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Abstract

Synchronous model is a type of formal models for modelling and specifying reactive
systems. It has a great advantage over other real-time models that its modelling paradigm
supports a deterministic concurrent behaviour of systems. Various approaches have been
utilized for verification of synchronous models based on different techniques, such as model
checking, SAT/SMT sovling, term rewriting, type inference and so on. In this paper, we
propose a verification approach for synchronous models based on compositional reasoning
and term rewriting. Specifically, we initially propose a variation of dynamic logic, called
synchronous dynamic logic (SDL). SDL extends the regular program model of first-order
dynamic logic (FODL) with necessary primitives to capture the notion of synchrony and
synchronous communication between parallel programs, and enriches FODL formulas with
temporal dynamic logical formulas to specify safety properties — a type of properties mainly
concerned in reactive systems. To rightly capture the synchronous communications, we
define a constructive semantics for the program model of SDL. We build a sound and
relatively complete proof system for SDL. Compared to previous verification approaches,
SDL provides a divide and conquer way to analyze and verify synchronous models based on
compositional reasoning of the syntactic structure of the programs of SDL. To illustrate the
usefulness of SDL, we apply SDL to specify and verify a small example in the synchronous
model SyncChart, which shows the potential of SDL to be used in practice.

1 Introduction

Synchronous model is a type of formal models for modelling and specifying reactive systems [1]
— a type of computer systems which maintain an on-going interaction with their environment at
a speed determined by this environment. The notion of synchronous model was firstly proposed
in 1980’s along with the invention and development of synchronous programming languages [2].
Among these synchronous programming languages, the most famous and representative ones are
Signal [3], Lustre [4] and Esterel [5], which have been widely used in academic and industrial
communities (for instance, cf. [6, 7, 8, 9]).

One crucial modelling paradigm taken in synchronous models is synchrony hypothesis [2],
which considers the behaviour of reactive systems as a sequence of reactions. At each reaction,
all events of sensing from inputs, doing computations and actuating from outputs are considered
to occur simultaneously. In such a model, time is interpreted as a discrete sequence of instants
where at each instant, several events may occur in a logical order (in the sense that they still
can have data dependencies). The physical time of events no longer plays a crucial role, but the
simpler logical time, i.e., the instant at which the event is executed. Since events supposed to be
nondeterministic in a system are now all assumed to be simultaneous, in a synchronous model, a
concurrent behaviour is deterministic. Determinism has proved to be of great advantage not only
in system testing (as mentioned in [10, 11]), but also in system verifications like model checking
and theorem proving because it can largely decrease the size of the model of a concurrent system.

In the verification of synchronous models, model checking has been adopted as the dominant
technique (cf. [12, 13, 14, 15, 16, 4]). Although it has advantages like decidability and high
efficiency, it is well-known that model checking suffers from the so-called state-space explosion
problem. Moreover, since model checking is based on the enumeration of states, it is hard for it
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to support modular verification — a “divide and conquer” way which proves to be important in
verifying large-scale systems.

Theorem-proving-based program verification [17], however, is a complement to model check-
ing which can remedy these two disadvantages mentioned above. It is not based on the enu-
meration of states, but the decomposition of programs according to their structures. Dynamic
logic [18] is a mathematical logic that supports theorem-proving-based program verification. Un-
like the three-triple forms {φ}p{ψ} in Hoare logic [19], it integrates a program model p directly
into a logical formula so as to define a dynamic logical formula in a form like φ→ [p]ψ (meaning
the same thing as the triple {φ}p{ψ}). Such an extension on formulas allows to express the
negations of program properties, e.g. ¬[p]ψ, which makes dynamic logic more expressive than
Hoare logic. Dynamic logical formulas can well support compositional reasoning on programs.
For example, by applying a compositional rule:

[p]ψ ∧ [q]ψ

[p ∪ q]ψ ,

the proof of the property [p ∪ q]ψ of a choice program p ∪ q, can be discomposed into the proof
of the property [p]ψ of the subprogram p and the proof of the property [q]ψ of the subprogram
q.

Dynamic logic has proven to be a strong method for verifying programs in a theorem-proving
approach and has been applied or extended to be applied in different types of programs and
systems (e.g. [20, 21, 22, 23]). In this paper, we introduce dynamic logic in the verification of
reactive systems. Specifically, we initially use dynamic logic for specifying and verifying the
synchronous models of reactive systems. However, directly using the traditional dynamic logics
for our goal would yield several problems. Firstly, the program models of the traditional dy-
namic logics, called regular programs [24], are too general to express the execution mechanism in
synchronous models, i.e., the simultaneous executions of events in one reaction. Of course, these
features of synchronous models can be encoded as regular programs, but the information will be
lost during the proving process when the program structures are broken down. Secondly, regular
programs only support modelling sequential programs. It cannot specify the communications in
synchronous models, which is a main characteristic of reactive systems. Thirdly, the traditional
dynamic logics can only specify state properties, i.e., properties held after the terminations of a
program. In reactive systems, however, since a system is usually non-terminating, people care
more about temporal properties (especially safety properties [4]), i.e., properties concerning each
reaction of a system.

In this paper, to solve these problems, we propose a variation of dynamic logic, called syn-
chronous dynamic logic (SDL), for the verification of synchronous models based on theorem
proving. SDL extends first-order dynamic logic (FODL) [25] in two aspects: (1) the program
model of SDL, called synchronous programs (SPs), extends regular programs with the notions
of reactions and signals in order to model the execution mechanism of synchronous models, and
with the parallel operator to model the communications in synchronous models; (2) SDL for-
mulas extends FODL formulas with a type of formulas from [23] called temporal dynamic logical
formulas in order to capture safety properties in reactive systems. We build a sound and rela-
tively complete [26] proof system for SDL, which extends the proof system of FODL with a set
of rules for the new primitives introduced in SPs, and with a set of rewrite rules for the parallel
programs in SPs. We illustrate how SDL can be used to specify and verify synchronous models
by simple examples, where we encode one of popular synchronous models, syncCharts [27], as
SPs and specify their properties as SDL formulas. We also display how to prove a simple SDL
formula in the proof system of SDL.

Our proposed SP model of SDL follows an SCCS [28] style in its syntax. But instead of
considering all events executed at an instant as non-ordered elements, in SPs we also consider
the logical before-and-after order between these events, as also considered in synchronous mod-
els like [11]. SP model is not an imperative synchronous programming language, like Esterel
and Quartz [29], which were aimed at implementing reactive systems in a convenient and hier-
archy way. These languages contain more advanced features such as preemption and trap-exit
statement [5], in order to make the programming of some high-level behaviour of circuits eas-
ier. However, these features are not the essences of synchronous models and are redundant in
terms of expressive power. Our SPs do not provide a support of them, because they cannot be
verified in a compositional way in a theorem-proving approach. Besides, the goal of SDL is not
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to verify actual synchronous programs at industrial level in reality, but to provide a verification
framework for general synchronous models at early stages of design of a reactive system. In our
opinion, SDL also provides a theoretical foundation for building more complex logics with richer
syntax and semantics for verifying synchronous programming languages in practice.

The rest of this paper is organized as follows. In Sect. 2, we give a brief introduction to
FODL. We propose SDL and build a proof system for SDL in Sect. 3 and 4 respectively, and
in Sect. 5, we analyze the soundness and relative completeness of SDL calculus. In Sect. 6, we
show how SDL can be used in specifying and verifying synchronous models through an example.
Sect. 7 introduces related work, while a conclusion is made in Sect. 8.

2 First-order Dynamic Logic

The syntax of FODL is as follows:

p ::= ψ? | x := e | p ; p | p ∪ p | p∗,
φ ::= tt | a | [p]φ | ¬φ | φ ∧ φ | ∀x.φ.

It consists of two parts, a program model called regular programs p and a set of logical formulas
φ.

ψ? is a test, meaning that at current state the proposition ψ is true. x := e is an assignment,
meaning that assigning the value of the expression e to the variable x. The syntax of ψ and e
depends on the discussed domain. For example, e could be an arithmetic expression and ψ could
be a quantifier-free first-order logical formula defined in Def. 3.1, 3.2. ; is the sequence operator,
p ; q means that the program p is first executed, after it terminates, the program q is executed.
∪ is the choice operator, p ∪ q means that either the program p or q is executed. ∗ is the star
operator, p∗ means that p is nondeterministically executed for a finite number of times.

tt is Boolean true. (We also use ff to represent Boolean false. ) a is an atomic formula
whose definition depends on the discussed domain. For example, it could be the term θ defined
in Def. 3.2. Formulas [p]φ are called dynamic formulas. [p]φ means that after all executions of
p, formula φ holds.

The semantics of FODL is based on Kripke frames [24]. A Kripke frame is a pair (S, val)
where S is a set of states, also called worlds, and val is an interpretation, also called a valuation,
whose definition depends on the type of logic being discussed. In FODL, val interprets a program
as a set of pairs (s, s′) of states and interprets a formula as a set of states. Intuitively, each pair
(s, s′) ∈ val(p) means that starting from the state s, the program p is executed and terminates
at the state s′. For each state s, s ∈ val(φ) means that s satisfies the formula φ; s ∈ val([p]φ)
means that for all pairs (s, s′) ∈ val(p), s′ ∈ val(φ). For a formal definition of the semantics of
FODL, one can refer to [24].

The proof system of FODL is sound and relatively complete. Except for the the assignment
x := e and test ψ?, the rules for other operators and logical connectives are also defined as a
part of the proof system of SDL below in Table 1 and 3. Refer to [24] for more details.

3 Synchronous Dynamic Logic

In this section, we propose the synchronous dynamic logic (SDL). SDL extends FODL to pro-
vide a support for specification and verification of synchronous models of reactive systems. In
Sect. 3.1, we firstly define the syntax of SDL. Then in Sect. 3.2, we give the semantics of SDL.

3.1 Syntax of SDL

SDL consists of a program model defined in Def. 3.3 and a set of logical formulas defined in
Def. 3.5.

Before defining the program model of SDL, we first introduce the concepts of terms and
first-order logical formulas.

Definition 3.1 (Terms). The syntax of a term e is an arithmetical expression given as the
following BNF form:

e ::= x | c | f(e, e),
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where x ∈ Var is a variable, c ∈ Z is a constant, f ∈ {+,−, ·, /} is a function.

The symbols +,−, ·, / represent the usual binary functions in arithmetic theory: addition,
substraction, multiplication and division respectively.

Definition 3.2 (First-order Logical Formulas). The syntax of an arithmetical first-order logical
formula ψ is defined as follows:

ψ ::= tt | θ(e, e) | ¬ψ | ψ ∧ ψ | ∀x.ψ,

where θ ∈ {<,≤,=, >,≥} is a relation.

The symbols <,≤,=, >,≥ represent the usual binary relations in arithmetic theory, for ex-
ample, < is the “less-than” relation, = is equality, and so on. As usual, the logical formulas with
other connectives, such as ∨,∃,→, can be expressed by the formulas given above.

The formulas defined in Def. 3.2 contains the terms and relations interpreted as in Peano
arithmetic theory, so in this paper, we also call them arithmetic first-order logical (AFOL)
formulas.

The program model of SDL, called synchronous program (SP), extends the regular program
of FODL with primitives to support the modelling paradigm of synchronous models. In order
to capture the notion of reactions, we introduce the macro event in an SP to collect all events
executed at the same instant. In order to describe the communications in synchronous models,
we introduce the signals and signal conditions as in synchronous programming languages like
Esterel [5] to send and receive messages between SPs, and we introduce a parallel operator to
express that several SPs are executed concurrently.

Definition 3.3 (Synchronous Programs). The syntax of a synchronous program p is given as
the following BNF form:

p ::= 1 | 0 | α | p ; p | p∪ p | p∗ | ∩(p, ..., p),

where α is defined as:
α ::= ε | evt . α,

evt ::= ψ? | %? | ς!e | x := e,

% ::= ς̂(x) | ς̄ .

The set of all synchronous programs is denoted by SP. We call 1,0 and α atomic programs,
and call the programs of other forms composite programs. We denote the set of all atomic
programs as SPat .

1 is a program called nothing. As implied by its name, the program neither does anything
nor consumes time. The role it plays is similar to the statement “nothing” in Esterel [5].

0 is a program called halting. It causes a deadlock of the program. It never proceeds and the
program halts forever. The program 0 is similar to the statement “halt” in Esterel.

