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Abstract. We discuss the verification of mathematical software sglyalyno-
mial systems symbolically by way of triangular decompasitiStandard verifi-
cation techniques are highly resource consuming and appjyto polynomial
systems which are easy to solve. We exhibit a new approacthwhanipulates
constructible sets represented by regular systems. Wedgrosmparative bench-
marks of different verification procedures applied to foolvers on a large set
of well-known polynomial systems. Our experimental resillustrate the high
efficiency of our new approach. In particular, we are ableeiify triangular de-
compositions of polynomial systems which are not easy teesol
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1 Introduction

Solving systems of non-linear, algebraic or differentiguations, is a fundamental
problem in mathematical science. It has been studied faudes and has stimulated
many research developments. Algorithmic solutions canlé&esitied into three cate-
gories: numeric, symbolic and hybrid numeric-symboliceTdoice for one of them

depends on the characteristics of the system of equaticst\te. For instance, it de-
pends on whether the coefficients are known exactly or areoappations obtained

from experimental measurements.This choice depends al$sbeoexpected answers,
which could be a complete description of all the solutiom®yrdy the real solutions, or

just one sample solution among all of them.

Symbolic solvers are powerful tools in scientific computithgy are well suited for
problems where the desired output must be exact and theylemreapplied success-
fully in areas like digital signal processing, roboticsgdhetical physics, cryptology,
dynamical systems, with many important outcomes. See [7afooverview of these
applications.

Symbolic solvers are also highly complex software. Fitsgytimplement sophis-
ticated algorithms, which are generally at the level of @mg research. Moreover, in
most computer algebra systems, i@ ve command involves nearly the entire set of
libraries in the system, challenging the most advancedatiogis on matrices, polyno-
mials, algebraic and modular numbers, polynomial ide#ts, e

Secondly, algorithms for solving systems of polynomial &épns are by nature
of exponential-space complexity. Consequently, symtsmieers are extremely time-
consuming when applied to large examples. Even worse nireigiate expressions can
grow to enormous size and may halt the computations, evle ifdsult is of moderate



size. The implementation of symbolic solvers, then, rezpiiechniques that go far be-
yond the manipulation of algebraic or differential equasipsuch as efficient memory
management, data compression, parallel and distributegeting, etc.

Last, but not least, the precise output specifications ofrébgjic solver can be quite
involved. Indeed, given an input polynomial systéindefining what a symbolic solver
should return implies describing what the geometry of tHatsmm setV (F') of F' can
be. For an arbitrary’, the setV(F) may consist of components of different natures
and sizes: points, lines, curves, surfaces. This lead®tfotlowing difficult challenge.

Given a polynomial systeni’ and a set of components,, ..., C., it is hard, in
general, to tell whether the union 61, . . ., C. corresponds exactly to the solution set
V(F) or not. Actually, solving this verification problem is geaby (at least) as hard
as solving the systerf itself.

Because of the high complexity of symbolic solvers, devielgwerification algo-
rithms and reliable verification software tools is a cleagchéHowever, this verification
problem has received little attention in the literaturethis paper, we present new
techniques for verifying a large class of symbolic solv@¥e. also report on intensive
experimentation illustrating the high efficiency of our agpgch w.r.t. known techniques.

We assume that each component of the solutiorVgét) is given by a so-called
regular systemThis is a natural assumption in symbolic computationsl-deVveloped
in the literature under different terminologies, see [1,&% the references therein. In
broad words, a regular system consists of several polyr@apigations with a triangular
shape

p1(z1) = p2(21,72) = -+ = pi(1,72,.. ., 7)) =0
and a polynomial inequality

h(x1,...,2n) #0

such that there exists (at least) one pdit, . . ., a,,) Satisfying the above equations
and inequality. Note that these polynomials may contaiaipaters.

Let us consider the following well-known systeftaken from [5].

2 —ab —x—y=0
8 —2=0
20 —t=0

We aim at solving this system far> y > z > t, that is, expressing as a function of
Y, 2, t, theny as a function of, t andz as a function ot. One possible decomposition
is given by the three regular systems below:

(t4—t)ar—ty—z2:() 22 —-2=0 =0
By? 42222y + (—t0+ 23+t —1)24 =0 y+1222=0 y=0
-ttt =0" 2 —t=0" z=

th—t#0 3 —-1=0 t=0



Another decomposition is given by these other three regyistems:

22 —t=0

(t4_t)$—ty—22:0 9 —O
tzy? 4+ 223y — 8 425 + 43 — 2 =0 tyxz =0 — 0
25_t4:07 Zg_t:07 —0
B -1=0
4 =
2(th—t) #0 sz L1=0

These two decompositions look slightly different (in pemtar, the second components)
and one could think that, if each of them was produced by &difft solver, then at
least one of these solvers has a bug. In fact, both deconmusére valid, but proving
respectively that they encode the solution $&f") is not feasible without computer
assistance. However, proving that they define the same peirtf can be achieved by
an expert hand without computer assistance. This is an i@poobservation that we
will guide us in this paper.

Letus consider now an arbitrary input systéhand a set of componerts, ..., C.
encoded by regular systemss, . . ., .S. respectively. The usual approach for verifying
thatC1, ..., C. correspond exactly to the solution 3&{F) is as follows.

(1) First, one checks that each candidate compo@ieig actually contained iV (F).
This essentially reduces to substitute the coordinatdsegpdints given by’; into
the polynomials off: if all these polynomials vanish at these points, tligris a
component oV (F'), otherwise, (and up to technical details that we will skifhiis
introduction)C; is not a component oV (F').
(2) Secondly, one checks th¥t(F') is contained in the union of the candidate compo-
nentsCy, ..., C. by:
(2.1) computing a polynomial syster® such thatV(G) corresponds exactly to
Ci,...,C.,and
(2.2) checking that every solution 8f (F') cancels the polynomials @f.

Steps(2.1) and (2.2) can be performed using standard techniques based on compu-
tations of Grobner bases, as we discuss in Section 6.1.eTémsulations are very
expensive, as shown by our experimentation, reported itidBet.

In this paper, we propose a different approach, summarizewn-technical lan-
guage in Section 2. The main idea is as follows. Instead ofo@ing a candidate set of
components’y, ..., C. against the input systeth, we compare it against the output
Dy, ..., Dy produced by another solver. Both this solver and the corapamrocess
are assumed to be validated. Hence, the candidate set ofocemisC, . .., C. cor-
responds exactly to the solution 3&{F) if and only if the comparison process shows
thatD,,..., Dy andCy,.. ., C. define the same solution set.

The technical details of this new approach are given in 8estB, 4, 5 and 6. In
Section 3, we review the fundamental algebraic conceptsogedations involved in
our work. In particular, we specify the kind of solvers that wonsider in this study,
namely those solving polynomial systems by meartsiafigular decompositions

The key computational concept behind these triangularmdgosition computed is
that of aconstructible setso we dedicate Section 4 to it. Section 5 is a formal and com-
plete presentation of our process for comparing triangiédaompositions. In Section 6,



we summarize the different verification procedures thataedlable for triangular de-
compositions, including our new approach. In Section 7, @port on experimentation
with these verification procedures. Our data illustratehiuh efficiency of our new
approach.

