Similarly, we knowp is regular w.r.t Sat(T ′). By the disjoint decomposition

Z(T ′, h′) = Z(T ′, h′p)
⊔

Z(p, T ′, h′hT ′),

andZ(T, h) ∩ Z(T ′, h′p) = ∅, we have

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(p, T ′, h′hT ′),

from which the conclusion follows.

Lemma 7 Assume thatSat(T<v) = Sat(T ′
<v) but Sat(T6v) 6= Sat(T ′

6v) and thatv is
algebraic w.r.t bothT andT ′. Define

G = GCD(Tv, T
′
v, T<v);

E =
⋃

(g,C)∈G, |C|>|T<v|

Extend(C, T>v);

R =
⋃

E∈E

Regularize(hhT , E).

Then we have

(i)

Z(T, h)

=




⋃

R∈R, hhT /∈Sat(R)

Z(R, hhT)



⋃



⋃

(g,C)∈G, |C|=|T<v|

Z(C ∪ T>v, hhT)


 .

(ii) rank(R) <r rank(T), for all R ∈ R.
(iii) Assume that|C| = |T<v|. Then

(iii.a) C ∪ T>v is a regular chain andhhT is regular w.r.t it.
(iii.b) if |G| > 1, thenrank(C ∪ T>v) <r rank(T).

PROOF. By the specification ofGCD we have

W(T<v) ⊆
⋃

(g,C)∈G

W(C) ⊆ W(T<v).

That is,

W(T<v)
D
−→ (W(C), (g, C) ∈ G).

From the specification ofExtend we have: for each(g, C) ∈ G such that|C| > |T<v|,

W(C ∪ T>v)
D
−→ (W(E), E ∈ Extend(C ∪ T>v)).

From the specification ofRegularize, we have for all(g, C) ∈ G such that|C| >
|T<v| and allE ∈ Extend(C ∪ T>v),

W(E)
D
−→ (W(R), R ∈ Regularize(hhT , E)) .

Therefore, by applying the Lifting Theorem [13] we have:

W(T) = W(T<v ∪ T>v)

⊆

(
⋃

R∈R

W(R)

)
⋃



⋃

(g,C)∈G, |C|=|T<v|

W(C ∪ T>v)




⊆ W(T<v ∪ T>v)

= W(T),

which implies,

Z(T, h) = Z(T, hhT)

⊆




⋃

R∈R, hhT /∈Sat(R)

Z(R, hhT)



⋃



⋃

(g,C)∈G, |C|=|T<v|

Z(C ∪ T>v, hhT)




⊆ W(T) \ V(hhT) = Z(T, h).

So(i) holds. If |C| > |T<v|, by the specifications ofExtend andRegularize, |R| >
|T |. By Lemma 3,

dim(V(Sat(R))) < dim(V(Sat(T))),

which implies(ii).
If |C| = |T<v|, by Proposition 5 of [13], we conclude(iii.a) holds. When|G| > 1,

by Notation 1,(iii.b) holds.

Lemma 8 Assume thatSat(T<v) = Sat(T ′
<v) but Sat(T6v) 6= Sat(T ′

6v) and thatv is
algebraic w.r.t bothT andT ′. Definep = Tv, p′ = T ′

v and

G = GCD(p, p′, T<v).

If |G| = 1, letG = {(g, C)}. Then the following properties hold

(i) C = T<v.
(ii) If g ∈ K, then

Z(T, h) \ Z(T ′, h′) = Z(T, h).

(iii) If g /∈ K andmvar(g) < v, theng is regular w.r.tSat(T) and

Z(T, h) \ Z(T ′, h′)

= Z(T, gh)
⊔

(Z(g, T, hhT) \ Z(T ′, h′)) .