The program α is called a macro event. It is the collection of all events executed at the
current instant in an SP. A macro event consists of a sequence of events linked by dots . one by
one and it always ends up with a special event ε called skip. The event ε skips the current instant
and forces the program move to the next instant. ε is the only term that consumes time in SPs.
It plays a similar role as the statement “skip” in Esterel. An event evt , sometimes also called
a micro event, can be either a test ψ?, a signal test %?, a signal emission ς!e or an assignment
x := e. The tests ψ? and assignments x := e have the same meanings as in FODL. A signal test
%? checks the signal condition % at the current instant. % has two forms. ς̂(x) means that the
signal ς is emitted at the current instant. x is a variable used for storing the value of ς. ς̄ means
that the signal ς is absent at the current instant. A signal emission ς!e emits a signal ς with a
value expressed as a term e at the current instant. We stipulate that a signal ς can emit with
no values, and we call it a pure signal, denoted by ς. Sometimes we also simply write ς!e as ς
when the value e can be neglected in the context.

The sequence programs p ; q, choice programs p∪q and the star programs (or called finite loop
programs) p∗ have the same meanings as in FODL. ∩ is the parallel operator. ∩(p1, ..., pn) means
that the programs p1, ..., pn are executed concurrently. When n = 2, we also write ∩(p1, p2) as
p1 ∩ p2. We often call an SP without a parallel operator ∩ a sequential program, and call an SP
that is not a sequential program a parallel program.
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In a parallel program ∩(p1, ..., pn), at each instant, events from different programs p1, ..., pn
are executed simultaneously based on the same environment, while events in each program pi
are executed simultaneously, but in a sequence order. SP model follows the style of SCCS [28]
in its syntax, but differs in the treatments to the execution order of events at one instant. In
SCCS, all events at one instant are considered as disordered elements that are commutative.

A closed SP is a program that does not interfere with its environment. In this paper, as
the first step to propose a dynamic logic for synchronous models, we only focus on building a
proof system for closed SPs. This makes it easier for us to define the semantics for SPs because
there is no need to consider the semantics for signals. Similar approach was taken in [30] when
defining a concurrent propositional dynamic logic.

Definition 3.4 (Closed SPs). Closed SPs are a subset of SPs, denoted as Cl(SP), where a
closed SP q ∈ Cl(SP) is defined by the following grammar:

q ::= 1 | 0 | α′ | q ; q | q ∪ q | q∗ | ∩(p, ..., p),

where p ∈ SP is an SP, α′ is defined as:

α′ ::= ε | evt ′ . α′,

evt ′ ::= ψ? | x := e.

As indicated in Def. 3.4, a closed SP is an SP in which signals and signal tests can only
appear in a parallel program.

We often call a macro event α′ a closed macro event, call an event evt ′ a closed event. We
call an SP which is not closed an open SP. We denote the set of all closed atomic programs as
Cl(SPat). For convenience, in the rest of the paper, we also use p to represent a closed SP and
use α, evt to represent a closed macro event and a closed event respectively.

SDL formulas extend FODL formulas with temporal dynamic logical formulas of the form
[p]�φ from [23] to capture safety properties in reactive systems. The syntax of SDL formulas is
given as follows.

Definition 3.5 (SDL Formulas). The syntax of an SDL formula φ is defined as follows:

φ ::= tt | θ(e, e) | ¬φ | φ ∧ φ | ∀x.φ | [p]φ | [p]�φ,

where θ ∈ {<,≤,=, >,≥}, p ∈ Cl(SP).

φ is often called a state formula, since its semantics concerns a set of states. A property
described by a state formula, hence, is called a state property.

The formula [p]�φ captures that the property φ holds at each reaction of the program p.
Intuitively, it means that all execution traces of p satisfy the temporal formula �φ, which means
that all states of a trace satisfy φ. The dual formula of [p]�φ is written as 〈p〉♦φ, we have
¬[p]�φ = 〈p〉♦¬φ. Intuitively, 〈p〉♦φ means that there exists a trace of p that satisfies the
temporal formula ♦φ, which means that there exists a state of a trace that satisfies φ.

We assign precedence to the operators in SDL: the unary operators ∗, ¬, ∀x and [p] bind
tighter than binary ones. ; binds tighter than ∪. For example, the formula ¬ψ∧ [α ; p∗ ∪ q]φ∧ψ′
should be read as (¬ψ) ∧ ([(α ;(p∗)) ∪ q]φ) ∧ ψ′.

Definition 3.6 (Bound Variables in SPs). In SDL, a variable x is called a bound variable if it
is bound by a quantifier ∀x, an assignment x := e or a signal test ς̂(x)?, otherwise it is called a
free variable.

We use BV (p) and FV (p) (resp. BV (φ) and BV (φ)) to represent the sets of bound and free
variables of an SP p (resp. a formula φ) respectively.

We introduce the notion of substitution in SDL. A substitution φ[e/x] replaces each free
occurrence of the variable x in φ with the expression e. A substitution φ[e/x] is admissible if
there is no variable y that occurs freely in e but is bound in φ[e/x]. In this paper, we always
guarantee admissible substitutions by bound variables renaming mentioned above.

In this paper, we always assume bound variables renaming (also known as α− conversion)
for renaming bound variables when needed to guarantee admissible substitutions. For example,
for a substitution ([z := x − 1 . ε]x > z)[x/z], it equals to [z := y − 1 . ε]y > x by renaming x
with a new variable y.
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In SPs, we stipulate that signals are the only way for communication between programs.
Therefore, any two programs running in parallel cannot communicate with each other through
reading/writing a variable in Var . To meet this requirement, we put a restriction on the bound
variables of SPs that are running in parallel.

Definition 3.7 (Restriction on Parallel SPs). In SPs, any parallel program ∩(p1, ..., pn) satisfies
that

BV (pi) ∩ FV (pj) = BV (pj) ∩ FV (pi) = ∅

for any i, j, 1 ≤ i < j ≤ n.

We assume bound variables renaming for renaming bound variables when needed to solve
the conflicts. For example, given two programs p = (x := 1 ; v := x+ 2) and q = (ε ; y := x+ 1),
we have p∩ q = (z := 1 ; v := z+ 2)∩(ε ; y := x+ 1) by renaming the bound variable x of p with
a new variable z.

3.2 Semantics of SDL

Because of the introduction of temporal dynamic logical formulas [p]�φ in SDL, it is not enough
to define the semantics of SPs as a pair of states like the semantics of the regular program of
FODL [24], because except recording the states where a program starts and terminates, we also
need to record all states during the execution of the program.

Before defining the semantics of SDL, we first introduce the notions of states and traces.

Definition 3.8 (States). A state s : Var → Z is a mapping from the set of variables Var to the
domain of integers Z.

We denote the set of all states as S.

Definition 3.9 (Traces). A trace tr is a finite sequence of states:

s1s2...sn, where n ≥ 1.

n is the length of the trace tr, denoted by l(tr).

We use tr(i) (i ≥ 1) to denote the ith element of tr. We use tri (i ≥ 1) to denote the prefix of
tr starting from the ith element of tr, i.e., tri =df tr(i)tr(i+ 1)...tr(n). We use trb to denote the
first element of tr, so trb = tr(1); we use tre to denote the last element of tr, so tre = tr(l(tr)).

Definition 3.10 (Concatenation between Traces). Given two traces tr1 = s1...sn and tr2 =
u1u2...um (n ≥ 1, m ≥ 1), the concatenation of tr1 and tr2, denoted by tr1 ◦ tr2, is defined as:

tr1 ◦ tr2 =df s1...snu2...um, provided that sn = u1.

The concatenation operator ◦ can be lifted to an operator between sets of traces. Given two
sets of traces T1 and T2, T1 ◦ T2 is defined as:

T1 ◦ T2 =df {tr1 ◦ tr2 | tr1 ∈ T1, tr2 ∈ T2}.

Note that if tre1 6= trb2, tr1 ◦ tr2 is undefinable. Therefore, ◦ is a partial function.
The semantics of SDL formulas is defined as a Kripke frame (S, val) where the interpretation

val maps each SP to a set of traces on S and each SDL formula to a set of states in 2S. In
the following subsections, we define the valuation val(φ) of an SDL formula φ step by step, by
simultaneous induction in Def. 3.23, Def. 3.12 and Def. 3.17.

In Sect. 3.2.1, we first define the semantics of closed SPs in Def. 3.2.2, in which we leave
the detailed definition of the semantics of parallel programs in Def. 3.17 of Sect. 3.23. With the
semantics of closed SPs, we define the semantics of SDL formulas in Def. 3.23 of Sect. 3.2.3.
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3.2.1 Valuations of Terms and Closed Programs

In this subsection, we define the valuations of terms and closed SPs in SDL.

Definition 3.11 (Valuation of Terms). The valuation of terms of SDL under a state s, denoted
by vals, is defined as follows:

1. vals(x) =df s(x);

2. vals(c) =df c;

3. vals(f(e1, e2)) =df f(vals(e1), vals(e2)), where f ∈ {+,−, ·, /};

Note that we assume that +,−, ·, / are interpreted as their normal meanings in arithmetic
theory.

The semantics of closed SPs is defined as a set of traces in the following definition.

Definition 3.12 (Valuation of Closed SPs). The valuation of closed SPs is defined inductively
based on the syntactic structure of SPs as follows:

1. val(1) =df S;

2. val(0) =df ∅;

3. val(α) =df {ss′ | tr ∈ valm(α), trb = s, tre = s′}, where valm(α) is defined as:

(i) valm(ε) =df {ss | s ∈ S};
(ii) valm(ψ? . α′) =df {ss | s ∈ val(ψ)} ◦ valm(α′), where val(ψ) is defined in Def. 3.23;

(iii) valm(x := e . α′) =df {ss′ | s′ = s[x 7→ vals(e)]} ◦ valm(α′), where s[y 7→ v] is defined
as

s[y 7→ v](z) =df

{
v if z = y
s(z) otherwise

}
;

4. val(p ; q) =df val(p) ◦ val(q);

5. val(p∪ q) =df val(p) ∪ val(q);

6. val(p∗) =df

⋃∞
n=0 valn(p), where valn(q) =df val(q) ◦ ... ◦ val(q)︸ ︷︷ ︸

n

, val0(q) =df S for any

q ∈ SP;

7. val(∩(p1, ..., pn)) =df Par(∩(p1, ..., pn)), where Par(∩(p1, ..., pn)) is defined in Def. 3.17.

The semantics of 1 is defined as the set of all traces of length 1. For any set A, we have
S ◦ A = A ◦ S = A, which meets the intuition that 1 does nothing and consumes no time. The
definitions of the semantics of the programs 0, p; q, p ∪ q and p∗ are easy to understand.

The key point of the definition lies in the definitions of the semantics of the macro event α
and the parallel program ∩(p1, ..., pn). The semantics of ∩(p1, ..., pn) is given later in Sect. 3.2.2.

The semantics of α reflects the time model of synchronous models. It consists of a set of
pairs of states, we call them macro steps. Each macro step starts at the beginning of the macro
event α, and ends after the execution of the last event of α — the skip ε. In each macro step
ss′ of a macro event, the sequential executions of all events in the macro event form a trace tr
with trb = s and tre = s′. We call the execution of a micro event a micro step. The set of the
execution traces of all micro events of α is defined by valm(α). The definition of the semantics
of ε means that from any state s, ε just skips the current instant and jumps to the same state
without doing anything more. By simultaneous induction, we can legally put the definition of
val(ψ) in Def. 3.23 since ψ is a pure first-order logical formula which does not contain any SPs.
The semantics of an assignment x := e is defined just as in FODL.

According to Def. 3.12, it is easy to see that each trace represents one execution of an SP,
and each transition between two states of a trace exactly captures the notion of one “reaction”
in synchronous models. During a reaction, all events of a macro event are executed in sequence
in different micro steps. Fig. 1 gives an illustration.

We can call the valuation given in Def. 3.12 the macro-step valuation. On the contrary, we
can define the micro-step valuation for closed SPs, stated as the following definition.
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s ... s′
evt ε

micro step

one macro step/one reaction

α

Figure 1: Macro Steps vs. Micro Steps

Definition 3.13 (Micro-Step Valuation of Closed SPs). The micro-step valuation of a closed
SP p, denoted by valm(p), is defined inductively based on the syntactic structure of p as:

valm(p) =df val(p) for all programs but a macro event.