2 Methodology

Let us consider again an arbitrary input polynomial systEnand a set of compo-
nentsCy, ..., C. encoded by regular systerfis, . . . , S. respectively. As mentioned in
the Introduction, checking whethét,, ..., C. corresponds exactly to the solution set
V(F) of F can be done by means of Grobner bases computations. Tliiicaton
process is quite simple, see Section 6, and its implementtistraightforward, Thus,
if the underlying Grobner bases enginegBable, such verification tool can be regarded
as safe. See [2] for details.

Unfortunately, this verification process is highly expeesiEven worse, as shown
by our experimental results in Section 7, this verificatioogess is unable to check
many triangular decompositions that are easy to compute.

We propose a new approach in order to overcome this limita\gsume that we
have at hand a reliable solver computing triangular decaitipas of polynomial sys-
tems. We believe that this reliability can be acquired oiraetby combining several
features.

— Checking the solver with a verification tool based on Gratheses for input sys-
tems of moderate difficulty.

— Using the solver for input systems of higher difficulty whehe output can be
verified by theoretical arguments, see [3] for an exampleichsnput system.

— Involving the library supporting the solver in other apglions.

— Making the solver widely available to potential users.

Suppose that we are currently developing a new solver camgpuitangular decompo-
sitions. In order to verify the output of this new solver, wandake advantage of the
reliable solver.

This may sound natural and easy in the first place, but thistisaly not. Indeed,
as shown in the Introduction, two different solvers can piaitwo different, but valid,
triangular decompositions for the same input system. Ghgcthkat these two triangular
decompositions encode the same solution set boils dowmtpete the differences of
two constructible sets. This is a non-trivial operatiorg #e survey paper [16].

The first contribution of our paper is to provide a relativelgnple, but efficient,
procedure for computing the set theoretical differencéséen two constructible sets.
See Section 5. Such procedure can be used to develop a \anifitaol for our new
solver by means of our reliable solver. Moreover, this pdoce is sufficiently straight-
forward to implement such that it can be trusted after aixelgtshort period of testing,
as the case for the verification tool based on Grobner baseputations.

The second contribution of our work is to illustrate the héfficiency of this new
verification tool. In Section 7, we consider four solvers pating triangular decompo-
sition of polynomial systems:



— the commandriangularizeof the RegularChaindibrary [11] in MAPLE
— the TRIADE solver of theBasicMathlibrary [8] in ALDOR
— the commandRegSeandSimSeiof the Epsilonlibrary [19] in MAPLE.

We have run these four solvers on a large set of well-knowntiggstems from the
data base [12,17,21]. For those systems for which this isitika we have verified
their computed triangular decompositions with a verifmatiool based on Grobner
bases computations. Then, for each input system, we havparechall its computed
triangular decompositions by means of our new verificatbmh. t

Based on our experimentation data reported in Section 7 wkee riee following
observations.

— All computed triangular decompositions, that could be &keovia Grobner bases
computations, are correct.

— However, the verification tool based on Grobner bases ctatipus failed to check
many examples by running out of computer memory.

— For each input syster’, most pairs of triangular decompositions Bfcould be
compared successfully by our new verification tool.

— Moreover, for any systent’ to which all verification tools could be applied, our
new approach runs much faster.

This suggests that our four solvers and our new verificatoh ltave a good level of
reliability. Moreover, our verification tool allows to press cases that were previously
out of reach.

3 Preliminaries

In this section we introduce notations and review funda@leesults in the theory of
regular chains and regular systems [1, 4, 10, 13, 18, 21| Hak sse some notions from
commutative algebra (such as the dimension of an ideal) efied for instance to [15]
for this subject.

3.1 Basic notations and definitions

LetK[Y] := K[Y3,...,Y,] be the polynomial ring over the fiel in variablesy; <
-+ <Y,. Letp € K[Y] be a non-constant polynomial. Theading coefficienand the
degreeof p regarded as a univariate polynomiallihwill be denoted by I¢p, ;) and
deg(p, Y;) respectively. The greatest variable appearingimcalled themain variable
denoted by mvdp). The separantsefdp) of p w.r.t mvarp), is 9p/Omvar(p). The
degree, the leading coefficient, and the leading monomiakefarding as a univariate
polynomial in mva(p) are called thenain variable theinitial, and therank of p; they
are denoted by mdépg), init(p) and rankp) respectively.

Let ' ¢ K[Y] be a finite polynomial set. Denote By’ the ideal it generates in
K[Y] and by+/(F) the radical of(F'). Let h be a polynomial inK[Y], the saturated
ideal (F') : h>° of (F') w.r.th, is the set

{geK[Y]|3Im e Ns.t.h"q e (F)},



which is an ideal irK[Y].

A polynomialp € K[Y] is azerodivisormodulo (F) if there exists a polynomial
q such thaipq is zero moduloF'), andgq is not zero moduldF'). The polynomial is
regularmodulo(F) if it is neither zero, nor a zerodivisor modul'). Denote byV (F')
the zero set(or solution set, or algebraic variety) &fin K. For a subsetV c K",
denote byiV its closure in the Zariski topology, that is the intersestid all algebraic
varietiesV (G) containing?” for all G  K[Y].

Let T C K[Y] be atriangular set that is a set of non-constant polynomials with
pairwise distinct main variables. Denote by mi#&y the set of main variables ofe T
A variable inY is calledalgebraicw.r.t. T' if it belongs to mvafT), otherwise it is
calledfreew.r.t. T'. For a variabley € Y we denote byl (resp.7%.,) the subsets of
T consisting of the polynomialswith main variable less than (resp. greater tharl}
v € mvanT), we sayT, is defined. Moreover, we denote @y the polynomial inT’
whose main variable is, by T¢,, the set of polynomials ifi' with main variables less
than or equal t@ and byT>., the set of polynomials ifi” with main variables greater
than or equal t@.

Definition 1 Letp, ¢ € K[Y] be two nonconstant polynomials. We sayk(p) is
smaller thanrank(¢q) w.r.t Ritt orderingand we write,rank(p) <, rank(q) if one of
the following assertions holds:

— mvar(p) < mvar(g),
— mvar(p) = mvarq) andmdedp) < mdedq).

Note that the partial ordet,. is a well ordering. Letl’ C K[Y] be a triangu-
lar set. Denote by rarfi’) the set of rankp) for all p € T. Observe that any two
ranks in rankZ") are comparable by,.. Given another triangular sét ¢ K[Y], with
rank(S) # rank(T"), we write ranKT") <, rank(S) whenever the minimal element of the
symmetric differencérank(T’) \ rank(S)) U (rank(S) \ rank(T")) belongs to rani’).
By rank(T") <, rank(S), we mean either rarf") < rank(S) or ranKT") = rank(S).
Note that any sequence of triangular sets, of which rankglgtdecrease w.rx,., is
finite.

Given a triangular s€f’ C K[Y], denote byhr be the product of the initials ¢f
(throughout the paper we use this convention and wheonsists of a single element
g we write it in by for short). Thequasi-componerfV (T') of T'is V(T') \ V(hr), in
other words, the points df (T") which do not cancel any of the initials @f. We denote
by SatT) thesaturated ideal of: if T"is empty then S&T") is defined as the trivial
ideal (0), otherwise it is the ided[l") : h3°.

Leth € K[Y] be a polynomial and” C K[Y] a set of polynomials, we write

Z(F,T,h):= (V(F)NW(T))\ V(h).
When F' consists of a single polynomial we useZ(p, T, h) instead ofZ({p}, T, h);
whenF is empty we just writéZ (T, h). By Z(F,T'), we denotéV (F) N W(T).