(iv) Assume thatmvar(g) = v.
(iv.a) If mdeg(g) = mdeg(p), defining

q′ = pquo(p′, p, T ′
<v)

D′
p = T ′

<v ∪ {p} ∪ T ′
>v

D′
q′ = T ′

<v ∪ {q′} ∪ T ′
>v,

then we have

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′),

rank(D′
p) < rank(T ′) andh′hT ′ is regular w.r.tSat(D′

p).
(iv.b) If mdeg(g) < mdeg(p), defining

q = pquo(p, g, T<v)

Dg = T<v ∪ {g} ∪ T>v

Dq = T<v ∪ {q} ∪ T>v,

then we have:Dg andDq are regular chains such thatrank(Dg) < rank(T),
rank(Dq) < rank(T), hhT is regular w.r.tSat(Dg) andSat(Dq), and

Z(T, h) = Z(Dg, hhT)
⋃

Z(Dq, hhT)
⋃

Z(hg, T, hhT).

PROOF. Since|G| = 1, by the specification of the operationGCD and Notation 1,(i)
holds. Therefore we have

Sat(C) = Sat(T<v) = Sat(T ′
<v) (1)

There exist polynomialsA andB such that

g ≡ Ap + Bp′ mod Sat(C). (2)

From (2), we have
V(Sat(C)) ⊆ V(g − Ap − Bp′) (3)

Therefore, we deduce

W(T)
⋂

W(T ′)

= W(T<v ∪ p ∪ T>v)
⋂

W(T ′
<v ∪ p′ ∪ T ′

>v)

⊆ (W(T<v) ∩ V(p))
⋂

(W(T ′
<v) ∩ V(p′))

⊆ V(Sat(T<v))
⋂

V(p)
⋂

V(p′) by (1)

⊆ V(g − Ap − Bp′)
⋂

V(p)
⋂

V(p′) by (3)

⊆ V(g).

that is
W(T)

⋂
W(T ′) ⊆ V(g). (4)

Now we prove(ii). Wheng ∈ K, g 6= 0, from (4) we deduce

W(T)
⋂

W(T ′) = ∅. (5)

Thus we have

Z(T, h) \ Z(T ′, h′)

= (W(T) \ V(h)) \ (W(T ′) \ V(h′))

= (W(T) \ V(h)) by (5)

= Z(T, h).

Now we prove(iii). SinceC = T<v and mvar(g) is smaller than or equal tov, by the
specification ofGCD, g is regular w.r.t Sat(T). We have following decompositions

Z(T, h) = Z(T, gh)
⊔

Z(g, T, hhT),
Z(T ′, h′) = Z(T ′, gh′)

⊔
Z(g, T ′, h′hT ′).

On the other hand,

Z(T, gh)
⋂

Z(T ′, gh′)

= (W(T) ∩V(gh)c)
⋂

(W(T ′) ∩V(gh′)c)

⊆ (W(T) ∩V(g)c)
⋂

(W(T ′) ∩ V(g)c)

= (W(T) ∩W(T ′))
⋂

V(g)c

= ∅ by (4).

Therefore,

Z(T, h) \ Z(T ′, h′)

= (Z(T, gh) \ Z(T ′, gh′))
⊔

(Z(g, T, hhT) \ Z(T ′, h′))

= Z(T, gh)
⊔

(Z(g, T, hhT) \ Z(T ′, h′)) .

Now we prove(iv.a). First, bothh andh′
T are regular w.r.t Sat(C) = Sat(T<v) =

Sat(T ′
<v). From the construction ofD′

p, we havehhT ′ is regular w.r.t Sat(D′
p).

Assume that mvar(g) = v and mdeg(g) = mdeg(p). We note that mdeg(p′) >
mdeg(p) holds. Otherwise we would have mdeg(g) = mdeg(p) = mdeg(p′) which
implies:

p ∈ Sat(T ′
>v) andp′ ∈ Sat(T>v). (6)

Thus

Sat(T6v) = 〈T6v〉 : h∞
T6v

= 〈T<v ∪ p〉 : h∞
T6v

⊆ Sat(T ′
6v) : h∞

T6v
by (6)

= Sat(T ′
6v),

that is Sat(T6v) ⊆ Sat(T ′
6v). Similarly, Sat(T ′

6v) ⊆ Sat(T6v) holds. So we have
Sat(T ′

6v) = Sat(T6v), a contradiction.
Hence, mvar(q′) = v.
By Lemma6 [13], we know thatD′

p andD′
q′ are regular chains. Then with Theorem

7 [13] and Lifting Theorem [13], we know

Z(T ′, h′) ⊆ Z(D′
p, h

′)
⋃

Z(D′
q′ , h′)

⋃
Z(hp, T

′, h′)

⊆ W(T ′) \ V(h′).