For a macro event α, valm(α) is already defined in Def. 3.12.

In the micro-step valuation of closed SPs, each transition between two states exactly captures
a micro step.

3.2.2 Valuation of Parallel Programs

Definition of the Function Par In this subsection, we mainly define the semantics of parallel
programs, which is Par(∩(p1, ..., pn)) in Def. 3.12. To this end, we need to define how the
programs p1, ..., pn communicate with each other at one instant. However, because of the choice
program and the star program, an SP turns out to be non-deterministic, which makes the
direct definition of the communication rather complicated. To solve this problem, we adopt the
idea proposed in [30]. We firstly split each program pi (1 ≤ i ≤ n) into many deterministic
programs ri1, ri2, ..., each of which captures one deterministic behaviour of pi. Then we define
the communication of the parallel program ∩(r1k1 , ..., rnkn) (where k1, ..., kn ∈ N+) for each
combination r1k1 , ..., rnkn of the deterministic programs of p1, ..., pn.

We call a deterministic program a trec, a name inherited from [30]1.

Definition 3.14 (Trecs). A trec is an SP whose syntax is given as follows:

trec ::= 0 | 1 | str | par ,

par ::= ∩(trec, ..., trec) | par ; trec | trec ; par ,

str ::= α | α ; str .

We denote the set of all trecs as Trec.

A trec is an SP in which there is no choice and star programs. In a trec, a sequential program
must be 0, 1 or in the form of a string str , from which the macro event at the current instant
is always visible; a parallel program can be combined with a trec by the sequence operator ;.

Different from the trec defined in [30], where when a parallel program p∩ q is combined
with a program r by the sequence operator ;, r is always combined with p and q separately in
their branches as: (p ; r)∩(q ; r). The trec defined in Def. 3.14, however, allows the form like
(p∩ q) ; r. Unlike the program model of concurrent propositional dynamic logic, in our proposed
SP model, the behaviour of (p∩ q) ; r is not equivalent to that of (p ; r)∩(q ; r), because generally,
a program r is not equivalent to a parallel program r∩ r. For example, consider a simple SP
r = (x := 1 ;x := x + 1), according to the syntax of SPs in Def. 3.3 and the restriction defined
in Def. 3.7, we have r∩ r = (y := 1 ; y := y + 1)∩(x := 1 ;x := x + 1), whose behaviour is not
equivalent to that of r.

Intuitively, an SP has a set of trecs, each of which exactly represents one deterministic
behaviour of the SP. The relation between SPs and their trecs is just like the relation between
regular expressions and their languages. For example, an SP ς1 . ε ;(ς2 . ε ∪ ς3 . ε) has two trecs:
ς1 . ε ; ς2 . ε and ς1 . ε ; ς3 . ε. Below, we introduce the notion of the trecs of an SP to capture its
deterministic behaviours.

Before introducing the trecs of an SP, we need to introduce an operator which links two trecs
with the sequence operator ; in a way so that the resulted program is still a trec.

1where trec means a “tree computation”.
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Definition 3.15 (Operator E). Given two trecs p and q, the trec pE q is defined as:

pE q =df


0 if p = 0 or q = 0
q if p = 1
p if q = 1
α ;(p′E q) if p = α ; p′

p ; q otherwise

Intuitively, E links p and q in a way that does not affect the meaning of p ; q. In the definition
above, the first case assumes the equivalence of the behaviours between 0 ; q (or p ; 0) and 0.
The second (resp. third) cases assumes the equivalence of the behaviours between 1 ; q and q
(resp. p ; 1 and p). The fourth case assume the equivalence of the behaviours between (α ; p′) ; q
and α ;(p′ ; q). All these assumptions actually hold for closed SPs according to the definition of
the operator ◦ given above. Given p, q are trecs, it is not hard to see that the resulted program
pE q is a trec.

Definition 3.16 (Trecs of SPs). The set of trecs of an SP is defined inductively as follows:

1. τ(a) =df {a}, where a ∈ SPat is an atomic program;

2. τ(p ; q) =df {r1E r2 | r1 ∈ τ(p), r2 ∈ τ(q)};

3. τ(p∪ q) =df τ(p) ∪ τ(q);

4. τ(p∗) =df

⋃∞
n=0 τ(pn), where p0 =df 1, pn =df p ; p ; ... ; p︸ ︷︷ ︸

n

for n ≥ 1;

5. τ(∩(p1, ..., pn)) =df {∩(r1, ..., rn) | r1 ∈ τ(p1), ..., rn ∈ τ(pn)}.

With the notion of the trecs of an SP, as indicated at the beginning of Sect. 3.2.2, we give
the definition of the function Par as follows.

Definition 3.17 (Function Par). The function Par(∩(p1, ..., pn)) appeared in Def. 3.12 is de-
fined as

Par(∩(p1, ..., pn)) =df

⋃
r∈τ(∩(p1,...,pn))

val t(r),

where val t(r) is defined in Def. 3.22.

Def. 3.17 says that the semantics of a parallel program ∩(p1, ..., pn) is defined as the union
of the semantics of all deterministic parallel programs of ∩(p1, ..., pn).

Now it remains to give the detailed definition of val t(r) for a deterministic parallel program
r of the form ∩(p1, ..., pn), where p1, ..., pn ∈ Trec . The central problem to define its semantics
is to define how the programs p1, ..., pn communicate with each other at one instant. Below we
firstly consider the most interesting case when each program pi (1 ≤ i ≤ n) is of the form αi ; qi,
where the macro event αi to be executed at the current instant is visible. As will be shown later
in Def. 3.22, other cases are easy to handle.

Definition of the Function Mer In SPs, when n programs p1, ..., pn are communicating at
an instant, all events at the current instant are executed simultaneously. Signals emit their
values by broadcasting. Once a signal is emitted, all programs observe its state immediately at
the same instant. In such a scenario, it is natural to think that during one reaction, all programs
p1, ..., pn should hold a consistent view towards the state of a signal. Such a consistency is stated
as the following law, which is called logical coherence law in Esterel [31].

Logical coherence law: At an instant, a signal has a unique state, i.e., it is either emitted or
absent, and has a unique value if emitted.

In Esterel, the programs satisfying this law are called logically correct [31]. Despite the
simultaneous execution of all events at an instant, in SPs, the events of each macro event are
also considered to be executed in a logical order that preserves data dependencies. In Esterel,
the logically correct programs that follow the logical execution order in one reaction are called
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constructive [31]. In synchronous models, it is important to ensure the constructiveness when
defining the semantics of the communication behaviour.

It is possible for an SP to be non-constructive. For example, let p1 = ς̄1? . ς1!5 . ε, p2 = ε,
then the program p1 ∩ p2 is logically incorrect because the signal ς1 can neither be emitted nor
absent at the current instant. If ς1 is emitted, ς̄1 cannot be matched, so by the logical order ς1!5
is never executed. If ς1 is absent, then ς̄1 is matched but then ς1!5 is executed.

In this paper, we propose a similar approach as proposed in [31] for defining a construc-
tive semantics of the communication between SPs. The communication process, defined as the
function Mer in Def. 3.18 below, ensures the logical coherence law while preserving the logical
execution order in each macro event at the current instant. Our method is based on a recursive
process of executing all events at the current instant step by step based on their micro steps.
At each recursion step, we analyze all events of different macro events at the current micro step
and execute them according to different cases and based on the current information obtained
about signals. After the execution we update the information and use it for the next recursion
step. This process is continued until all events at the current instant are executed.

In the definitions given below, we sometimes use a pattern of the form p1 | ... | pn to represent
a finite multi-set {p1, ..., pn} of the programs p1, ..., pn, as it is easier to express certain changes
made to the programs at certain positions separated by |.

Definition 3.18 (Function Mer). Given a pattern of the form A = (p1 | ... | pn) (n ≥ 2), where
pi = αi ; qi for any 1 ≤ i ≤ n, the function Mer(A) is defined as

Mer(A) =df rMer(A, ρ0, R0,Must0,Ξ0),

where ρ0 = ε, R0 = Must0 = Ξ0 = ∅.
The recursive procedure rMer(A, ρ, r,Must ,Ξ), in which ρ is an atomic program, R is a

pattern, Must is multi-set of signals, Ξ is a multi-set of signal-set pairs, is defined as follows:

1. If αi = ε for some 1 ≤ i ≤ n, then

rMer

(
(... | pi−1 |αi ; qi | pi+1 | ...),

ρ, R,Must ,Ξ

)
=df rMer

(
(... | pi−1 | pi+1 | ...),
ρ, (R | qi),Must ,Ξ

)
;

2. If αi = a . β for some 1 ≤ i ≤ n, where a ∈ {ψ?, x := e}, then

rMer

(
(p1 | ... |αi ; qi | ... | pn),

ρ, R,Must ,Ξ

)
=df rMer

(
(p1 | ... |β ; qi | ... | pn),

ρ / a,R,Must ,Ξ

)
;

3. If αi = ς!e . β for some 1 ≤ i ≤ n, then

rMer

(
(p1 | ... |αi ; qi | ... | pn),

ρ, R,Must ,Ξ

)
=df rMer

(
(p1 | ... |β ; qi | ... | pn),

ρ, R,Must ] {ς!e},Ξ

)
;

4. If αi = %i? . βi for all 1 ≤ i ≤ n, let Can = getCan(A,Must), then

(i) if %j = ς̂(x) and Mat(%j ,Must) = tt for some 1 ≤ j ≤ n, then

rMer

(
(p1 | ... | %j . βj ; qj | ... | pn),

ρ, R,Must ,Ξ

)
=df rMer

(
(p1 | ... | r | ... | pn),

ρ, R,Must ,Ξ ∪ {(ς,Must ς)}

)
,

where r = (βj ; qj)[comb({e}ς!e∈Must)/x], Must ς = {ς!e | ς!e ∈ Must};
(ii) if %j = ς̄ and Mat(%j ,Can) = tt for some 1 ≤ j ≤ n, then

rMer

(
(p1 | ... | %j . βj ; qj | ... | pn),

ρ, R,Must ,Ξ

)
=df rMer

(
(p1 | ... |βj ; qj | ... | pn),

ρ, R,Must ,Ξ

)
,

(iii) if Mat(%j ,Must) = ff for all 1 ≤ j ≤ n, then

rMer

(
(p1 | ... | %j . βj ; qj | ... | pn),

ρ, R,Must ,Ξ

)
=df rMer

(
∅,

0, R,Must ,Ξ

)
,
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(iv) otherwise,

rMer

(
(p1 | ... | pn),

ρ, R,Must ,Ξ

)
=df (ff , ρ, R).

5. If A = ∅, then
rMer(A, ρ,R,Must ,Ξ) =df (b, ρ,R),

where

b =

{
tt , if for any (ς, A) ∈ Ξ, A = Must ς = {ς!e | ς!e ∈ Must}
ff , otherwise

}
.

The function Mer calls a recursive function rMer , which executes the events at each micro
step of different macro events according to different cases (the cases 1 - 5). rMer returns a
triple (b, ρ,R), where b indicates whether the communication behaviour between the programs
p1, ..., pn is constructive or not. The parameters ρ,R,Must ,Ξ keep updated during the recursion
process of rMer . ρ is the behaviour after the communication between the macro events α1, ..., αn.
It collects all closed events executed at the current instant in a logical order. R represents the
resulted n programs after the communication, corresponding to the original programs p1, ..., pn.
Must , Ξ (and Can, computed from Must in the case 4,) maintain the information about signals
that is necessary for analyzing the communication in order to obtain a constructive behaviour.
Must and Can record the sets of signals that must emit and that can emit at the current instant
respectively. Ξ records the set of observed signals for each signal test of the form ς̂(x). Their
usefulness will be illustrated below.

The recursion process of rMer is described as follows.
The case 1 is trivial. The skip ε has no effect on the communication between other programs

so we simply remove the program and add the resulted part qi after the execution to the set R.
In the case 2, a closed event a at the current micro step of a macro event αi is executed. The

operator /, defined later in Def. 3.19, appends a to the tail of the sequence of events ρ. Note
that the order to put the closed events of different macro events into ρ at each recursion step
is irrelevant, because as indicated in Def. 3.7, all variables are local and do not interfere with
each other. For example, in a program (x > 1? . x := x+ 1 . ε)∩(y := 1 . ε), the logical execution
orders between x > 1? and y := 1, and between x := x + 1 and y := 1, are irrelevant. What
really matters is the order between x > 1? and x := x+ 1, which is preserved in ρ.