Given a family of pairsS = {[T;, h;]| 1 < i < e}, whereT; C K[Y] is a triangular

set andh; € K[Y] is a polynomial. We write

Z(S) = O Z(TZ, hz)



We conclude this section with some well known propertieslefis and triangular
sets. For a proper idedl we denote bylim(V (7)) the dimension oV (7).

Lemma 1 LetZ be a proper ideal ifK[Y] andp € K[Y] be a polynomial regular w.r.t
Z.Then, eitheV (Z)NV (p) is empty or we havetim(V(Z)NV (p)) < dim(V(Z))-1.

Lemma 2 LetT be a triangular set irK[Y']. Then, we have

W(T)\ V(hy) = W(T) and W(T)\ W(T) = V(hy) N W(T).

PROOF SinceW(T') C W(T'), we have

W(T) = W(T)\ V(hr) € W(T) \ V(hr).

On the other handW (T') C V(T') implies

W(T) \ V(hr) € V() \ V(hr) = W(T).

This proves the first claim. Observe that we have:

W(T) = (W(T) \ V(hT)) U (W(T) N V(hT)) .
We deduce the second one.

Lemma 3 ([1, 4]) LetT be atriangular set ifK[Y]. Then, we have
V(Sa{T)) = W(T).

Assume furthermore tha¥ (T') # 0 holds. ThenV (Sa{T)) is a nonempty unmixed
algebraic set with dimensiom— |T'|. Moreover, ifN is the free variables df’, then for
every prime ideaP associated witfsa{7") we have

P N Sa(T) = (0).

3.2 Regular chain and regular system

Definition 2 (Regular Chain) A triangular setl’ C K[Y] is aregular chainf one of
the following conditions hold:

— eitherT is empty,
— or T\ {Tmax} is aregular chain, wheré,,, .. is the polynomial irf” with maximum
rank, and the initial off},,. is regular w.r.t.Sa{7T \ {Tiax})-

To deal with inequalities, one can introduce the notion cggutar system via that
of a regular chain.

Definition 3 (Regular System) A pair [T, h] is a regular system if is a regular chain,
andh € K[Y] is reqular w.rtSa(T).



Remark 1 A stronger notion of a regular system was presented in [18t.dxample,
the polynomial systerT’, h], with 7' = [Y1Y, — Y2] andh = Y,Ys3, is still a regular
system in our sense but not in that of [18]. Our definition isenmonvenient for our
purpose in dealing with zerodivisors. We also note that metision zero (no free vari-
ables exist) the notion of a regular chain (as used in thisggapnd that of a regular
set introduced in [18] coincide, see [1, 18] for details.

Proposition 1 For every regular systefT’, h] we haveZ (T, h) # (.

PROOF SinceT is aregular chain, by Lemma 3 we haVéSat(T')) # ). By definition
of regular system, the polynomiah is regular w.r.t S47"). Hence, by Lemma 1, the
setV(hhr) N V(Sa(T)) either is empty, or has lower dimension th&{Sa{(T)).
Therefore, the set

V(SalT)) \ V(hhr) = V(SalT)) \ (V(hhr) N V(SalT)))

is not empty. Finally, by Lemma 2, the set

Z(T,h) = W(T)\ V(h) = W(T') \ V(hhr) = V(SalT)) \ V(hhr)
is not empty.

Notation 1 For a regular systenR = [T, h|, we defingank(R) := rank(T"). For a set
R of regular systems, we define

rank(R) := max{rank(T) | [T, h] € R}.

For a pair of regular system§L, R), we defingank((L, R)) := (rank(L), rank(R)).
For a pair of lists of regular systems, we define

rank((£,R)) = (rank(£), rank(R)).
For triangular setsT’, 11, . .., T. we write W (T') L, (W(T;),i = 1...e) if one of
the following conditions holds:

— eithere = 1andT = Ty,
—ore> 1,rankT;) < rankT)foralli =1...eand

3.3 Triangular decompositions

Definition 4 Given a finite polynomial sef' C K][Y], a triangular decompositionf
V(F) is afinite familyZ of regular chains oK [Y] such that



For a finite polynomial sef” C K[Y], the TRIADE algorithm [13] computes a
triangular decomposition oV (F'). We list below the specifications of the operations
from TRIADE that we use in this paper.

Letp, p1, p2 be polynomials, and Iéf’, C, E be regular chains such thatu F is
a triangular set (but not necessarily a regular chain).

— Regularize(p, T) returns regular chairig, . . ., 7. such that
e W(T) -2 (W(Ty),i=1...e),
e forall 1 < i < ethe polynomiap is either0 or regular modulo S&T;).
— For aset of polynomialg', Triangularize(F, T') returns regular chairg, . .., T,
such that we have

V(F) "W(T) € W(T}) U --- UW(T,) C V(F) N W(T).

and forl < i < e we have rankl;) < rank(T") whenevel’ ¢ Sa(T').

— Extend(C U FE) returns a set of regular chaif€’; | i = 1...e} such that we
haveW (C UT) 2 (W(C;),i=1...¢).

— Assume thap; andp, are two non-constant polynomials with the same main vari-
ablew, which is larger than any variable appearind/inand assume that the ini-
tials of p; andp, are both regular w.r.t. S@t). Then,GCD(py, p2,T) returns a
sequence

([gla Cl]v R [gdv Cd]v [@7 Dl]’ ) [(Z)’ De])’

whereg; are polynomials and’;, D; are regular chains such that the following

properties hold:

e W(T) -2 (W(CY),..., W(Cy),W(D1),..., W(D,)),

o dimV(Sa((;)) = dim'V(Sa(7')) anddim V(Sa(D;)) < dim V(Sa(T)),
foralll1 <i<dandl <j<e,

o the leading coefficient of; w.r.t. v is regular w.r.t. S&C;),

e forall 1 < i < d there exists polynomialg;, andv; such that we have; =
U;P1 + Vip2 mod Sa(CZ),

e if g; is not constant and its main variable 4s then p; and p, belong to
Sa(CiU{gi}).

4 Representations of constructible sets

Constructible set [6,9] is a classical concept in elimiotiheory. In this section, we
present two types of representations for constructibeindt .

Definition 1 (Constructible set).A constructible subset & is any finite union
(A1 \ B1)U -+ U (A \ Be)

whereAq, ..., A., By, ..., B, are algebraic varieties ovekK.

Let F be the set of all constructible subsetsiof w.r.t K. From Exercise 3.18 in [9],
we have



— all open algebraic sets are f
— the complement of an elementfis in F;
— the intersection of two elements fis in F.

Moreover, these three properties descekactlyall constructible sets. Given a set of
polynomialF andf € K[Y], we denotd (F, f) the difference oV (F)\ V(f), which

is also called @asic constructible setf F is the empty set, then we wri®(f) for
short. Note that for a regular system in [20], we hBYT', h) = Z(T', h).

4.1 Grobner basis representation

Now Grobner bases have become a standard tool to deal wighralic sets; and they
can be applied to manipulate constructible sets as welleiGa constructible sef,
according to the definition, one can repres€ny a unique sequence of closed alge-
braic sets whose defining ideals naturally can be charaetiby their reduced Grébner
bases [14].

However, the constructible sets are intrinsically geoioatiobjects. We pay extra
cost to manipulate them, since it is very hard to computertersection of two ideals
and even to compute the radical ideal of an ideal. Whatspévere exist effective
algorithms to manipulate constructible sets. We shall esgilar systems to do the
same jobs in a more efficient manner.