By Lemma 2, we have

Z(T ′, h′) = Z(D′
p, h

′hT ′)
⋃

Z(D′
q′ , h′hT ′)

⋃
Z(hp, T

′, h′hT ′).

Since

Z(D′
q′ , h′hT ′) = Z(D′

q′ , hph
′hT ′)

⋃
Z(hp, D

′
q′ , h′h′

T)

= Z(D′
q′ , phph

′hT ′)
⋃

Z(p, D′
q′ , hph

′h′
T)
⋃

Z(hp, D
′
q′ , h′h′

T)

and

Z(p, D′
q′ , hph

′h′
T) ⊆ Z(D′

p, h
′hT ′)

Z(hp, D
′
q′ , h′h′

T) ⊆ Z(hp, T
′, h′hT ′),

we deduce

Z(T ′, h′) = Z(D′
p, h

′hT ′)
⊔

Z(D′
q′ , ph′hT ′)

⊔
Z(hp, T

′, h′hT ′).

Now observe that

Z(T, h)
⋂

Z(D′
q′ , ph′hT ′) = ∅, and

Z(T, h)
⋂

Z(hp, T
′, h′hT ′) = ∅.

We obtain

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′).

Finally we prove(iv.b). We assume that mvar(g) = v and mdeg(g) < mdeg(p);
this implies mvar(q) = v. Applying Lemma6 in [13] we know thatDg andDq are
regular chains and satisfy the desired rank condition. Thenby Theorem7 [13] and
Lifting Theorem [13] we have

Z(T, h) = Z(Dg, hhT)
⋃

Z(Dq, hhT)
⋃

Z(hg, T, hhT).

This completes the whole proof.

Definition 5 Given two pairs of ranks(rank(T1), rank(T ′
1)) and(rank(T2), rank(T ′

2)),
whereT1, T2, T

′
1, T

′
2 are triangular sets. We define the product order<p of Ritt order

<r on them as follows

(rank(T2), rank(T ′
2)) <p (rank(T1), rank(T ′

1))

⇐⇒

{
rank(T2) <r rank(T1) or
rank(T2) = rank(T1), rank(T ′

2) <r rank(T ′
1).

In the following theorems, we prove the termination and correctness separately. Along
with the proof of Theorem 1, we show the rank conditions are satisfied which is part
of the correctness. The remained part, say zero set decomposition, will be proved in
Theorem 2.

Theorem 1 AlgorithmsDifference and DifferenceLR terminate and satisfy the
rank conditions in their specifications.

PROOF. It is equivalent to prove that

(i) Difference terminates with rank(Difference([T, h], [T ′, h′])) 6r rank([T, h]),
(ii) DifferenceLR terminates with rank(DifferenceLR(L,R)) 6r rank(L).

(1) Basic case: no recursive calls toDifference andDifferenceLR.
First, (ii) holds for the algorithmDifferenceLR:
− Line 2 byL = ∅, rank(∅) <r rank(L),
− Line 4 byR = ∅, rank(L) = rank(L),
− Line 2, 4 the termination is obvious.

Next,(i) holds for the algorithmDifference:
− Line 2 by Lemma 4,Intersect terminates and

rank(Intersect(h′hT ′ , T, hhT)) <r rank([T, h]),

− Line 7, 8 whenIntersect(p′, T, hhT) = ∅, we conclude(i) holds from
(ii) and rank([T, hp′])=rank(T),

− Line 11 whenIntersect(p, T ′, h′hT ′) = ∅, we conclude(i) holds from
(ii) and rank([T, h])=rank([T, h]),

− Line 18 rank([T, h]) = rank([T, h]),
− Line 20, 21 whenIntersect(g, T, hhT) = ∅, we conclude(i) holds from

(ii) and rank([T, gh])=rank([T, h]).
(2) Induction hypothesis: assume that both(i) and (ii) hold for inputs with ranks

smaller than the rank of([T, h], [T ′, h′]) w.r.t. <p.
(3) By (1), if no recursive calls occur in one branch, then(i) and(ii) already hold.