In the case 3, we emit a signal at the current micro step of a macro event and put it in the
set Must . Note that the order to put the signals of different macro events into Must is irrelevant.
This is because we do the signal-test matches (in the case 4) always after the emissions of all
signals at the current micro step. This stipulation makes sure that we collect as many as we can
the signals that must emit at the current instant before checking the signal tests. For example,
let p1 = ς1!3 . ε, p2 = ς2!5 . ε, p3 = ς̄2(x)? . ε, then in the program ∩(p1, p2, p3) the execution order
of ς1!3 and ς2!5 is irrelevant, because ς̄2(x) will be matched after the executions of ς1!3 and ς2!5.
If ς̄2(x)? does not wait till ς2!5 is executed, it would hold a wrong view towards the state of the
signal ς2 because ς̄2(x) is matched.

The case 4 checks the signal tests %1, ..., %n after all signals at the current micro steps are
emitted. Here, based on the idea originally from [31], we propose an approach, called Must-
Can approach in this paper, to check the signal tests one by one according to two aspects of
information currently obtained about signals: the set of signals (Must) that are certain to occur
because they have already been executed in the case 3, and the set of signals (Can) that possibly
occur because the current information about signals cannot decide their absences. The basic
idea of our approach is illustrated as the following steps, corresponding to the different cases (i)
- (iv) of the case 4.

(i) We firstly try to match all signal tests of the form ς̂(x) with the current set Must . The
result of a match is returned by the function Mat (defined later in Def. 3.20), which checks
whether a multi-set of signals satisfy the condition of a signal test. If a signal test ς̂(x)
is successfully matched by Must , it means that this test must be matched at the current
instant since the signal ς must be emitted at the current instant.

We substitute the variable x in the program βj ; qj with a value computed by a combina-
tional function comb. When several signals with the same name are emitted at the same
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instant, their values are combined into a value by a function comb. For example, we can
define a combinational function as add(V ) =df Σv∈V v. A similar approach was taken in [?].

(ii) If all signal tests of the form ς̂(x) have been tried and their matches fail, we try to match
the signal tests of the form ς̄ with the set Can, which is computed by the current set Must
in the function getCan (defined later in Def. 3.21). The successful match of a signal test
ς̄ means that this test must be matched at the current instant since the signal ς has no
possibilities to be emitted at the current instant.

(iii) If all signal tests in the form of either ς̂(x) or ς̄ fail in matching with the set Must , the
communication is blocked because it means that the current emissions of signals have
decided the mismatches of all signal tests at the current micro steps.

(iv) If none of the match conditions in the above 3 steps holds, for example, Mat(ς̄ ,Can) always
holds for a signal test ς̄, then we conclude that the communication behaviour between the
programs p1, ..., pn is not constructive and end the procedure rMer by returning b as false.

For example, let p1 = ς̄1? . ς2!5 . ε, p2 = ς̄2? . ς1!3 . ε, consider the communication of the pro-
gram p1 ∩ p2, in the case 4, we have Must = ∅ and Can = {ς2!5, ς1!3}. We cannot proceed
because Mat(ς̄1,Can) = Mat(ς̄2,Can) = ff . In fact, this program is logical incorrect because
it allows two possible states of signals: 1) ς1 is emitted and ς2 is absent, and 2) ς1 is absent
and ς2 is emitted. Let q1 = ς̄2? . ς4 . ε, q2 = ς̂1? . ς3 . ς2 . ε and q3 = ς̂3? . ς1, in the communica-
tion of the program ∩(q1, q2, q3), Must = ∅. It is easy to see that though ς̄2 is possible to be
matched and so ς4 can be emitted, the tests ς̂1 and ς̂3 will never be matched. So Can = {ς4}
and Mat(ς̄2,Can) = tt . Hence this program is constructive.

The case 5 ends the recursion procedure when all macro events α1, ..., αn at the current
instant are executed. At this end, we need to check whether all programs p1, ..., pn hold a
consistent view towards the value of each signal. Only when a signal test ς̂(x)? observes the set
Must ς of all emissions of ς, we can guarantee that all programs agree with the value of ς, i.e.,
comb({e}ς′!e∈Mustς ). For example, let p1 = ς1!3 . ς̂2? . ς1!5 . ε, p2 = ς̂1(x)? . ς2 . ε, then the program
p1 ∩ p2 does not follow the logical coherence law if we choose comb as the function add (defined
above in the case 4(i)), because the value received by the signal test ς̂1(x)? is 3, while the value
of the signal ς1 at the current instant is add(3, 5), which is 8.

Definitions of /, Mat and getCan The operator / and the functions Mat and getCan used
in the function Mer above are defined as follows.

Definition 3.19 (Operator /). Given an event α and an event a ∈ {ψ?, x := e}, α/a is defined
as:

α / a =df

{
a . ε if α = ε
b .(α′ / a) if α = b . α′

}
.

The operator / appends an event a to the tail of a macro event α before ε.

Definition 3.20 (Function Mat). Given a signal test % and a multi-set of signals Y , the function
Mat(%, Y ) is defined as

Mat(%, Y ) =df

 tt if % = ς̂(x) and ς = ς ′ for some ς ′!e ∈ Y
tt if % = ς̄ and ς 6= ς ′ for all ς ′!e ∈ Y
ff otherwise

 .

The function Mat checks whether a multi-set of signals Y matches a signal test %. It returns
true if Y matches %, and returns false otherwise.

Definition 3.21 (Function getCan). Given a pattern of the form A = α1 | ... |αn, where αi =
%i? . βi (1 ≤ ı ≤ n), and a multi-set of signals M , then

getCan(A,M) =df rgetCan(A,M,Can0),

where Can0 = ∅. The function rgetCan(A,M,Can) is recursively defined as follows:

1. if αi = ε for some 1 ≤ i ≤ n, then

rgetCan((... |αi−1 |αi |αi+1 | ...),M,Can) =df rgetCan((... |αi−1 |αi+1 | ...),M,Can);
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2. if αi = a . β for some 1 ≤ i ≤ n, where a ∈ {ψ?, x := e}, then

rgetCan((α1 | ... |αi | ... |αn),M,Can) =df rgetCan((α1 | ... |β | ... |αn),M,Can);

3. if αi = ς!e . β for some 1 ≤ i ≤ n, then

rgetCan((α1 | ... |αi | ... |αn),M,Can) =df rgetCan((α1 | ... |β | ... |αn),M,Can ] {ς!e});

4. if αi = ς̂(x)? . β and Mat(ς̂(x),Can ∪M) = tt for some 1 ≤ i ≤ n, then

rgetCan((α1 | ... |αi | ... |αn),M,Can) =df rgetCan((α1 | ... |β | ... |αn),M,Can);

5. if αi = ς̄? . β and Mat(ς̄ ,M) = tt for some 1 ≤ i ≤ n, then

rgetCan((α1 | ... |αi | ... |αn),M,Can) =df rgetCan((α1 | ... |β | ... |αn),M,Can);

6. otherwise
rgetCan((α1 | ... |αi | ... |αn),M,Can) =df Can;

The function getCan returns a set Can of signals that are possibly emitted in the commu-
nication of n macro events α1, ..., αn at the current instant. In getCan, whether a signal test
is possible to be matched is judged according to the set of signals M that must emit and the
current set Can. In the case 4, if a signal ς must or can be emitted in the current environment,
then we can conclude that ς̂(x) can be matched. In the case 5, a signal test ς̄ can possibly be
matched only when we cannot decide whether the signal ς is emitted in the current environment.
Other cases are easy to understand and we omit their explanations.

Definition of the Function val t(r) With the function Mer , we define the valuation of the
trecs ∩(p1, ..., pn) as follows.

Definition 3.22 (Valuation of the Trecs ∩(p1, ..., pn)). The valuation of a trec ∩(p1, ..., pn) ∈
Trec, denoted as val t(∩(p1, ..., pn)), is recursively defined as follows:

1. If pi = 0 for some 1 ≤ i ≤ n, then

val t(∩(p1, ..., pn)) =df val(0);

2. If pi = 1 for some 1 ≤ i ≤ n, then

val t(∩(p1, ...pi−1, pi, pi+1, ..., pn)) =df val t(∩(p1, ..., pi−1, pi+1, ..., pn));

3. If pi = ∩(r1, ..., rn) ; q for some 1 ≤ i ≤ n and val t(∩(r1, ..., rn)) = val(r), where r is the
program computed in the procedure val t(∩(r1, ..., rn)), which is either 0 or in the form of
α ;∩(r′1, ..., r

′
m), then

val t(∩(p1, ..., pi, ..., pn)) =df val t(∩(p1, ..., rE q, ..., pn));

4. If pi = αi; qi for all 1 ≤ i ≤ n, then

val t(∩(p1, ..., pn)) =df val(α ;∩(q′1, ..., q
′
n)) if b = tt ,

where (b, α, (q′1 | ... | q′n)) = Mer(α1; q1 | ... |αn; qn).

The cases 1 and 2 are easy to understand. In the case 3, when one of the trec pi contains
a parallel subprogram ∩(r1, ..., rn), we first compute the valuation of this subprogram, which
returns the valuation of a program r of the form 0 or α ;∩(r′1, ..., r

′
m). Then we replace pi with

the trec rE q, the latter has a macro event α visible at the current instant.
In the case 4, we merge n programs α1 ; q1, ..., αn ; qn in the function Mer as described above,

which returns the merged closed macro event α and the resulted n programs q′1, ..., q
′
n after the

communication at the current instant. Note that val t is a partial function and it rejects the
parallel programs that do not follow the consistency law 1 at the current instant. Our semantics
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makes sure that SPs must follow the consistency law 1, while preserving the data dependencies
induced by the logical order between micro events. Our semantics is actually a constructive
semantics following [31].

We call an SP p a well-defined SP if it has a semantics val(p). Unless specially pointing out,
all SPs discussed in the rest of the paper are well defined.

Note that the function val t is well defined since a trec is always finite without the star
program.

To see the rationality of our definition of the semantics of SPs in this section, we state the
next proposition, which shows that the trecs of an SP exactly capture all behaviours of the SP.

Proposition 3.1. For any SP p,

val(p) =
⋃

r∈τ(p)

val(r).

The proof of Def. 3.1 is given in Appendix A.

3.2.3 Valuation of Formulas

The semantics of SDL formulas is defined as a set of states in the following definition.

Definition 3.23 (Valuation of SDL Formulas). The valuation of SDL formulas is given induc-
tively as follows:

1. val(tt) =df S;

2. val(θ(e1, e2)) =df {s | s ∈ S, θ(vals(e1), vals(e2)) is true};

3. val(¬φ) =df S− val(φ);

4. val(φ ∧ ψ) =df val(φ) ∩ val(ψ);

5. val(∀x.φ) =df {s | for all n ∈ Z, s ∈ val(φ[n/x])};

6. val([p]φ) =df {s | for all tr ∈ val(p) with trb = s, tre ∈ val(φ)};

7. val([p]�φ) =df {s | for all tr ∈ val(p) with trb = s, tr ∈ valπ(�φ)}, where the valuation
valπ(�φ) of a trace formula �φ is defined as

valπ(�φ) =df {tr | tr(i) ∈ val(φ) for all i ≥ 1}.

The items 1-5 are normal definitions for first-order formulas. The formula [p]φ describes the
partial correctness of a program, since all traces of p are finite, tre always exists. [p]�φ captures
safety properties in synchronous models that hold at each instant. The semantics of a temporal
formula �φ is given as valπ.

We introduce the satisfaction relation between states and SDL formulas.

Definition 3.24 (Satisfaction Relation |=). The satisfaction relation between a state s ∈ S and
an SDL formula φ, denoted as s |= φ, is defined s.t.

s |= φ iff s ∈ val(φ).

We say φ is valid, denoted by |= φ, if for all s ∈ S, s |= φ holds.