4.2 Regular system representation

In this section, we show that (Theorem 2) every construesietC' can be represented
by a finite set of regular systegid;, h;] | i = 1...e}, thatis,

C= O Z(T;, hy).

=1

Combining with Lemma 1, we know that if a regular system reprgation of a con-
structible set is empty, then the constructiblesés empty. This fact leads to an impor-
tant application of verifying polynomial system solvergelproof of Theorem 2 is con-
structive and relies on algorithms call®ifference and DifferenceLR, presented
in Section 5. As an immediate consequence of the specifiatib these algorithms
formally proved in the next section, we obtain the followthgorem.

Theorem 1. Given two regular systemd’, h] and [T”, /'], there is an algorithm to
compute the regular system representations of:

(1) the differencé& (T, h) \ Z(T', 1’);
(2) the intersectior%(T, h) N Z(T',h').

ProOF Clain (1) follows from the specifications of tiBifference algorithm. Claim
(2) follows from (1), together with the fact that for any two sefsand B, we have
ANB=A\(A\B).



Theorem 2. Every constructible set can be represented by a finite setguflar sys-
tems.

PrROOF Consider the following famil;f of subsets oK

F={S|S=JzT.p)},

i=1

where|[T}, p;] are regular systems. First, every open subset can be desechpto a

finite union of open subseld(f), wheref is a polynomial. EacD(f) can be repre-
sented by the regular systdfh f] consisting of the empty regular chain afidHence

F contains all open subsets. Secondly, consider two elenyeams 7" in F;and assume
that

e f
S = U Z(Shpl) and T = U Z(ij(b)'

J=1

We have

ST = O LfJ (Z(Siapi)mZ(Tjan)) :

i=1j=1

By Theorem 1,5\ T has a regular system representation, that is to Sy’ € F.
By induction, any finite intersection of elerpentsﬁfis in F. Finally, we shall prove
that the complement of an elementinis in 7. Essentially, we only need to show that
foreachl <i <e, Z(S;,p;)¢isin F.Indeed,

Z(Si, pi)° = W(S) | JV(p:) = V()| V(pihs,)

is in 7, since bothV (S;)¢ andV (p;hs,) have regular system representations.

5 The Difference algorithms

In this section, we present an algorithm to compute the ssir#tical difference of
two constructible sets given by regular systems. Two promsiare, actually involved,
in order to achieve this goalifference and DifferenceLR. Their specifications
and pseudo-codes can be found below. The rest of this sastitedicated to proving
the correctness and termination of these algorithms. Fopseudo-code, we use the
MAPLE syntax. However, each of the two functions below returnsjasace of values.
Individual value or sub-sequences of the returned sequarecthrown to the flow of
output by means of aoutput statement. Hence anutput statement does not cause the
termination of the function execution.

Algorithm 1 Difference([T, k|, [T’,'])
Input [T, 4], [T7, k'] two regular systems.



Output Regular system§[T;, h;] | i =1...e} such that

€

Z(T, )\ Z(T", 1) = | Z(T, h),
i=1

and rankT;) <, rank(T).
Algorithm 2 DifferenceLR (L, R)
Input £:={[L;, fi]|i=1...r}andR := {[Rj,9;] | 7 =1...s} two lists of
regular systems,
Output Regular system§ := {[T}, h;] | i = 1...e} such that

(U Z(Li,fi)> \ (U Z(Rw%)) = U Z(T;, hy),

i=1
with rank(S) <, rank(£)
To prove the termination and correctness of above two atlyos, we present a

series of technical lemmas.

Lemma 4 Letp andh be polynomials and’ a regular chain. Assume that¢ Sa{7).
Then there exists an operatidmtersect(p, T, h) returning a set of regular chains
{T1,...,T.} such that

(i) hisregularw.r.tSa{(T;) for all 4;

(1) rank(T;) <, rank(T);

(iti) Z(p,T,h) C Ui, Z(T3, h)  (V(p) N W(T)) \ V(h);
(iv) Moreover, if the product of initialé of 7" dividesh then

Z(p, T, h) Uz Ty, h).

PROOF. Let
S = Triangularize(p, T),

R = U Regularize(h, C).
ces

We then have

This implies
Z(p,T,h) C U Z(R,h) € (V(p) "W(T) \ V(h).
ReR, h¢SalR)

Rename the regular chaif® | R € R, h ¢ Sa(R)} as{11,...,T.}. By the specifi-
cation ofRegularize we immediately concludg), (iii) hold. Sinceh ¢ Sa(T), by
the specialization dIriangularize, (i7) holds. By Lemma 2(iv) holds.



Algorithm 1 Difference([T, h], [T", 1'])

1: if Sa(T) = Sa(T") then

2:  output Intersect(h'hy, T, hhr)
3: else

4:  Letwv be the largest variable s.t. $&t.,) = Sa(7~,,)

5. if v € mvanT’) andv ¢ mvarnT') then

6: p T

7 output [T, hp']

8 output DifferenceLR(Intersect(p’, T, hhr), [T’, h'])
9: elseifv ¢ mvar(T’) andv € mvar(T') then

10: p <« T,

11 output DifferenceLR ([T, h], Intersect(p, T, h' hr:))
12:  else

13: p <« T,

14: G — GCD(T,, Ty, T<v)

15: if |G| = 1then

16: Let(g,C) € G

17: if g € Kthen

18: output 7', h]

19: else ifmvar(g) < v then

20: output [T, gh|

21: output DifferenceLR (Intersect(g, T, hhr), [T’, h'])
22: else ifmvar(g) = v then

23: if mded¢g) = mdedp) then

24: D, —TL,U{ptUT%,

25: output Difference([T’, k|, [D,,, h'hy/])

26: else ifmded g) < mdegdp) then

27: q < pqudp, g, C)

28: Dy — CU{gtUTs,

29: Dy — CU{q} UT>,

30: output Difference([Dy, hhr], [T', h'])

31: output Difference([Dg, hhr], [T’, h'])

32: output DifferenceLR (Intersect(hy, T, hhr), [T', h'])
33: end if

34: end if

35: else if|G| > 2 then

36: for (g,C) € G do

37: if |C| > |T<.|then

38: for E € Extend(C,T>,) do

39: for D € Regularize(hhr, E) do

40: if hhr ¢ Sa(D) then

41: output Difference([D, hhr], [T, 1'])
42: end if

43: end for

44: end for

45: else

46: output Difference([C U 1%, hhr], [T', 1))
47: end if

48: end for

49: end if

50: endif

51: end if




Algorithm 2 DifferenceLR (L, R)

1: if L = (then

2:  output 0

3: else ifR = () then

4:  output L

5: elseif|R| = 1 then

6: Let[T'.,h']€eR

7: for [T,h] € Ldo

8: output Difference([T', hl, [T",}’])
9: endfor

10: else

11:  while R # 0 do

12: Let[T',h') € R, R — R\ {[T", 1] }
13: S0

14: for [T,h] € L do

15: S « S U Difference([T, k], [T", h'])
16: end for

17: L—S

18: end while

19: end if

Lemmas5 Let [T, k] and [T, h'] be two regular systems. Ba{7T’) = Sa{7”), then
h'hr is regular w.r.tSa{7T") and

Z(T, )\ Z(T', 1) = Z(W hy:, T, hhr).