When recursive calls occur, we first prove(i) holds. Indeed by induction(2), it
suffices to prove: the inputs of recursive calls toDifference or DifferenceLR

have smaller ranks than rank(([T, h], [T ′, h′])) w.r.t <p. We show this line by line
for Difference:
− Line 8 by Lemma 6 and Lemma 4,

rank(Intersect(p′, T, hhT)) <r rank([T, h]),

− Line 11 by Lemma 6 and Lemma 4,

rank(Intersect(p, T ′, h′hT ′)) <r rank([T ′, h′]),

− Line 21 by Lemma 8 and Lemma 4,

rank(Intersect(g, T, hhT)) <r rank([T, h]),

− Line 25 by Lemma 8,

rank([D′
p, h

′hT ′]) <r rank([T ′, h′]),

− Line 30, 31 by Lemma 8,

rank([Dg, hhT]) <r rank([T, h]) and rank([Dq, hhT]) <r rank([T, h]),

− Line 32 by Lemma 8 and Lemma 4,

rank(Intersect(hg, T, hhT)) <r rank([T, h]),

− Line 41, 46 by Lemma 7,

rank([D, hhT]) <r rank([T, h]) and rank([C ∪ T>v, hhT]) <r rank([T, h]).

Now we prove, when recursive calls occur,(ii) holds forDifferenceLR as well.
Since(i) holds forDifference, from the algorithmDifferenceLR, clearly it
terminates. So by(2), it suffices to prove: the rank of the input of each recursive
call toDifference is less than or equal to rank((L, R)). We also show this line by
line for DifferenceLR:
− Line 8 by rank([T, h]) <r rank(L),
− Line 15 by (i),

rank(Difference([T, h], [T ′, h′])) 6r rank([T, h]) 6r rank(L).

Theorem 2 BothDifference andDifference satisfy their specifications.

PROOF. By Theorem 1,Difference andDifference terminate and satisfy their rank
conditions. So it suffices to prove the correctness ofDifference andDifferenceLR,
that is

(i) Z(T, h) \ Z(T ′, h′) = Z(Difference([T, h], [T ′, h′])),
(ii) Z(L) \ Z(R) = Z(DifferenceLR(L,R)).

Similarly we prove the correctness of the two algorithms by induction.

(1) Basic case: no recursive call toDifference andDifferenceLR occurs.
First, (ii) holds for algorithmDifferenceLR.
− Line 2 Z(∅) \ Z(R) = Z(∅),
− Line 4 Z(L) \ ∅ = Z(L).

Next,(i) holds for algorithmDifference.
− Line 2 by Lemma 4 and Lemma 5,
− Line 7, 8 by Lemma 4, Lemma 6 and(ii),
− Line 11 by Lemma 4, Lemma 6 and(ii),
− Line 18 by Lemma 8,
− Line 20, 21 by Lemma 4, Lemma 6 and(ii).

(2) Induction hypothesis: both(i) and (ii) hold for inputs with ranks smaller than
rank(([T, h], [T ′, h′])) w.r.t. <p.

(3) By (1), if no recursive call occurs,(i) and(ii) already hold. When recursive call
occurs, we first show(i) holds. From the proof of Theorem 1, inDifference,
the inputs of recursive calls toDifference andDifferenceLR will have smaller
ranks w.r.t. the product order<p. Therefore, by(2) we show prove(i) holds for
Difference line by line
− Line 7, 8 by Lemma 4 and Lemma 6,
− Line 11 by Lemma 4 and Lemma 6,
− Line 20, 21 by Lemma 4 and Lemma 8,
− Line 25 by Lemma 8,
− Line 30, 31, 32 by Lemma 4 and Lemma 8,
− Line 32 by Lemma 8 and Lemma 4,

rank(Intersect(hg, T, hhT)) <r rank([T, h]),

− Line 41, 46 by Lemma 7.
Finally, when recursive call occurs,(ii) holds forDifferenceLR line by line.
− Line 5 − 9 by (i) and the relation