4 Proof System of SDL

In this section, we propose a sound and relatively complete proof system for SDL to support
verification of reactive systems based on theorem proving. We propose compositional rules for
sequential SPs which transform a dynamic formula step by step into AFOL formulas according
to the syntactic structure of programs. We propose rewrite rules for parallel SPs which transform
a parallel SP into a sequential one so that the proof of a dynamic formula that contains parallel
SPs can be realized by the proof of a dynamic formula that only contains sequential SPs. Since
the communication of parallel SPs is deterministic, a parallel SP can be easily rewritten into a
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sequential one based on the process given in the function Mer (Def. 3.18) and the state space of
the sequential SP keeps a linear size w.r.t that of the parallel SP.

In Sect. 4.1 we first introduce a logical form called sequent which allows us to express deduc-
tions in a convenient way. In Sect. 4.2 and Sect. 4.3, we propose rules for sequential and parallel
SPs respectively. In Sect. 4.4, we introduce other rules for first-order logic (FOL).

4.1 Sequent Calculus

A sequent [32] is of the form
Γ⇒ ∆,

where Γ and ∆ are finite multisets of formulas, called contexts. The sequent means the formula∧
φ∈Γ

φ→
∨
ψ∈∆

ψ,

i.e., if all formulas in Γ hold, then one of formulas in ∆ holds.
When Γ = ∅, we denote the sequent as · ⇒ ∆, meaning the formula tt →

∨
φ∈∆ φ. When

∆ = ∅, we denote it as Γ⇒ ·, meaning the formula
∧
φ∈Γ φ→ ff .

A rule in sequent calculus is of the form

Γ1 ⇒ ∆1 ... Γn ⇒ ∆n

Γ⇒ ∆ ,

where Γ1 ⇒ ∆1,...,Γn ⇒ ∆n are called premises, while Γ ⇒ ∆ is called a conclusion. The rule
means that if Γ1 ⇒ ∆1,...,Γn ⇒ ∆n are valid (in the sense of Def. 3.24), then Γ⇒ ∆n is valid.

We simply write rules
Γ1 ⇒ ψ1,∆1 ... Γn ⇒ ψn,∆n

Γ⇒ φ,∆
and

Γ′, ψ ⇒ ∆′

Γ, φ1, ..., φn ⇒ ∆
as

ψ1 ... ψn
φ

and
φ1 ... φn

ψ

respectively if Γ1 = ... = Γn = Γ′ = Γ and ∆1 = ... = ∆n = ∆′ = ∆ hold. In fact, the rule
ψ1 ... ψn

φ
just means that the formula

∧n
i=1 ψi → φ is valid in the sense of Def. 3.24 (cf.

Prop. A.1 in Appendix A).

When both rules
ψ

φ
and

φ

ψ
exist, we simply use a single rule of the form

ψ

φ

to represent them. It means that the formula ψ ↔ φ is valid.

4.2 Compositional Rules for Sequential SPs

As shown in Table 1, the rules for sequential SPs are divided into two types. The rules of type
(a) are initially proposed in this paper for special primitives in SPs, whereas the rules of type
(b) are inherited from FODL [24] and differential temporal dynamic logic (DTDL) [23].

Explanations of each rule in Table 1 are given as follows.
The rules of the type (a) are for atomic programs. Rule (α,�φ) says that proving that φ is

satisfied at each instant of the macro event α, is equal to prove that φ holds before and after the
execution of α. This is because a macro event α only concerns two instants, i.e., the instants
before and after the execution of α. The time does not proceed in a macro event. The rules
(ψ?) and (x := e) deal with the micro events in a macro event. In rule (ψ?), if the test ψ? does
not hold, the formula [ψ? . α]φ is always true because there is no trace in the program ψ? . α.
Rule (x := e) is similar to the rule for assignment in FODL. Note that the assignment x := e
also affects on the micro steps after it (i.e. α) and this reflects the data dependencies between
different micro events of a macro event. In rule (ε), since ε only skips the current instant, it does
not affect a state property φ. Rule (1) says that 1 neither consumes time nor does anything, so
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φ ∧ [α]φ

[α]�φ
(α,�φ)

ψ → [α]φ

[ψ? . α]φ
(ψ?)

([α]φ)[e/x]

[x := e . α]φ
(x:=e)

φ

[ε]φ
(ε)

φ

[1]ξ
1 (1)

tt

[0]ξ
(0)

(a) rules special in SDL

[p][q]φ

[p ; q]φ
(;,φ)

[p]�φ ∧ [p][q]�φ

[p ; q]�φ
(;,�φ)

[p]ξ ∧ [q]ξ

[p ∪ q]ξ
(∪)

[p∗][p]�φ

[p∗]�φ
(∗,�φ)

[1 ∪ p ; p∗]ξ

[p∗]ξ
(∗)

∀(φ→ [p]φ)

φ→ [p∗]φ
2 (ind)

∀((v > 0 ∧ φ(v))→ 〈p〉φ(v − 1))

(∃v ≥ 0.φ(v))→ 〈p∗〉φ(0)
3 (con)

∀(φ→ ψ)

[p]φ→ [p]ψ
([],gen)

∀(φ→ ψ)

〈p〉φ→ 〈p〉ψ
(〈〉,gen)

(b) rules from other dynamic logics

1 ξ ∈ {φ,�φ}
2 ∀(φ) =df ∀x1.∀x2.....∀xn.φ, where x1, ..., xn are the set of all free variables in φ
3 The variable v does not appear in p

Table 1: Rules for Sequential SPs

only one instant is involved. Thus [1]ξ equals to that φ holds at the current instant. Rule (0)
says that [0]ξ is always true because there is no trace in 0.

Except for the rules ([], gen) and (〈〉, gen), all rules of type (b) are for composite programs.
The rules (;,�φ) and (∗,�φ) are inherited from DTDL [24]. The rules (;, φ) and (;,�φ) are due
to the fact that any trace of p ; q is formed by concatenating a trace of p and a trace q, while
rule (∪) is based on the fact that any trace of p ∪ q is either a trace of p or a trace of q. Rule
(∗,�φ) converts the proof of a temporal formula �φ to the proof of a state formula [p]�φ. This
is useful because then we can apply other rules such as (ind) and (con) which are only designed
for a state formula φ. Rule (∗) is based on the semantics of p∗, which means that either does not
execute p (i.e. 1), or executes p for 1 or more than 1 times (i.e. p; p∗). The rules ([], gen) and
(〈〉, gen) are for eliminating the dynamic parts [p], 〈p〉 of a formula during deductions. They are
used in deriving the rules ([∗]) and (〈∗〉) below and are necessary for the relatively completeness
of the whole proof system.

ψ ∀(ψ → [p]ψ) ∀(ψ → φ)

[p∗]φ
([∗])

(1)

∃v ≥ 0.ψ(v) ∀((v > 0 ∧ ψ(v))→ 〈p〉ψ(v − 1)) ∀(ψ(0)→ φ)

〈p∗〉φ
(〈∗〉)

(2)

The rules (ind) and (con) are mathematical inductions for proving properties of star programs
p∗. Rule (ind) means that to prove that φ → [p∗]φ holds at a state, we need to prove that
φ → [p]φ holds at any state. Rule (con) has a similar meaning as (ind). The main difference
is that in (con) a variable v is introduced as an indication of the termination of p∗. The rules
(ind) and (con) are mainly used in theories. In practical verification, the rules ([∗]) and (〈∗〉)
above are applied for eliminating the star operator ∗, where ψ is often known as a loop invariant
of p∗. ([∗]) and (〈∗〉) can be derived from (ind) and (con), refer to [24] for more details.

4.3 Rewrite Rules for Parallel SPs

Table 2 gives the rewrite rules for parallel SPs, which are divided into three types and one single
rule. The rules of the types (a), (b), (c) perform rewrites for one step, whereas rule (∩, seq)
rewrites a parallel program as a whole into a sequential one through a series of steps in the
algorithm Brz .

Two rules of type (a) are structural rules for rewriting an SDL formula or an SP according
to the rewrites of its parts. They rely on the definition of program holes given below.

Definition 4.1 (Program Holes). Given a formula φ, a program hole of φ, denoted as φ{ }, is
defined in the following grammar:

φ{ } ::= ¬φ{ } | φ{ } ∧ φ | φ ∧ φ{ } | ∀x.φ{ } | [p{ }]φ | [p{ }]�φ,
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φ{q}
φ{p}

if p q 1 (r1) p{q} p{r} if q  r 2 (r2)

(a) structural rewrite rules

1 ; p p (1, ;) 1∗  1 (1, ∗) 0 ; p 0 (0, ;)

0∗  1 (0, ∗) (p ; q) ; r  p ;(q ; r) (;, ass) p ;(q ∪ r) (p ; q) ∪ (p ; r) (;, dis1)

(q ∪ r) ; p (q ; p) ∪ (r ; p) (;, dis2) (p ∪ q) ∪ r  p ∪ (q ∪ r) (∪, ass) p∗  1 ∪ p; p∗ (∗, exp)

(b) rewrite rules for sequential programs

∩(..., p,1, q, ...) ∩(..., p, q, ...) (∩,1) ∩(..., p,0, q, ...) 0 (∩,0) ∩(..., p ∪ q, ...) ∩(..., p, ...) ∪ ∩(..., q, ...) (∩, dis)

∩(α1 ; q1, ..., αn ; qn) α ;∩(q′1, ..., q
′
n) if (b, α, (q′1 | ... | q′n)) = Mer(α1 ; q1 | ... |αn ; qn) and b = tt (∩,mer)

(c) rewrite rules for parallel programs

∩(p1, ..., pn) Brz (∩(p1, ..., pn)) if ∩(p1, ..., pn) is well defined (∩, seq)

1 p and q are closed programs; φ{ } is a program hole of the formula φ
2 p{ } is a program hole of the program p; the reduction q  r is from the rules of the types (b) and (c)

Table 2: Rewrite Rules for Parallel SPs

where a program hole p{ } of an SP p is defined as:

p{ } ::= | p{ } ; p | p ; p{ } | p{ } ∪ p | p ∪ p{ } | (p{ })∗ | ∩(p, ..., p{ }, ..., p).

We call a place which can be filled by a program.
Given a program hole φ{ } (resp. p{ }) and an SP q, φ{q} (resp. p{q}) is the formula (resp.

the program) obtained by filling the place of φ{ } (resp. p{ }) with q.

The rules (r1 ) and (r2 ) say that the rewrites between SPs preserves the semantics of SDL
formulas and SPs. Rule (r1 ) means that if p can be rewritten by q, then we can replace p by
q anywhere of φ without changing the semantics of φ. Rule (r2 ) has a similar meaning. Note
that p{q}, p{r}, q, r can also be open SPs, and in this case we do not care about their semantics
(because they do not have one).

The rewrites in the rules of type (a) come from the rules of the types (b) and (c). The rules
of type (b) are for sequential programs. They are all based on the semantics of sequential SPs.
For example, rule (1, ;) is based on the fact that val(1 ; p) = val(1) ◦ val(p) = val(p). The rules
of type (c) are for parallel programs. They are based on the semantics of parallel programs given
in Sect. 3.2.2. See Appendix A for the proofs of their soundness.

In a parallel program ∩(p1, ..., pn), if the program pi (1 ≤ i ≤ n) is in the form q∗ or q∗ ; r,
consecutively applying the rules of the types (a), (b) and (c) may generate an infinite proof tree.
An example is shown in Fig. 2, where we merge several derivation steps into one by listing all
the rules applied during these steps. In the proof tree of this example, we can see that the node
(1) is the same as the root node so the proof procedure will never end.

...
1∩1

...
1∩(ς̂? . ε) ;(ς̂? . ε)∗

...
(ς . ε) ;(ς . ε)∗ ∩ 1

(1) : (ς . ε)∗ ∩(ς̂? . ε)∗

ε ;((ς . ε)∗ ∩(ς̂? . ε)∗)
(;,φ),(ε)

(ς . ε) ;(ς . ε)∗ ∩(ς̂? . ε) ;(ς̂? . ε)∗
(∩,mer)

(1 ∪ (ς . ε) ;(ς . ε)∗)∩(1 ∪ (ς̂? . ε) ;(ς̂? . ε)∗)
(∩,dis),(r1),(∪)

(ς . ε)∗ ∩(ς̂? . ε)∗
(∗,exp),(r1)

Figure 2: An Example of Inifinite Proof Trees

To avoid this situation, we propose rule (∩, seq). Rule (∩, seq) reduces a parallel program into
a sequential one by the procedure Brz (Algorithm 1), which follows the Brzozowski’s method [33]
that transforms an NFA (non-deterministic finite automaton), expressed as a set of equations,
into a regular expression. This process relies on Arden’s rule [34] to solve the equations of regular
expressions. Before introducing the procedure Brz , we firstly explain why Arden’s rule can apply
to SPs.