PROOF Since Satl’) = Sa{7’) andh’hr is regular w.r.t SAT”), h'hrs is regular
w.r.t Sa{7T’). By Lemma 2 and Lemma 3, we have

Z(T, hh'hyr) = W(T) \ V(h hy)

W (T)\ V(hh'hrhe)
W(T')\ V(hh'hrhr)
W(T')\ V(hh'hr)
Z(T', hh'hr).

Then, we can decompoZ& T, h) into the disjoint union
Z(T,h) = Z(T, hh'h:) | | Z(W b, T, hhr).
Similarly, we have:
Z(T',1') = Z(T',hh'hr) | | Z(hhr, T, B hr).
The conclusion follows from the fact that

Z(T, hh/hT/) \ Z(T/, hh/hT) =0 and Z(hlhT/, T, hhT) N Z(T/, h/) = 0.



Lemma 6 Assume thaBa(7.,) = Sa{7.,). Then
(i) if p’ := T/ is defined but noTy,, thenp' is regular w.r.tSa{T") and
Z(T,h)\ Z(T',h') = Z(T, hp') |_| (Z(p',T,hhr) \ Z(T', 1)) .
(1) if p := T, is defined but not?/, thenp is regular w.rtSa{7"’) and
Z(T,h)\ Z(T',h') = Z(T,h) \ Z(p, T', W' hr").

PROOF. (i) As init(p’) is regular w.r.t SAT'. ), it is also regular w.r.t S&I'-,,). Since
T, is not defined, we know ¢ mvar(T'). Thereforep’ is also regular w.r.t S&T’). On
the other hand, we have a disjoint decomposition

Z(T,h) = Z(T, hp') | | Z(v/, T, hhr).
By the definition ofp’, Z(T", 1) C V(p') which implies
Z(T, hp') (\Z(T', 1) = 0.

The conclusion follows.
(#¢) Similarly, we knowp is regular w.r.t S4"’). By the disjoint decomposition

Z(T',h') = Z(T', I'p) | |Z(p, T’ , W),
andZ(T,h)NZ(T’, h'p) = 0, we have
Z(T, W)\ Z(T', ') = Z(T, ) \ Z(p, T', '),
from which the conclusion follows.

Lemma 7 Assume thaba(7-,) = Sa(7TZ,) butSalT,) # SalT.,) and thatv is
algebraic w.r.t botHl" andT’. Define

G =GCD(T,, Ty, T<v);

&= U Extend(C,T>,);
(9:0)€G, [C|>|T<w]

R= U Regularize(hhr, F).
Ec&

Then we have
(4)
Z(T,h)

= U Z(R,hhr) | | ( U Z(CuT>v,hhT)> :

ReR, hhrgSalR) (9:0)€G, |CI=|T<|



(17) rank(R) <, rankT), forall R € R.

(73t) Assume thalC'| = |T<,|. Then
(79i.a) C'UTs, is aregular chain anchr is regular w.r.t it.
(141.b) if |G] > 1, thenrank C U Ts,,) <, rank(T).

PrROOFE By the specification o&cCD we have
(9,.C)€G

That is,
W(T.,) 2 (W(C),(9,C) € G).

From the specification dxtend we have: for eacly, C) € G such thatC| > |T,|,
W(CUTs,) = (W(E), E € Extend(C U Ts,)).

From the specification dRegularize, we have for all(g, C') € G such thafC| >
|T<,| and allE € Extend(C UTs,),

W(E) 25 (W(R), R € Regularize(hhr, E)).

Therefore, by applying the Lifting Theorem [13] we have:

W(T) = W(T<v U T}v)

<l U W(R)) U ( U W(Cu&))
RER (9,C)EG, |Cl=|T<u|

C W(T<v U T}U)

=W(T),

which implies,

Z(T, h) = Z(T, hhr)

C U Z(R,hhr) | | ( U Z(C UTs,, hhT))
RER, hhT&Sa(R) (g.,C)GQ., ‘C‘:|T<v‘

S W(T)\ V(hhr) = Z(T' ).

So (i) holds. If|C| > |T<,|, by the specifications dixtend andRegularize, |R| >
|T'|. By Lemma 3,
dim(V(Sa(R))) < dim(V(Sa(T))),
which implies(i3).
If |C| = |T<,|, by Proposition 5 of [13], we concludgii.a) holds. Wheng| > 1,
by Notation 1,(izi.b) holds.



Lemma 8 Assume thaba(7-,) = Sa(7.,) butSalT,) # SatT.,) and thatv is
algebraic w.r.t botHl" andT”. Definep = T,, p’ = T and

G =GCD(p,p, T<o).
If |G| =1, letG = {(g,C)}. Then the following properties hold

(Z) C= T<v-
(i7) If g € K, then
Z(T,h)\Z(T', ') = Z(T\, h).

(7i1) If g ¢ Kandmvar(g) < v, theng is regular w.r.tSa{T") and
Z(T,h)\ Z(T',h")
=Z(T,gh)|_|(Z(g,T, hhr) \ Z(T",1)).

(iv) Assume thatmvar(g) = v.
(iv.a) If mdedg) = mdedp), defining

¢ = pqudp’,p,T,)
D, =T.,U{p}UT.,
D, =T.,U{¢'}UTL,,
then we have
Z(T,h)\ Z(T', 1) = Z(T,h) \ Z(D,, h'h1"),

rank(D;,) < rank(7T") andh'hz is regular w.rtSat D;,).
(iv.b) If mdedg) < mdedp), defining

q= pqqu7gaT<U)
Dy =Ty U{gtUT>,
Dq = T<v U {Q} UT>'ua

then we haveD, and D, are regular chains such thaank(D,) < rank(T),
rankD,) < rank(T'), hh is regular w.rtSa{D,) andSa{(D,), and

Z(T,h) = Z(Dg, hhr)| JZ(Dy, hhe)| ) Z(hg, T, hhr).

PROOF Since|G| = 1, by the specification of the operati@CD and Notation 1(i)
holds. Therefore we have

Sa(C) = Sa(T.,) = Sa(7T.,) Q)
There exist polynomialgl and B such that

g=Ap+ Bp’ mod SatC). 2



From (2), we have
V(Sa(C)) € V(g — Ap — By') (3)
Therefore, we deduce
(T)(\W(T")

= W(T<v Upu TEU) mW(T/<v Up/ U T/>7J)
C (W(T<,) NV (p) [ J(W(TL,) N V(D))

C V(sa(T-,)) (V) (| V() by (1)
C V(g —Ap—Bp) (V) V(F) by (3)
< V(g).
that is
T)(\W(T') € V(9)- (4)
Now we prove(ii). Wheng € K, g # 0, from (4) we deduce
W(T)(YW(T") = 0. (5)

Thus we have
Z(T,h) \ Z(T", 1)
= (W(T)\ V(h) \ (W(T")\ V(1))
= (W(T)\ V(h)) by (5)
=Z(T,h).

Now we prove(iii). SinceC' = T, and mvafg) is smaller than or equal te, by the
specification olGCD, g is regular w.r.t S3f"). We have following decompositions

Z(Ta h) = Z(Ta gh’) I_l Z(ga T7 h’h'T)v
Z(T' W) = Z(T", gh') | Z(g, T', W),

On the other hand,
Z(T, gh) () Z(T', gI')

(W(T) NV (gh)*) () (W(T') NV (gh'))

S (W(T)n (g) )ﬂ(W(T’)ﬂV(g)C)
= (W(T ) (V9
=0 by( )

Therefore,
Z(T,h) \ Z(T',h')
= (Z(T, gh) \ Z(T", gh")) |_|(Z(g, T, hh) \ Z(T", "))
— Z(T, gh)| |(Z(g, T, hhr) \ Z(T", ).