Z(L) \Z(R)

=

(
r⋃

i=1

Z(Ti, hi)

)
\ Z(T ′, h′) =

r⋃

i=1

(Z(Ti, hi) \ Z(T ′, h′))

=

r⋃

i=1

Z (Difference([Ti, hi], [T
′, h′]))

− Line 10 − 18 by (i),

Z(Difference([T, h], [T ′, h′])) = Z(T, h) \ Z(T ′, h′)

and the relation

Z(L) \ Z(R) = (Z(L) \ Z(R1, g1)) \




s⋃

j=2

Z(Rj , gj)


 ,

this reduces to the case|R| = 1 (Line 5–9).

6 Verification of triangular decompositions

In this section, we describe how to verify the output from a triangular decomposition.
Verification in Kalkbrener’s sense is still unknown whetherwe can circumvent Gröbner
basis computations. However, in Lazard’s sense, we will present both Gröbner basis
and triangular decomposition methods.

6.1 Verification with Gr öbner bases

The following two lemmas state the Gröbner basis methods toverify whether two basic
constructible sets are equal or not.

Lemma 1. Let {F, f} and{G0, g0} be two polynomial systems. The following state-
ments are equivalent

1. D(F, f) \ D(G0, g0) ⊆
⋃r

i=1 D(Gi, gi).
2. For every{i1, . . . , is} ⊆ {0, . . . , r}, 0 ≤ s ≤ r,

√
〈F ∪ {gi1 , . . . , gis

}〉 ⊇
∏

k∈{0,...,r}\{i1,...,is}

〈f〉〈Gk〉. (7)

PROOF. (1) is equivalent toD(F, f) ⊆
⋃r

i=0 D(Gi, gi).

D(F, f)
⋂
(

e⋂

i=0

D(Gi, gi)
c

)
= ∅.

Using the distributive property, we deduce that (1) is equivalent to

(
D(F, f)

⋂
V(gi1 , . . . , gis

)
)⋂




⋂

k∈{0,...,r}\{i1,...,is}

V(Gk)c


 = ∅,

for all subsets{i1, . . . , is} of {0, . . . , r}. The proof easily follows.

Lemma 2. Let{F, f} and{G, g} be two polynomial systems. The following statements
are equivalent

1. D(F, f) \ D(G, g) ⊇
⋃r

i=1 D(Hi, hi).
2. For all 1 ≤ i ≤ r, we have

hig ∈
√
〈Hi ∪ G〉, hi ∈

√
〈Hi, f〉, and〈hi〉〈F 〉 ⊂

√
〈Hi〉. (8)

PROOF. (1) holds if and only if for each1 ≤ i ≤ r we have
{

D(Hi, hi)
⋂

D(F, f)c = ∅,
D(Hi, hi)

⋂
D(G, g) = ∅,

which holds if and only if





V(Hi)
⋂

V(hi)
c
⋂

V(F)c = ∅,
V(Hi)

⋂
V(hi)

c
⋂

V(f) = ∅,
V(Hi)

⋂
V(hi)

c
⋂

V(G)
⋂

V(g)c = ∅.

The proof easily follows.

6.2 Verification with triangular decompositions

Given two Lazard’s triangular decompositions{Ti | i = 1 . . . e} and{Sj | j = 1 . . . f}.
Checking∪e

i=1W(Ti) = ∪f
j=1W(Sj) amounts to checking both

(
e⋃

i=1

W(Ti)

)
\




f⋃

j=1

W(Sj)



 and




f⋃

j=1

W(Sj)



 \

(
e⋃

i=1

W(Ti)

)

being empty. In turn, after computing the regular system representations of above two
constructible sets. According to Lemma 1, we solve the verification problem with the
algorithmDifferenceLR in Lazard’s sense.