In fact, it is easily seen that a sequential SP is a regular expression, whose semantics is exactly
the set of sequences the regular expression represents. The sequence operator ; represents the
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Algorithm 1 Procedure Brz

1: procedure Brz(∩(p1, ..., pn)) /*∩(p1, ..., pn) is well defined*/
2: let l1 = ∩(p1, ..., pn), by consecutively applying the rules (r2), and the rules of the types (b) and (c) in

Table 2, we can reduce l1 as the following form:

l1  b1 ∪ α11 ; l1 ∪ ... ∪ α1n ; ln, (3)

where n ≥ 0 (l1  b1 when n = 0), b1 is a sequential program, l2, ..., ln are parallel programs. From the
reduction above we can build an equation, namely

l1 ≡ b1 ∪ α11 ; l1 ∪ ... ∪ α1n ; ln.

3: continuing this reduction procedure for the programs l2, ..., ln, we can then build n equations:

l1 ≡ b1 ∪ α11 ; l1 ∪ ... ∪ α1n ; ln, (1)

...

ln ≡ bn ∪ αn1 ; l1 ∪ ... ∪ αnn ; ln, (n)

where b1, ..., bn are sequential programs, l1, ..., ln are taken as n variables.
4: for each k, k = n, n− 1, ..., 2, 1 do
5: transform the equation (k) into the form lk ≡ p ∪ q ; lk
6: by Prop. 4.1, obtain lk ≡ q∗ ; p from lk ≡ p ∪ q ; lk
7: substitute lk on the right of the other equations (k − 1),..., (1) with q∗ ; p

8: return l1

concatenation between sequences of two sets. The choice operator ∪ represents the union of two
sets of sequences. The loop operator ∗ represents the star operator that is applied to a set of
sequences. An event α is a word of a regular expression, representing a set of sequences with the
minimal length (here in SP the minimal length is 2). The empty program 1 is the empty string
of a regular expression, representing a set of sequences with “zero length” , i.e., sequences that
do not change other sequences when are concatenated to them (here in SP, the “zero length”
is 1 due to the definition of the operator ◦). The halt program 0 is the empty set of a regular
expression, representing an empty set of sequences.

With this fact, Arden’s rule obviously holds for sequential SPs, as stated as the following
proposition. In the below of this paper, we sometimes use p ≡ q to mean that two programs p
and q are semantically equivalent, i.e., val(p) = val(q).

Proposition 4.1 (Arden’s Rule in SPs). Given any sequential SPs p and q with q 6≡ 1, X ≡ q∗ ; p
is the unique solution of the equation X ≡ p ∪ q ;X.

Prop. 4.1 can be proved according to the semantics of SPs, we omit it here.
The procedure Brz transforms a parallel program into a sequential one. Algorithm 1 explains

how it works. At line 2, it is easy to see that by using the rules (r2) and the rules of the types
(b) and (c) in Table 2, a parallel program can always be reduced into a form as the righthand
side of the reduction (3). We can actually prove it by induction on the syntactic structure of
the parallel program. At line 3, we can always build a finite number of n equations because
whichever rule we use for reducing a parallel program ∩(p1, ..., pn), e.g. ∩(p1, ..., pn)  q, the
reduced form q only contains the symbols in the original form ∩(p1, ..., pn). Therefore, the total
number of reduced expressions from a parallel program ∩(p1, ..., pn) by consecutively applying
those rules must be finite because ∩(p1, ..., pn) only contains a finite number of symbols.

By taking all parallel programs l1, ..., ln as variables, the process of solving the n equations
is attributed to Brzozowski’s standard process of solving n regular equations, as stated from line
4 - line 8. On each iteration, Arden’s rule is applied to eliminate the kth variable lk. Finally, all
n− 1 variables ln,...,l2 are eliminated and we return l1 as the result.

4.4 Rules for FOL Formulas

Table 3 shows the rules for FOL formulas. Since they are all common in FOL, we omit the
discussion of them here. For convenience of analysis in the rest of the paper, we also give the
rules for ∨,→ and ∃ in Table 4, although they can be derived by the rules in Table 3.

At the end of this section, we introduce the notion of deductive relation in SDL.

Definition 4.2 (Deductive Relation `). Given a SDL formula φ and a multi-set of formulas Φ,
we say φ is derived by Φ, denoted as Φ ` φ, iff the sequent Φ⇒ φ can be derived by the rules in
Table 1, 2, 3.
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Γ, φ⇒ φ,∆
(ax)

Γ⇒ φ,∆ Γ, φ⇒ ∆

Γ⇒ ∆
(cut)

Γ,¬φ⇒ ∆

Γ⇒ φ,∆
(¬r)

Γ⇒ ¬φ,∆
Γ, φ⇒ ∆

(¬l)

Γ⇒ φ,∆ Γ⇒ ψ,∆

Γ⇒ φ ∧ ψ,∆
(∧r)

Γ, φ, ψ ⇒ ∆

Γ, φ ∧ ψ ⇒ ∆
(∧l)

Γ⇒ φ[y/x],∆

Γ⇒ ∀x.φ,∆
1 (∀r)

Γ, φ[e/x]⇒ ∆

Γ,∀x.φ⇒ ∆
(∀l)

1 y is a new variable with respect to Γ, φ and ∆

Table 3: Rules of FOL

Γ⇒ φ, ψ,∆

Γ⇒ φ ∨ ψ,∆
(∨r)

Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

Γ, φ ∨ ψ ⇒ ∆
(∨l)

Γ, φ⇒ ψ∆

Γ⇒ φ→ ψ,∆
(→r)

Γ⇒ φ,∆ Γ, ψ ⇒ ∆

Γ, φ→ ψ ⇒ ∆
(→l)

Γ⇒ φ[e/x],∆

Γ⇒ ∃x.φ,∆
(∃r)

Γ, φ[y/x]⇒ ∆

Γ,∃x.φ⇒ ∆
1 (∃l)

1 y is a new variable with respect to Γ, φ and ∆

Table 4: Other Rules of FOL

If Φ is an empty set, we simply denote Φ ` φ as ` φ.

5 Soundness and Relative Completeness of SDL Calculus

5.1 Soundness of SDL Calculus

The soundness of the proof system of SDL is stated as the following theorem.

Theorem 5.1 (Soundness of SDL). Given an SDL formula φ, if ` φ, then |= φ.

To prove Theorem 5.1, it is equivalent to prove that each rule in Table 1, 2, 3 is sound.
For the rules in Table 1, we only need to prove the soundness of the rules of type (a), since all

rules of type (b) are inherited from FODL and DTDL. Based on the semantics of SDL formulas,
the soundness of the rules of type (a) is given in Appendix A. For the proofs of the soundness
of the rules (;,�φ) and (∗,�φ), one can refer to [23]. For the proofs of the soundness of other
rules of type (b), one can refer to [24].

The soundness of a rewrite rule means that given two closed SPs p and q, if p  q, then
val(p) = val(q). In Appendix A, we prove the soundness of all rewrite rules of Table. 2. We
firstly prove the soundness of the rules of the types (b) and (c) (see Prop. A.3 and A.4) based on
their semantics, then we prove the soundness of the rules (r1 ) and (r2 ) (see Prop. A.8 and A.6)
by induction on the structures of the program holes and the level of a rewrite relation (as defined
in Def. A.1). The soundness of rule (∩, seq) is direct according to Arden’s rule (see Prop. A.7).

The soundness of the FOL rules in Table 3 and 4 are directly from FOL.

5.2 Relative Completeness of SDL Calculus

Since SDL includes AFOL in itself, due to Gödel’s incompleteness theorem [35], SDL is not
complete. In the following, we consider the relative completeness [26] of SDL.

Given an SDL formula φ, we use `+φ to represent that φ is derivable in the proof system
consisting of all rules of Table 1, 2, 3 and all tautologies in AFOL as axioms. Intuitively, `+φ
means that φ can be transformed into a set of pure AFOL formulas in the proof system of SDL.

The relative completeness of SDL is stated as the following theorem.

Theorem 5.2 (Relative Completeness of SDL). Given an SDL formula φ, if |= φ, then `+φ.

The main idea behind the proof of Theorem 5.2 follows the proof of FODL initially proposed
in [25], where a theorem called “the main theorem” (Theorem 3.1 of [25]) was proposed as the
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skeleton of the whole proof. We give our proof by augmenting that main theorem with one more
condition for the temporal dynamic formulas [p]�φ, which are new in SDL. Our main theorem
is stated as follows.

Theorem 5.3 (The “Main Theorem”). SDL is relatively complete if the following conditions
hold:

(i) SDL formulas are expressible in AFOL.

(ii) For any AFOL formulas φ[ and ψ[, if |= φ[ → opψ[, then `+φ[ → opψ[.

(iii) For any SDL formulas φ and ψ, if `+φ→ ψ, then `+ op φ→ opψ.

(iv) For any AFOL formulas φ[ and ψ[, if |= φ[ → [p]�ψ[, then `+φ[ → [p]�ψ[; and if
|= φ[ → 〈p〉♦ψ[, then `+φ[ → 〈p〉♦ψ[.

In the above conditions, op ∈ {[p], 〈p〉,∀x, ∃x}. We use φ[ to stress that φ is an AFOL formula.

The only differences between Theorem 5.2 and the main theorem in [25] are: 1) we replace
all “FODL formulas” with “SDL formulas” in the context; 2) we add a new condition (the
condition (iv)) to our theorem for temporal dynamic formula [p]�φ and its dual form 〈p〉♦φ.
With Theorem 5.3, we can prove the relative completeness of SDL based on these 4 conditions
(See Appendix B). During the process of the proof the new-adding condition (iv) plays a central
role when proving the relative completeness of SDL formulas of the forms [p]�φ and 〈p〉♦φ.

The rest remains to prove the 4 conditions of Theorem 5.3. For the condition (i), the express-
ibility of SDL formulas in AFOL is directly from that of FODL formulas because, intuitively, a
sequential program in SDL can be seen as a regular program in FODL if we ignore the differences
between macro steps and micro steps which only play their roles in parallel SPs. The proofs
of the conditions (ii) and (iii) mainly follow the corresponding proofs of FODL in [25], where
the main difference is that in the proof steps we also need to consider the cases when an SP
is a special primitive (such as the macro event) and when an SP is a parallel program. The
condition (iv) mainly follows the idea behind the proof of the condition (ii) but is adapted to
fit the proofs of the temporal dynamic formulas [p]�φ and 〈p〉♦φ. Appendix B gives the proofs
of these 4 conditions.

6 SDL in Specification and Verification of SyncCharts

In this section, we show that SDL is a useful framework in specification and verification of
synchronous models. We show that synchronous models and their properties can be specified by
SDL in a natural way and verified in the proof system of SDL in a compositional way. Among
many synchronous models, in this paper, we choose SyncChart [27] as an example. SyncChart has
the same semantics as Esterel and has been embedded into the famous industrial tool SCADE.
SyncChart captures the most essential features of synchronous models and is in the form of
automata, which is easy to be transformed into SPs.

The example proposed here is not intended to show the applicability of SDL in practical
verification of reactive systems, but to show the connection between SP and the synchronous
models used in practice and the potential of SDL as a verification framework.

6.1 Encoding Basic SyncCharts

In this subsection, we use SPs to specify basic syncCharts. As we will see, the process of
encoding a basic syncChart as an SP is quite straightforward as SP models can rightly capture
the features of synchronous models. In the following, we give two toy examples to show SPs
can encode syncCharts. The first example is about a sequential system, while the second one is
about a concurrent system. Note that we only give examples and do not intend to give a general
algorithm for the automatic encoding, which is out of the scope of this paper.