Now we prove(iv.a). First, bothh and h/. are regular w.r.t S&€) = Sa(T.,) =
Sa(7’,). From the construction ab;,, we havehhr is regular w.r.t SdtD,,).
Assume that mvdy) = v and mde@g) = mdedp). We note that mdgg’) >
mdedp) holds. Otherwise we would have mdegy = mdedp) = mdedp’) which
implies:
p € Sa(T%,) andp’ € Sa(T>,). (6)

Thus

Sa(T<,) = (T<v) s h7, = (T<o Up) : hF
C sa(T.,) : his by (6)
= Sa(T’@),
that is Satl'<,) C Sat7.,). Similarly, Saf7¢,) € Sa(Tg,) holds. So we have
Sa(T¢,) = Sa(Tx,), a contradiction.
Hence, mvafy') = v

By Lemmag6 [13], we know thatD), andD;, are regular chains. Then with Theorem
7 [13] and Lifting Theorem [13], we know

Z(T',1') € (D), W)\ JZ(Dy W) Z(hy, T', 1)
CW(T")\ V(H).

By Lemma 2, we have
Z(T', ') = Z(D,,, Wby ) | Z(Dy W h) | ) Z(hy, T, B b,
Since
Z(D}y, W' hev) = Z(D}y, hph' b ) | ) Z(hy, Dy, W' W)
= Z(D},, phyh'hr) | J Z(p, Dly, hph' W) | ) Z(hp, DYy 1B
and

Z(p, D, hyh' W) € Z(D), ' hips)
Z(hpv D;’a h/h”/T) C Z(hpa T/a h/hT/)v

we deduce
Z(T', 1) = Z(D}, h'hy) | |Z(D},ph'hrr) | | Z(hy, T', B ).
Now observe that
Z(T,h) () Z(D},,ph’hr:) = 0, and
Z(T,h) () Z(hy, T’ W' hr) = 0.



We obtain
Z(T, W)\ Z(T', 1) = Z(T, h) \ Z(D;, R hro).

Finally we prove(iv.b). We assume that mvar) = v and mdegg) < mdedp);
this implies mvafq) = v. Applying Lemmaé in [13] we know thatD, and D, are
regular chains and satisfy the desired rank condition. Tie@heorem?7 [13] and
Lifting Theorem [13] we have

Z(T,h) = Z(Dy, hhr) | JZ(Dg, hhr) | ) Z(hg, T, hhr).
This completes the whole proof.

Definition 5 Given two pairs of rankgrank(T}), rank(T7)) and (rank(T»), rank(T3)),
whereT, T, T}, Ty are triangular sets. We define the product ordey of Ritt order
<, on them as follows

(rank(T5), rank(Ty)) <, (rank(Ty), rank(T7))

rank(T») <, rank(Ty) or
rank(Tz) = rank(Ty), rank(T3) <, rank(1}).

In the following theorems, we prove the termination and ectmess separately. Along
with the proof of Theorem 1, we show the rank conditions atisféed which is part
of the correctness. The remained part, say zero set decd@roppwill be proved in
Theorem 2.

Theorem 1 Algorithms Difference and DifferenceLR terminate and satisfy the
rank conditions in their specifications.

PROOEF Itis equivalent to prove that

(1) Difference terminates with ranfifference([T k], [T", 1'])) <, rank([T', h]),
(i1) DifferenceLR terminates with ranfDifferenceLR(L, R)) <, rank(L).

(1) Basic case: no recursive callsBifference andDifferenceLR.
First, (i) holds for the algorithnDifferenceLR:
— Line2  byZL=0,rank0) <, rank L),
— Line4 by R = 0, rank L) = rank(£),
— Line2,4 the termination is obvious.
Next, (¢) holds for the algorithnDifference:
— Line?2 by Lemma 4 Intersect terminates and

rank(Intersect(h’'hy:, T, hhr)) <, rank([T, h]),

— Line 7,8 whenIntersect(p’, T, hhr) = 0, we concludgi) holds from
(#7) and rank[T, hp'])=rankT),

— Line 11 whenIntersect(p, 7', h'hr) = 0, we concludgi) holds from
(77) and rank[T', h))=rank([T, h]),



— Line 18 rank([T, h]) = rank([T, h]),
— Line 20,21 whenIntersect(g,7, hhr) = (), we concludg) holds from
(i¢) and rank[T, gh])=rank([T, h]).

(2) Induction hypothesis: assume that bdifh and (i¢) hold for inputs with ranks
smaller than the rank dfT’, n], [T7, h']) w.r.t. <,,.

(3) By (1), if no recursive calls occur in one branch, thgh and (i) already hold.
When recursive calls occur, we first proy® holds. Indeed by inductio(2), it
suffices to prove: the inputs of recursive callsdfference or DifferenceLR
have smaller ranks than raf{kZ’, 1], [T”, h'])) w.r.t <,. We show this line by line
for Difference:

— Line8 by Lemma 6 and Lemma 4,

rank(Intersect(p’, T, hhr)) <, rank([T, h]),

— Linel1 by Lemma 6 and Lemma 4,
rank(Intersect(p,T”, h'hy)) <, rank([T”, h']),

— Line21 by Lemma 8 and Lemma 4,

rank(Intersect(g, T, hhr)) <, rank([T), h]),
— Line 25 by Lemma 8,

rank([D,,, h'h]) <, rank([T", h']),
— Line 30,31 bylLemmas,
rank([D,, hhr]) <, rank([T, h]) and rank[D,, hhr]) <, rank([T, h]),

— Line 32 by Lemma 8 and Lemma 4,

rank(Intersect(hg, T, hhr)) <, rank([T, h]),
— Line41,46 bylLemma?7,

rank([D, hhr]) <, rank([T, h]) and rank[C' U T, hhr]) <, rank([T, h]).

Now we prove, when recursive calls occ(it) holds forDifferenceLR as well.
Since (¢) holds for Difference, from the algorithmDifferenceLR, clearly it
terminates. So by2), it suffices to prove: the rank of the input of each recursive
call to Difference is less than or equal to raf{, R)). We also show this line by
line for DifferencelLR:

— Line8 by rank([T’, h]) <, rank(L),

— Line 15 by (i),

rankDifference([T, ], [T”, 1'])) <, rank([T, h]) <, rank(L).

Theorem 2 BothDifference and Difference satisfy their specifications.



PrROOF By Theorem 1Difference andDifference terminate and satisfy their rank
conditions. So it suffices to prove the correctnesPifference andDifferenceLR,
that is

(i) Z(T,h) \ Z(T',1’) = Z(Difference([T, hl, [T, 1'])),
(17) Z(L) \ Z(R) = Z(DifferenceLR(L, R)).

Similarly we prove the correctness of the two algorithmsriguiction.

(1) Basic case: no recursive call Bifference andDifferenceLR occurs.
First, (i¢) holds for algorithnDifferenceLR.