7 Experimentation

We have implemented a verifier, namedDiff-verifier, according to theDifferenceLR

algorithm proposed in Section 5, and it has been implementedin Maple 11 based on the
RegularChains library. To verify the effectiveness of our Diff-verifier, we have also
implemented another verifier, namedGB-verifier, applying Lemma9 and10, on top of
thePolynomialIdealspackage in Maple11.

We use these two verifiers to examine four polynomial system solvers herein. They
are theTriangularizefunction in theRegularChainslibrary [11], the TRIADE server
in Aldor, written with theBasicMath library[8], the RegSerfunction and theSimSer
function inEpsilon[19] implemented inMaple. The first two solvers solve a polynomial
system into regular chains by means of the TRIADE algorithm [13]. They can work in
bothLazard’ssense andKalkbrener’ssense. In this work, we use the options for solving
in Lazard’ssense. TheRegSerfunction decomposes a polynomial system into regular
systems in the sense of [22], and theSimSerfunction decomposes a polynomial system
into simple systems, as in [20].

The problems used in this benchmark are chosen from [12, 17, 19]. In Table 1, for
each system, we give thedimension sequence of the triangular decomposition com-
puted inKalkbrener’ssense by the TRIADE algorithm. The number of variables is de-
noted byn, andd is the maximum degree of a monomial in the input. We also give the
number of components in the solution set for each of the methods we are studying.

Table 2 gives the timing of each problem solved by the four methods. In this study,
due to the current availability ofEpsilon, the timings obtained by theRegSerand the
SimSercommands are performed in Maple 8 on Intel Pentium 4 machines(1.60GHz
CPU, 513MB memory and Red Hat Linux 3.2.2-5). All the other timings are run on
Intel Pentium 4 (3.20GHz CPU, 2.0GB total memory, and Red Hat4.0.0-9), and the
Maple version used is 11. The TRIADE server is a stand-alone executable program
compiled from a program in Aldor.

Table 3 summarizes the timings of GB-verifier for verifying the solutions of the
four methods. Table 4 illustrates the timings of Diff-verifier for checking the solutions
by MapleTriangularizeagainst Aldor TRIADE server, MapleTriangularizeagainst Ep-
silonRegSer, and EpsilonRegSeragainst EpsilonSimSer. For the case where there is a
time, the verifying result is also true. The′−′ denotes the case where the test stalls by
either reaching the time limit of43200 seconds or causing a memory failure.

This experimentation results illustrate that verifying a polynomial solver is a truly
difficult task. The GB-verifier is very costly in terms of cpu time and memory. It only
succeeds for some easy examples. Assuming that the GB-verifier is reliable, for the
examples it succeeds, the Diff-verifier agrees with its results by pair-wise checking,
while it takes much less time. This shows the efficiency of ourDiff-verifier. Further
more, the tests also show that the Diff-verifier can verify more difficult problems by
pair-wise checking. The tests indicate that all of the four methods are solving tools with
a high probability of correctness, since the checking results would not agree to each
other otherwise.

References

1. P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.J. Symb.
Comp., 28(1-2):105–124, 1999.

2. P. Aubry and M. Moreno Maza. Triangular sets for solving polynomial systems: A compar-
ative implementation of four methods.J. Symb. Comp., 28(1-2):125–154, 1999.

3. J. Backelin and R. Fröberg. How we proved that there are exactly 924 cyclic 7-roots. In S.
M. Watt, editor,Proc. ISSAC’91, pages 103–111. ACM, 1991.

4. F. Boulier, F. Lemaire, and M. Moreno Maza. Well known theorems on triangular systems
and the D5 principle. InProc. ofTransgressive Computing 2006, Granada, Spain, 2006.

5. L. Donati and C. Traverso. Experimenting the Gröbner basis algorithm with the ALPI sys-
tem. InProc. ISSAC’89, pages 192–198. ACN Press, 1989.

6. D. Eisenbud.Commutative Algebra with a View Toward Algebraic Geometry. Springer-
Verlag, New York-Berlin-Heidelberg, 1995.