Currently, SPs only support encoding the basic syncCharts, which do not include advanced
synchronous features such as preemption, hierarchy and so on (cf. [27]). However, in terms
of expressiveness, considering the basic syncCharts is enough because those advanced features
essentially do not inhence the expressive power of syncCharts. They are just for engineers to
model in a more convenient and neater way.
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For the first example, we consider a simple circuit as considered in [27], called a “frequency
divider”, which is modelled as an syncChart, named “FDIV2”, shown in Fig. 3. The frequency
dividor waits for a first occurrence of a signal T , and then emits a signal C at every other
occurrence of T . Its syncChart FDIV2 consists of two states, with the off state as the initial
state. Each transition in a syncChart represents one reaction of a reactive system, i.e., an
instant at which all events occur simultaneously in a logical order. It exactly corresponds to
a macroevent in SPs. The label on a transition is called the “trigger and effect”, which is in
the form of trigger/effect , representing the actions of reading input signals and sending output
signals respectively at each instant. For example, in FDIV2, the label “T/C” means that at an
instant, if the signal T is triggered, the signal C is emitted. A label corresponds to an event in
SPs.

Figure 3: A Frequency Divider

The behaviour of FDChart is that

(1) At the state off , the syncChart waits for a signal T and moves to the state on;

(2) at the state on, it waits for a signal T and emits a signal C at the same instant, and moves
to the state off .

In SDL, let ςt, ςc represent the signals T and C respectively, we can encode FDChart as an open
SP

PFD = ((ς̄t? . ε)
∗ ; ς̂t? . ε ;(ς̄t? . ε)

∗ ; ς̂t? . ςc . ε)
∗,

where the event ς̂t? . ε models the transition from the state off to the state on, on which the
signal T is triggered, while the event ς̂t? . ςc . ε models the transition from the state on to the
state off , on which both the signals T and C are triggered. The logical order between ς̂t and ςc
in the event ς̂t? . ςc . ε indicates the “trigger - effect” relation between the two signals T and C.
The program (ς̄t? . ε)

∗ means to wait the signal ςt without doing anything.
FDChart looks simpler than the program PFD because it omits the behaviour of “waiting

the signal” on its graph (, which should be a self-loop added on the state off or on). In SPs, we
can actually define a syntactic sugar for this behaviour: for any signal ς and event α,

ς̂(x)??α =df (ς̄ . ε)∗ ; ς̂(x)? . α, (4)

which means that the program waits ς until it it emitted, and then proceeds as α (at the same
instant). With this shorthand, PFD can be rewritten as

PFD = (ς̂t??ε ; ς̂t??(ςc . ε))
∗.

In the second example, we consider a simple circuit from [27], called a “binary counter”,
which is modelled as a syncChart in Fig. 4. The binary counter reads every signal T and counts
the number of occurrences of T by outputting the signals B0 and B1 that represent the bit: the
present of a signal represents 1, while the absent of a signal represents 0. The syncChart of the
binary counter, called “Cnt2”, is a parallel syncChart and is obtained by a parallel composition
of two syncCharts that model circuits called “flip-flops” [27]. A dashed line is to separate
the two syncCharts running in parallel. The execution mechanism of parallel syncCharts is
the same as that of parallel SPs. At each reaction, transitions in different syncCharts can be
triggered simultaneously in a logical order. Therefore, the behaviour of the parallel syncChart
is deterministic.
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Figure 4: A Binary Counter

In syncCharts, a state can be tagged with a trigger/effect label and special types of transitions
were introduced to decide when the label on a state is triggered. This does not increase the
expressiveness of syncCharts but can reduce the number of states and transitions a syncChart
has. The special transitions (with a red circle at the tail of an arrow) appeared in Cnt2 are called
“strong abortion transitions” [27]. When a strong abortion transition is triggered, the label of
the state that the transition is entering is triggered simultaneously, while the label of the state
the transition is exiting cannot be triggered.

The behaviour of Cnt2 is given as follows:

• The right syncChart:

(1) At the state off0 , the syncChart waits for the signal T and moves to the state on0 ,
at the same instant, the signal B0 is emitted.

(2) At the state on0 , the syncChart waits for the signal T and if it is emitted, the signal
C0 is emitted, and then the syncChart moves to the state off0 .

• The left syncChart:

(1) At the state off1 , the syncChart waits for the signal C0 from the right syncChart and
moves to the state on1 , at the same instant, the signal B1 is emitted.

(2) At the state on1 , the syncChart waits for the signal C0 from the right syncChart and
if it is emitted, the signal C0 is emitted, and then the syncChart moves to the state
off0 .

Let ςt, ςc0, ςb0, ςb1, ςc represent the signals T , C0, B0, B1 and C respectively, Cnt2 can be
encoded as an SP as follows:

PBC = Pl ∩Pr,
Pr = (ς̂t??(ςb0 . ε) ; ς̂t??(ςc0 . ε))

∗,

Pl = ( ˆςc0??(ςb1 . ε) ; ˆςc0??(ςc . ε))
∗.

Pl, Pr encode the left and right syncCharts respectively.

6.2 Specifying and Proving Properties in SyncCharts

We consider a simple safety property for the first example discussed above, which says

“whenever the signal ςc is emitted, the signal ςt is emitted”.

Since PFD is an open SP, we assume an environment E for PFD which generally emits ςt or does
nothing at each instant. To collect the information about the signals ςt and ςc, we define two
observers Ot and Oc, which listen to these two signals and record their states within the local
variables x and y at each instant.
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The property is thus specified in an SDL formula as follows:

φFD = (x = 0 ∧ y = 0)→ [∩(PFD , E,Ot, Oc)]�(y = 1→ x = 1),

where
E = (ςt . ε ∪ ε)∗,
Ot = (ς̂t? . x := 1 . ε ∪ ς̄t? . x := 0 . ε)∗,

Oc = (ς̂c? . y := 1 . ε ∪ ς̄c? . y := 0 . ε)∗.

√

φ1, ψ1 ⇒ ψ2

√

φ1, ψ1, ψ2 ⇒ ψ2

φ1, ψ1 ⇒ ∀x.∀y.(ψ2 → [p2]ψ2)
(∀r),(→r),(x:=e) ...

φ1, ψ1 ⇒ ∀x.∀y.(ψ2 → [p2]�φ2)

(1) : φ1, ψ1 ⇒ [p∗2][p2]�φ2

√

φ1 ⇒ ψ1

...
φ1 ⇒ ∀x.∀y.(ψ1 → [p1]ψ1)

(1)

φ1, ψ1 ⇒ [p∗2]�φ2

(∗,�φ) ...
φ1, ψ1 ⇒ [p∗2][p3]�φ2

φ1, ψ1 ⇒ [p1]�φ2

(;,�φ),(∧r)

φ1 ⇒ ∀x.∀y.(ψ1 → [p1]�φ2)
(∀r),(→r)

φ1 ⇒ [p∗1][p1]�φ2

([∗])

φ1 ⇒ [P ]�φ2

(∗,�φ)

· ⇒ φFD

(→r),(∩,seq),(r1)

φ1 = (x = 0 ∧ y = 0) φ2 = (y = 1→ x = 1) ψ1 = tt ψ2 = tt
P = ((x := 0 . y := 0 . ε)∗ ;(x := 1 . y := 0 . ε) ;(x := 0 . y := 0 . ε)∗ ;(x := 1 . y := 1 . ε))∗

p1 = (x := 0 . y := 0 . ε)∗ ;(x := 1 . y := 0 . ε) ;(x := 0 . y := 0 . ε)∗ ;(x := 1 . y := 1 . ε)
p2 = (x := 0 . y := 0 . ε) p3 = (x := 1 . y := 0 . ε) ;(x := 0 . y := 0 . ε)∗ ;(x := 1 . y := 1 . ε)

Figure 5: The Derivation Procedure of φFD

Fig. 5 shows the process of proving φFD . By rule (∩, seq), the program ∩(PFD , E,Ot, Oc) can
be rewritten into a closed sequential program P through a Brzozoski’s procedure. The proof tree
is constructed by applying the rules of the SDL calculus reversely step by step. To save spaces,
we omit most of the branches of the proof tree by “...”, and we merge several derivations into
one by listing all the rules applied during these derivations on the right side of the derivation.
φFD is proved to be true if the AFOL formula at each leaf node is valid (indicated by a

√
at each

leaf node). The AFOL formula at each leaf node can then be checked through an SAT/SMT
solving procedure.

7 Related Work

7.1 Verification Techniques for Synchronous Models

Previous verification approaches for synchronous models are mainly based on model checking.
Different specification languages, such as synchronous observers [12, 13], LTL [14] and clock
constraints [15], were used to capture the safety properties. They were transformed into target
models where reachability analysis was made. For synchronous programming languages, the
process of reachability analysis is often embedded into their compilers, for instance, cf. [16, 4].

Despite for its decidability and efficiency on small size of state spaces, model checking suf-
fers from the notorious state-explosion problem. Recent years automated/interactive theorem
proving, as a complement technique to model checking, has been gradually applied for analysis
and verification of synchronous models in different aspects. One hot research work is to use
theorem provers like Coq [36] to mechanize and verify the compiling processes of synchronous
programming languages, so that the equivalence between compiled code and source code can be
guaranteed [37, 38]. SAT/SMT solving, as a fully automatic verification technique, was used
for checking the time constraints in synchronous programming languages such as Lustre [39]
and Signal [40]. In [41], a type theory was proposed to provide a compile-time framework for
analyzing and checking time properties of Signal, through the inference of refinement types.

Rather than targeting on explicit synchronous languages, our proposed formalism focuses
on a more general synchronous model SPs, extended from regular programs that are suitable
for compositional reasoning. As indicated in Sect. 1, SPs capture the essential features of syn-
chronous models and ignore those which do not support compositional reasoning. Different from
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synchronous languages that are totally deterministic, SPs have the extra expressive power to
support program refinement with the non-deterministic operator ∪. Similar to the type-theory
approach [41], instead of directly using SAT/SMT solving, SDL provides compositional rules
for decomposing SPs according to their syntactic structures, so as to divide a big verification
problem into small SMT-solving problems in derivation processes.

[42] proposed an equation theory for pure Esterel. There, term rewrite rules were built
for describing the constructive semantics of Esterel so that two different Esterel programs can
be formally compared and their equivalences can be formally reasoned about. [43] proposed a
so-called synchronous effects logic for verifying temporal properties of pure Esterel programs.
A Hoare-style forward proving process was developed to compute the behaviours of Esterel
programs as synchronous effects. Then a term rewriting system was proposed to verify the
temporal properties, which are also expressed as synchronous effects, of Esterel programs.

Compared to [42, 43], the verification of SDL is not solely based on term rewriting, but also
based on a Hoare-style program verification [17] process. Instead of verifying by checking the
equivalences or refinement relations between two programs, we reason about the satisfaction
relation between a program and a logic formula, in a form [p]φ or [p]�φ. In SPs, the rewrite
rules built in Table 2 for reducing parallel SPs play a similar role as the rewrite rules defined
in [42, 43] for symbolically executing parallel Esterel programs. The synchronous effects used to
capture the behaviours of Esterel programs in [43] was similar to the form of SPs.

In [44], a Hoare logic calculus was proposed for the synchronous programming language
Quartz. In that work, the authors manage to prove a Quartz program in a simple form in which
there is no parallel compositions and all events in a macro step are collected together in a single
form called synchronous tuple assignment (STA). Such a simple form can be obtained either by
manual encoding or by the compiler of Quartz in an automatic way. The STA there actually
corresponds to the macro event in SPs. Compared to [44], SP is not an synchronous language
but a more general synchronous model. Except for state properties, SDL also supports verifying
safety properties with the advantage brought by dynamic logic to support formulas of the form
[p]�φ.

7.2 Dynamic Logic

Dynamic logic was firstly proposed by V.R. Pratt [18] as a formalism for modelling and reasoning
about program specifications. The syntax of SDL is largely based on and extends that of
FODL [25] and that of its extension to concurrency [30]. Temporal dynamic logical formulas
of the form [p]�φ were firstly proposed in Process logic [45]. [46] studied a first-order dynamic
logic containing formulas of this form (there, it was written as [|p|]φ) and initially proposed a
relatively complete proof system for it. Inspired from [46], in [23], the author introduces the form
[p]�φ into his DTDL and proposed the compositional rules for [p]�φ. The semantics of SDL
mainly follows the trace semantics of process logic. In SDL, we inherit formulas of the form [p]�φ
from DDTL to express safety properties of synchronous models, and adopt the compositional
rules from DTDL (i.e. the rules (;,�φ) and (∗,�φ)) in order to build a relatively complete proof
system for SDL.