— Line2 Z(0)\ Z(R) = Z(0),
— Line4 Z(L)\ D =7Z(L).
Next, (¢) holds for algorithnDifference.
— Line2 by Lemma 4 and Lemma 5,

— Line7,8 by Lemma 4, Lemma 6 an{dq),
— Line11 by Lemma 4, Lemma 6 and:),
— Line18 by Lemma 8,

— Line 20,21 by Lemma4, Lemma 6 andi).

(2) Induction hypothesis: botki) and (i) hold for inputs with ranks smaller than
rank(([Z, k], [T', '])) W.r.t. <,.

(3) By (1), if no recursive call occurg;) and(i:) already hold. When recursive call
occurs, we first shows:) holds. From the proof of Theorem 1, Difference,
the inputs of recursive calls Difference andDifferenceLR will have smaller
ranks w.r.t. the product ordet,,. Therefore, by(2) we show provei) holds for
Difference line by line

— Line7,8 by Lemma 4 and Lemma 6,
— Linel1l by Lemma 4 and Lemma 6,
— Line 20,21 by Lemma 4 and Lemma 8,
— Line 25 by Lemma 8,

— Line30,31,32 bylLemma4 and Lemma 8,
— Line 32 by Lemma 8 and Lemma 4,

rank(Intersect(hy, T, hhy)) <, rank([T, h]),

— Line 41, 46 by Lemma 7.
Finally, when recursive call occur§;) holds forDifferenceLR line by line.
— Line5-9 by (i) and the relation

\Z(R)

T

Uzn,h>\ZT” U (Ti, ha) \ Z(T", 1))

i=1

Z(L

~

<~

I
-

Z (Difference([T}, hy|, [T", h']))

1=1



— Line10 — 18 by (i),
Z(Difference([T, h],[T',1'])) = Z(T,h) \ Z(T", h')

and the relation
Z(L)\Z(R) = (Z(L)\Z(R, 1)) \ (U Z(Rj,gj)) :
j=2
this reduces to the ca$R| = 1 (Line 5-9).

6 \Verification of triangular decompositions

In this section, we describe how to verify the output fromiartgular decomposition.
Verification in Kalkbrener’s sense is still unknown whether can circumvent Grobner
basis computations. However, in Lazard’s sense, we wikgmeboth Grobner basis
and triangular decomposition methods.

6.1 \Verification with Gr 6bner bases

The following two lemmas state the Grobner basis methodasitify whether two basic
constructible sets are equal or not.

Lemma 1. Let{F, f} and {Go, go} be two polynomial systems. The following state-
ments are equivalent

2. Foreveryiy,...,is} C{0,...,7r},0<s<r,

VIFU{gi,,.,9i.}) 2 11 (F){(G)- (7)
ke{0,...,r}\{i1,..,is}

PROOF (1) is equivalent td(F, f) € U,_, D(Gi, g:).

D(F, f) ﬂ (ﬂ D(Giagi)c> = 0.

Using the distributive property, we deduce that (1) is eal@imt to

(DENVgiar-9:)) () ( N V(Gk)C) =0,
s}

ke{0,...,r }\{i1,
for all subsetgiy,...,is} of {0,...,r}. The proof easily follows.

Lemma 2. Let{F, f} and{G, g} be two polynomial systems. The following statements
are equivalent



1. D(F, f)\D(G,g) 2 U;_; D(H;, h;).
2. Foralll1 <i <r,we have

hlg € \/ <Hl U G>, hz [SIRV/ <Hl, f>, and <hz><F> C <Hz> (8)

PrROOF (1) holds if and only if for each < i < r we have

{D(Hl-, hi) ND(F, f)¢ =0,
D(H;, hi)D(G,g) =0,

which holds if and only if

The proof easily follows.

6.2 Verification with triangular decompositions

Given two Lazard’s triangular decompositiofi§ | i = 1...e}and{S; |j=1... f}.
CheckingJs_, W(T;) = deW(Sj) amounts to checking both

(Z—_QW(Ti)> \ <JQW(Sj)) and (O W(Sj)> \ <QW(E)>

j=1

being empty. In turn, after computing the regular systemeasgntations of above two
constructible sets. According to Lemma 1, we solve the watifon problem with the
algorithmDifferenceLR in Lazard’s sense.

7 Experimentation

We have implemented a verifier, namigitf-verifier, according to thdifferenceLR
algorithm proposed in Section 5, and it has been implementeidple 11 based on the
Regul ar Chai ns library. To verify the effectiveness of our Diff-verifierahave also
implemented another verifier, namé&a-verifier, applying Lemma and10, on top of
the Polynomialldealpackage in Maplé1.

We use these two verifiers to examine four polynomial systelwess herein. They
are theTriangularizefunction in theRegularChaindibrary [11], the TRIADE server
in Aldor, written with theBasicMath library[8], the RegSeirfunction and theSimSer
function inEpsilon[19] implemented itMaple The first two solvers solve a polynomial
system into regular chains by means of ttRADE algorithm [13]. They can work in
bothLazard’'ssense an#{alkbrener’'ssense. In this work, we use the options for solving
in Lazard'ssense. Th&egSefunction decomposes a polynomial system into regular
systems in the sense of [22], and BienSefunction decomposes a polynomial system
into simple systems, as in [20].



The problems used in this benchmark are chosen from [129]7lrl Table 1, for
each system, we give thEmension sequence of the triangular decomposition com-
puted inKalkbrener'ssense by the RIADE algorithm. The number of variables is de-
noted byn, andd is the maximum degree of a monomial in the input. We also dnee t
number of components in the solution set for each of the nasthh@ are studying.

Table 2 gives the timing of each problem solved by the fouhmés. In this study,
due to the current availability dEpsilon the timings obtained by thRegSeiand the
SimSercommands are performed in Maple 8 on Intel Pentium 4 maciihé8GHz
CPU, 513MB memory and Red Hat Linux 3.2.2-5). All the othemitigs are run on
Intel Pentium 4 (3.20GHz CPU, 2.0GB total memory, and Red 4@i0-9), and the
Maple version used is 11. TheRTIADE server is a stand-alone executable program
compiled from a program in Aldor.

Table 3 summarizes the timings of GB-verifier for verifyirgetsolutions of the
four methods. Table 4 illustrates the timings of Diff-veiffor checking the solutions
by MapleTriangularizeagainst Aldor RIADE server, Maplélriangularizeagainst Ep-
silon RegSerand EpsilorRegSerngainst EpsiloisimSer For the case where there is a
time, the verifying result is also true. The’ denotes the case where the test stalls by
either reaching the time limit 0f3200 seconds or causing a memory failure.

This experimentation results illustrate that verifyinga@ymomial solver is a truly
difficult task. The GB-verifier is very costly in terms of cgme and memory. It only
succeeds for some easy examples. Assuming that the GBevasifieliable, for the
examples it succeeds, the Diff-verifier agrees with its ltedoy pair-wise checking,
while it takes much less time. This shows the efficiency of Diff-verifier. Further
more, the tests also show that the Diff-verifier can verifyrendifficult problems by
pair-wise checking. The tests indicate that all of the foetlods are solving tools with
a high probability of correctness, since the checking tesubuld not agree to each
other otherwise.

References

1. P. Aubry, D. Lazard, and M. Moreno Maza. On the theoriesriahgular sets.J. Symb.
Comp, 28(1-2):105-124, 1999.

2. P. Aubry and M. Moreno Maza. Triangular sets for solvingypomial systems: A compar-
ative implementation of four method$. Symb. Comp28(1-2):125-154, 1999.