7. J. Grabmeier, E. Kaltofen, and V. Weispfenning, editors.Computer Algebra Handbook.
Springer, 2003.

8. The Computational Mathematics Group. The basicmath library. NAG Ltd, Oxford, UK,
1998. http://www.nag.co.uk/projects/FRISCO.html.

9. R. Hartshorne.Algebraic Geometry. Springer-Verlag, 1997.

Number of Components
Maple Aldor EpsilonEpsilon

Sys Name n d Dimension TriangularizeTRIADE serverRegSerSimSer
1 Montes S1 4 2 [2,2,1] 3 3 3 3
2 Montes S2 4 3 [0] 1 1 1 1
3 Montes S3 3 3 [1,1] 2 2 2 3
4 Montes S4 4 2 [0] 1 1 1 1
5 Montes S6 4 3 [2,2,2] 3 3 3 3
6 Montes S7 4 3 [1] 2 2 3 6
7 Montes S8 4 12 [2,1] 2 2 6 6
8 Alonso 7 4 [3] 3 3 3 4
9 Raksanyi 8 3 [4] 4 4 4 10

YangBaxter
10 Rosso 6 3 [4,3,3,1,1,1,1] 7 7 4 13

[0,0,0,0,0,0,
11 l-3 4 3 0,0,0,0,0,0,0] 25 13 8 8
12 Caprasse 4 4 [0,0,0,0,0] 15 5 4 4
13 Reif 16 3 [] 0 0 0 0

Buchberger
14 WuWang 5 3 [2] 3 3 3 4
15 DonatiTraverso4 31 [1] 6 3 3 3
16 Wu-Wang.2 13 3 [1,1,1,1,1] 5 5 5 5
17 Hairer-2-BGK 13 4 [2] 4 4 5 6
18 Montes S5 8 3 [4] 4 4 4 10
19 Bronstein 4 3 [1] 4 2 4 9
20 Butcher 8 4 [3,3,3,2,2,0] 7 6 6 6
21 genLinSyst-2-28 2 [6] 11 11 11 11
22 genLinSyst-3-211 2 [8] 17 18 18 18
23 Gerdt 7 4 [3,2,2,2,1,1] 7 6 10 10
24 Wang93 5 3 [1] 5 4 6 7
25 Vermeer 5 5 [1] 5 4 12 14
26 Gonnet 5 2 [3,3,3] 3 3 9 9
27 Neural 4 3 [1,1] 4 3 – –
28 Noonburg 4 3 [1,1] 4 3 – –

[12,12,11,
29 KdV 1 0 11,11,11,11] 7 7 – –
30 Montes S12 8 2 [4] 22 17 23 –

[6,6,6,6,6,
31 Pappus 12 2 6,6,6,6,6] 124 129 156 –

Table 1Features of the polynomial systems

Maple Aldor EpsilonEpsilon
SysTriangularizeTRIADE serverRegSerSimSer
1 0.104 0.164 0.01 0.03
2 0.039 0.204 0.03 0.02
3 0.069 0.06 0.019 0.111
4 0.510 0.072 0.049 0.03
5 0.052 0.096 0.03 0.03
6 0.150 0.06 0.09 5.14
7 0.376 0.072 0.2 1.229
8 0.204 0.065 0.109 0.16
9 0.460 0.066 0.141 0.481
10 1.252 0.108 0.069 0.21
11 5.965 0.587 1.53 2.91
12 2.426 0.167 1.209 2.32
13 123.823 1.886 1.979 2.36
14 0.2 0.101 0.049 0.109
15 2.641 0.08 0.439 0.7
16 105.835 1.429 5.49 6.14
17 23.453 0.688 1.76 1.679
18 0.484 0.078 0.13 0.471
19 0.482 0.071 0.24 1.000
20 9.325 0.442 1.689 2.091
21 0.557 0.096 0.13 0.21
22 1.985 0.173 0.431 0.411
23 4.733 0.499 3.5 4.1
24 7.814 5.353 2.18 30.24
25 26.533 0.580 4.339 60.65
26 3.983 0.354 2.18 2.48
27 15.879 1.567 – –
28 15.696 1.642 – –
29 9245.442 49.573 – –
30 17.001 0.526 2.829 –
31 79.663 4.429 11.78 –

Table 2Solving timings in sec. of the four methods

GB-verifier timing(s) Diff-verifier timing(s)
Maple Aldor EpsilonEpsilon M.T. M.T. E.R.

TriangularizeTRIADE serverRegSerSimSer vs vs vs
sys (M.T.) (A.T.) (E.R.) (E.S.) A.T. E.R. E.S.
1 0.556 0.526 0.518 0.543 0.58 0.439 0.445
2 0.128 0.127 0.129 0.131 0.039 0.02 0.013
3 0.584 0.575 0.585 2.874 0.182 0.108 0.427
4 0.104 0.133 0.139 0.137 0.037 0.027 0.023
5 1.484 1.472 1.457 1.469 0.591 0.339 0.356
6 76.596 72.374 71.853 – 7.204 5.268 15.334
7 0.616 0.601 4.501 4.536 0.573 0.758 1.017
8 – – – – 1.196 1.564 2.618
9 – – – – 5.442 9.837 18.252
10 – – – – 10.888 22.638 22.649
11 – – – – 14.652 4.541 3.585
12 – 58.332 33.469 35.213 2.52 2.398 3.113
13 – – – – 0 0 0
14 1.96 1.937 2.165 5.739 0.924 0.915 1.155
15 330.317 – – – 2.244 4.782 4.201
16 10466.587 – – – 4.34 4.408 3.207
17 – – – – 6.348 6.109 15.719
18 – – – – 5.32 10.485 17.897
19 1.544 0.717 5.046 – 7.838 7.986 43.506
20 – – – – 13.04 10.218 9.978
21 – – – – 10.872 15.098 11.048
22 – – – – 61.147 48.865 32.184
23 – – – – 11.144 15.981 16.222
24 – – – – 1564.6541918.968 870.962
25 – – – – 2144.726 – 2182.401
26 – – – – 3.839 6.041 9.550
27 11383.335 – – – 1088.563 – –
28 – – – – 1119.449 – –
29 – – – – 30.016 – –
30 – – – – – – –
31 – – – – – – –

Table 3 Timings of GB-verifier and Diff-verifier

10. M. Kalkbrener. A generalized euclidean algorithm for computing triangular representations
of algebraic varieties.J. Symb. Comp., 15:143–167, 1993.

11. F. Lemaire, M. Moreno Maza, and Y. Xie. TheRegularChains library. In Ilias S. Kot-
sireas, editor, Maple Conference 2005, pages 355–368, 2005.

12. Montserrat Manubens and Antonio Montes. Improving dispgb algorithm using the discrim-
inant ideal, 2006.

13. M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical Report TR
4/99, NAG Ltd, Oxford, UK, 1999. http://www.csd.uwo.ca/∼moreno.

14. J. O’Halloran and M. Schilmoeller. Gröbner bases for constructible sets.Journal of Com-
munications in Algebra, 30(11), 2002.

15. P. Samuel and O. Zariski.Commutative algebra. D. Van Nostrand Company, INC., 1967.
16. W. Sit. Computations on quasi-algebraic sets. In R. Liska, editor,Electronic Proceedings of

IMACS ACA’98, 1998.
17. The SymbolicData Project. http://www.SymbolicData.org, 2000–2006.
18. D. Wang. Computing triangular systems and regular systems. Journal of Symbolic Compu-

tation, 30(2):221–236, 2000.
19. D. M. Wang.Epsilon 0.618. http://www-calfor.lip6.fr/∼wang/epsilon.
20. D. M. Wang. Decomposing polynomial systems into simple systems. J. Symb. Comp.,

25(3):295–314, 1998.
21. D. M. Wang.Elimination Methods. Springer, Wein, New York, 2000.
22. D.M. Wang. Computing triangular systems and regular systems.J. Symb. Comp., 30(2):221–

236, 2000.