3. J. Backelin and R. Froberg. How we proved that there aaetBx924 cyclic 7-roots. In S.
M. Watt, editor,Proc. ISSAC'91pages 103-111. ACM, 1991.

4. F. Boulier, F. Lemaire, and M. Moreno Maza. Well known tiegos on triangular systems
and the D5 principle. IfProc. of Transgressive Computing 2006, Granada, Spain, 2006.

5. L. Donati and C. Traverso. Experimenting the Grobneisbalgorithm with the ALPI sys-
tem. InProc. ISSAC’89pages 192-198. ACN Press, 1989.

6. D. Eisenbud. Commutative Algebra with a View Toward Algebraic GeometBpringer-
Verlag, New York-Berlin-Heidelberg, 1995.

7. J. Grabmeier, E. Kaltofen, and V. Weispfenning, edito@omputer Algebra Handbook
Springer, 2003.

8. The Computational Mathematics Group. The basicmatlarjpor NAG Ltd, Oxford, UK,
1998. http://lwww.nag.co.uk/projects/FRISCO.html.

9. R. HartshorneAlgebraic GeometrySpringer-Verlag, 1997.



Number of Components

Maple Aldor EpsilornEpsilon
Sysg Name n|d| Dimension |Triangularize TRIADE servefRegSefSimSe
1 Montes S1 |4 |2 [2,2,1] 3 3 3 3
2 Montes S2 4|3 [0] 1 1 1 1
3 Montes S3 | 3|3 [1,1] 2 2 2 3
4 Montes S4 | 4|2 [0] 1 1 1 1
5 Montes S6 |4 |3 [2,2,2] 3 3 3 3
6 Montes S7 |43 [1] 2 2 3 6
7 Montes S8 |4 (12 [2,1] 2 2 6 6
8 Alonso 7|4 [3] 3 3 3 4
9 Raksanyi |8|3 [4] 4 4 4 10
YangBaxter

10 Rosso 6|31[4,3,3,1,1,1,1] 7 7 4 13

[0,0,0,0,0,0,
11 I-3 413]0,0,0,0,0,0,0 25 13 8 8
12 Caprasse |4|4]| [0,0,0,0,0] 15 5 4 4
13 Reif 16| 3 [1 0 0 0 0

Buchberger

14| WuWang |5(3 [2] 3 3 3 4
15 |DonatiTraversp4 |31 [1] 6 3 3 3
16 | Wu-Wang.2 13/ 3| [1,1,1,1,1] 5 5 5 5
17 | Hairer-2-BGK|13| 4 [2] 4 4 5 6
18 | Montes S5 |83 [4] 4 4 4 10
19 Bronstein | 4|3 [1] 4 2 4 9
20 Butcher |84/ [3,3,3,2,2,0] 7 6 6 6
21 |genLinSyst-2-28 | 2 [6] 11 11 11 11
22 |genLinSyst-3-211| 2 [8] 17 18 18 18
23 Gerdt 714][3.2,2,2,1,1] 7 6 10 10
24 Wang93 |53 [1] 5 4 6 7
25 Vermeer |5|5 [1] 5 4 12 14
26 Gonnet |5]|2 [3,3,3] 3 3 9 9
27 Neural 413 [1,1] 4 3 - -
28 | Noonburg |43 [1,1] 4 3 - -

[12,12,11,
29 Kdv 1(0|11,11,11,11] 7 7 - -
30 | Montes S12 (8|2 [4] 22 17 23 -

[6,6,6,6,6,
31 Pappus |12/ 2| 6,6,6,6,6] 124 129 156 -

Table 1 Features of the polynomial systems



Maple Aldor EpsilonEpsilon
SydTriangularize TRIADE servefRegSerSimSe
1 0.104 0.164 0.01 | 0.03
2 0.039 0.204 0.03 | 0.02
3 0.069 0.06 0.019]| 0.111
4 0.510 0.072 0.049| 0.03
5 0.052 0.096 0.03 | 0.03
6 0.150 0.06 0.09 | 5.14
7 0.376 0.072 0.2 | 1.229
8 0.204 0.065 0.109| 0.16
9 0.460 0.066 0.141| 0.481
10 1.252 0.108 0.069| 0.21
11 5.965 0.587 153 | 291
12 2.426 0.167 1.209| 2.32
13| 123.823 1.886 1.979| 2.36
14 0.2 0.101 0.049| 0.109
15 2.641 0.08 0.439| 0.7
16 105.835 1.429 549 | 6.14
17 23.453 0.688 1.76 | 1.679
18 0.484 0.078 0.13 | 0.471
19 0.482 0.071 0.24 | 1.000
20 9.325 0.442 1.689| 2.091
21 0.557 0.096 0.13 | 0.21
22 1.985 0.173 0.431| 0.411
23 4.733 0.499 35 4.1
24 7.814 5.353 2.18 | 30.24
25 26.533 0.580 4.339| 60.65
26 3.983 0.354 2.18 | 2.48
27 15.879 1.567 - -
28 15.696 1.642 - -
29 | 9245.442 49.573 - -
30 17.001 0.526 2.829 -
31 79.663 4.429 11.78| -

Table 2 Solving timings in sec. of the four methods



GB-verifier timing(s) Diff-verifier timing(s)
Maple Aldor EpsilonEpsilon M.T. M.T. E.R.
Triangularize TRIADE servefRegSe[SimSer  vs S VS
sy§ (M.T.) (AT) (E.R)| (E.S)| AT E.R. E.S.
1 0.556 0.526 0.518| 0.543| 0.58 | 0.439 | 0.445
2 0.128 0.127 0.129| 0.131| 0.039 | 0.02 | 0.013
3 0.584 0.575 0.585| 2.874| 0.182 | 0.108 | 0.427
4 0.104 0.133 0.139| 0.137| 0.037 | 0.027 | 0.023
5 1.484 1.472 1.457| 1.469| 0.591 | 0.339 | 0.356
6 76.596 72.374 |71.853 - 7.204 | 5.268 | 15.334
7 0.616 0.601 4501| 4.536| 0.573 | 0.758 | 1.017
8 - - - - 1.196 | 1.564 | 2.618
9 - - - - 5.442 | 9.837 | 18.252
10 - - - - 10.888 | 22.638 | 22.649
11 - - - - 14.652| 4.541 | 3.585
12 - 58.332 |33.46935.213 2.52 | 2.398 | 3.113
13 - - - - 0 0 0
14 1.96 1.937 2.165| 5.739| 0.924 | 0.915 | 1.155
15| 330.317 - - - 2244 | 4782 | 4.201
16| 10466.587 - - - 434 | 4.408 | 3.207
17 - - - - 6.348 | 6.109 | 15.719
18 - - - - 5.32 | 10.485| 17.897
19 1.544 0.717 5.046| - 7.838 | 7.986 | 43.506
20 - - - - 13.04 | 10.218| 9.978
21 - - - - 10.872 | 15.098 | 11.048
22 - - - - 61.147 | 48.865| 32.184
23 - - - - 11.144 | 15.981| 16.222
24 - - - - 1564.6541918.96$ 870.962
25 - - - - 2144726 - 2182.401L
26 - - - - 3.839 | 6.041 | 9.550
27| 11383.335 - - - ]1088.563 — -
28 - - - - ]1119.449 - -
29 - - - - 30.016 - -
30 - - - - - - -
31 - - - - - - -
Table 3 Timings of GB-verifier and Diff-verifier
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