Many variations of dynamic logic have been proposed for modelling and verifying different
types of programs and system models. For instance, Y.A. Feldman proposed a probabilistic
dynamic logic PrDL for reasoning about probabilistic programs [20]; [21] proposed the Java
Card Dynamic Logic for verifying Java programs; In [22] and [23], the Differential Dynamic
Logic (DDL) and DTDL were proposed respectively for specifying and verifying hybrid systems.
DDL introduced differential equations in the regular programs of FODL to capture physical
dynamics in hybrid systems. The time model of DDL is continuous. In DDL, a discrete event
(e.g. x := e) does not consume time, while a continuous event (i.e. a differential equation)
continuously evolves until some given conditions hold. Compared to DDL, the time model of
SDL is discrete and is reflected by the macro events. SDL mainly focuses on capturing the
features of synchronous models and preserving them in program models during theorem-proving
processes.

An attempt to build a dynamic logic for synchronous models was made in [47], where a
clock-based dynamic logic (CDL) was proposed to specify and verify specific clock specifications
in synchronous models. SDL differs from CDL in the following two main points. Firstly, in
CDL, all events occurring at an instant are disordered, while in SDL, all micro events of a macro

24



event are executed in a logical order. So SDL is able to capture data dependencies, which are
an important feature of synchronous models. Secondly, in CDL, we propose formulas of the
form [p]ξ, where ξ is a clock constraint such as c1 ≺ c2, to express the clock specifications of a
program p. While in SDL, we introduce a more general form [p]�φ, which can express not only
clock constraints, but also other safety properties. Compared to CDL, SDL is a logic that is
more general and more expressive.

8 Conclusion and Future Work

In this paper, we mainly propose a dynamic logic — SDL — for specifying and verifying syn-
chronous models based a theorem proving technique. We define the syntax and semantics of
SDL, build a constructive semantics for parallel SPs, and propose a sound and relatively com-
plete proof system for SDL. We show the potential of SDL to be used in specifying and verifying
synchronous models through an example.

As for future work, we mainly focus on mechanizing SDL in the theorem prover Coq and
apply SDL in specifying and verifying more interesting examples rather than the toy examples
in this paper.
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A Proofs for some Propositions and the Soundness of SDL

Proof of Prop. 3.1. We prove by induction on the syntactic structure of an SP p.
The base cases are trivial. We need to consider 3 basic cases: when p is 0, 1 or α. We only

take α as an example, the cases for 0 and 1 are similar. In fact, we immediately obtain the
result since τ(α) = {α}.

If p = p1 ; p2, by induction hypothesis, we have val(p) = val(p1) ◦ val(p2) =
⋃
r∈τ(p1) val(r) ◦⋃

r∈τ(p2) val(r) =
⋃
r1∈τ(p1),r2∈τ(p2) val(r1) ◦ val(r2). According to the definition of the operator

E (Def. 3.15), it is easy to see that for any trecs q1, q2, val(q1E q2) = val(q1 ; q2) = val(q1)◦val(q2)
holds. This is because E just concatenate two trecs with the operator ; in a special way which
does not affect the semantics of the composed program, as analyzed in Section 3.2.1. Therefore,
we have

⋃
r1∈τ(p1),r2∈τ(p2) val(r1) ◦ val(r2) =

⋃
r1∈τ(p1),r2∈τ(p2) val(r1E r2) =

⋃
r∈τ(p1 ; p2) val(r).

If p = p1 ∪ p2, by induction hypothesis, we immediately get val(p) = val(p1) ∪ val(p2) =⋃
r∈τ(p1) val(r) ∪

⋃
r∈τ(p2) val(r) =

⋃
r∈τ(p1)∪τ(p2) val(r) =

⋃
r∈τ(p1∪p2) val(r).

If p = q∗, by induction hypothesis, we have val(q) =
⋃
r∈τ(q) val(r). So valn(q) =

⋃
r∈τ(q)

val(r) ◦ ... ◦
⋃

r∈τ(q)

val(r)

︸ ︷︷ ︸
n

=

⋃
r∈τ(q) valn(r) =

⋃
r∈τ(q) val(rE ...E r︸ ︷︷ ︸

n

) =
⋃
r∈τ(qn) val(r). Hence, we have val(p) =

⋃∞
n=0 valn(q) =⋃∞

n=0

⋃
r∈τ(qn) val(r) =

⋃
r∈τ(q∗) val(r).

If p = ∩(q1, ..., qn), we immediately obtain the result by Def. 3.17.

Proposition A.1. The following two propositions hold:

1.
Γ⇒ ψ1,∆ ... Γ⇒ ψn,∆

Γ⇒ φ,∆
(seq1) is sound for all contexts Γ and ∆ iff the formula

∧n
i=1 ψi →

φ is valid.

2.
Γ, ψ ⇒ ∆

Γ, φ1, ..., φn ⇒ ∆
(seq2) is sound for all contexts Γ and ∆ iff the formula

∧n
i=1 φi → ψ is

valid.

Proof. We only prove the proposition 1. The proposition 2 follows a similar idea.
1 : For the direction→, if rule (seq1 ) is sound, then we know that if

∧
ϕ∈Γ ϕ→ ψ1∨

∨
ϕ∈∆ ϕ,...,∧

ϕ∈Γ ϕ → ψn ∨
∨
ϕ∈∆ ϕ are valid, then

∧
ϕ∈Γ ϕ → φ ∨

∨
ϕ∈∆ ϕ is valid. Now we show that for

any s ∈ S, if s |=
∧n
i=1 ψi then s |= φ. Let Γ = {ψ1, ..., ψn}, ∆ = {ff }, it is easy to see that

since (ψ1 ∧ ... ∧ ψn) → (ψi ∨ ff ) is valid for any 1 ≤ i ≤ n, from the soundness of rule (seq1 ),
(ψ1 ∧ ... ∧ ψn) → (φ ∨ ff ) is valid, which means that for any u ∈ S, if u |= ψ1 ∧ ... ∧ ψn, then
u |= φ. Therefore we immediately have s |= φ.

For the other direction←, if the formula
∧n
i=1 ψ → φ is valid, we now show that if

∧
ϕ∈Γ ϕ→

ψ1 ∨
∨
ϕ∈∆ ϕ,...,

∧
ϕ∈Γ ϕ → ψn ∨

∨
ϕ∈∆ ϕ are valid, then

∧
ϕ∈Γ ϕ → φ ∨

∨
ϕ∈∆ ϕ is valid. For

any s ∈ S, the situation when s 6|=
∧
ϕ∈Γ ϕ or when s |=

∨
ϕ∈∆ ϕ is trivial. So we assume that

s |=
∧
ϕ∈Γ ϕ and s 6|=

∨
ϕ∈∆ ϕ. Hence we have s |= ψ1,..., s |= ψn. So s |=

∧n
i=1 ψi. Since∧n

i=1 ψi → φ is valid, s |= φ holds. So s |=
∧
ϕ∈Γ ϕ→ φ ∨

∨
ϕ∈∆ ϕ. Since s is an arbitrary state,

s |=
∧
ϕ∈Γ ϕ→ φ ∨

∨
ϕ∈∆ ϕ is valid.

2 : The direction→ follows a similar idea as the proof above by setting Γ = {tt} and ∆ = {ψ}.
The other direction ← is also similar.

Proposition A.2 (Soundness of the Rules of Type (a)). The rules (α,�φ), (ψ?), (x := e), (ε), (1)
and (0) of Table 1 are sound.

Proof. By Prop. A.1, for a rule
ψ

φ
, it is sufficient to prove that φ↔ ψ is valid.

In the following proofs for different rules, let s be any state of S.
For rule (α,�φ), s |= [α]�φ iff ss′ ∈ valπ(�φ) for all traces ss′ ∈ val(α), iff s ∈ val(φ) and

s′ ∈ val(φ) for all traces ss′ ∈ val(α), iff s |= φ and s′ ∈ val(φ) for all traces ss′ ∈ val(α), iff
s |= φ and s |= [α]φ, iff s |= φ ∧ [α]φ.

For rule (ψ?), s |= [ψ? . α]φ iff s′ ∈ val(φ) for all traces ss′ ∈ val(ψ? . α), iff s′ ∈ val(φ) for
all traces ss′ ∈ valm(ψ? . α), iff s′ ∈ val(φ) for all traces ss′ = ss ◦ ss′ with s ∈ val(ψ) and
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ss′ ∈ val(α), iff if s ∈ val(ψ), then s′ ∈ val(φ) for all traces ss′ = ss ◦ ss′ with ss′ ∈ val(α), iff if
s ∈ val(ψ), then s′ ∈ val(φ) for all traces ss′ ∈ val(α), iff s |= ψ → [α]φ.

For rule (x := e), s |= [x := e . α]φ iff s′ ∈ val(φ) for all traces ss′ ∈ val(x := e . α), iff
s′ ∈ val(φ) for all traces ss′ ∈ valm(x := e . α), iff s′ ∈ val(φ) for all traces ss′ = ss′′ ◦ s′′s′
with s′′ = s[x 7→ vals(e)] and s′′s′ ∈ valm(α), iff s′ ∈ val(φ) for all traces s′′s′ ∈ val(α) with
s′′ = s[x 7→ vals(e)], iff s′′ |= [α]φ and s′′ = s[x 7→ vals(e)], iff s |= ([α]φ)[e/x].

For rule (ε), s |= [ε]φ iff s′ ∈ val(φ) for all traces ss′ ∈ val(ε), iff s ∈ val(φ) for the trace
ss ∈ valm(ε) = {tt | t ∈ S}, iff s ∈ val(φ), iff s |= φ.

For rule (1), s |= [1]φ (resp. s |= [1]�φ) iff s′ ∈ val(φ) (resp. ss′ ∈ valπ(�φ)) for all traces
ss′ ∈ val(1), iff s ∈ val(φ) for the trace (of length 1) s ∈ val(1), iff s ∈ val(φ), iff s |= φ.

For rule (0), s |= [0]φ (resp. s |= [0]�φ) iff s′ ∈ val(φ) (resp. ss′ ∈ valπ(�φ)) for all traces
ss′ ∈ val(0), iff tt since there is no traces in val(0).

Proposition A.3 (Soundness of the Rewrite Rules of Type (b)). The rewrite rules (1, ;), (1, ∗),
(0, ;), (0, ∗), (;, ass), (;, dis1), (;, dis2), (∪, ass) and (∗, exp) of Table 2 are sound.

Proof. We only show the soundness of the rules (;, ass), (;, dis1) and (∗, exp), the soundness of
other rules is either trivial or can be proved in a similar way. We omit them here.

For rule (;, ass), we have that for any programs p, q and r, val((p; q); r) = val(p; q) ◦ val(r) =
(val(p) ◦ val(q)) ◦ val(r) = val(p) ◦ (val(q) ◦ val(r)) = val(p) ◦ val(q; r) = val(p; (q; r)).

For rule (;, dis1), we have that for any programs p, q and r, val(p; (q ∪ r)) = val(p) ◦ (val(q ∪
r)) = val(p) ◦ (val(q) ∪ val(r)) = (val(p) ◦ val(q)) ∪ (val(p) ◦ val(r)) = val(p; q) ∪ val(p; r) =
val(p; q ∪ p; r).

For rule (∗, exp), we have that for any program p, val(p∗) =
⋃∞
n=0 valn(p) = val0(p) ∪⋃∞

n=1 valn(p) = val0(p) ∪ (val(p) ◦ (val0(p) ∪ val1(p) ∪ val2(p) ∪ ...)) = val0(p) ∪ (val(p) ◦⋃∞
n=0 valn(p)) = val(1) ∪ val(p) ◦ val(p∗) = val(1 ∪ p ; p∗).

Proposition A.4 (Soundness of the Rewrite Rules of Type (c)). The rewrite rules (∩,1), (∩,0),
(∩, dis) and (∩,mer) of Table 2 are sound.

Proof. The soundness of the rules (∩,1), (∩,0) and (∩,mer) can be easily proved according to
the cases 1, 2 and 4 of Def. 3.22 respectively. Here we only show how to prove the soundness of
rule (∩,mer), the proofs for other two rules are similar.

By Def. 3.12 and 3.17 we know that val(∩(α1 ; q1, ..., αn ; qn)) =
⋃
r∈τ(∩(α1 ; q1,...,αn ; qn)) val t(r),

where each trec r of ∩(α1 ; q1, ..., αn ; qn) must be of the form ∩(α1 ; r1, ..., αn ; rn) with ri ∈ τ(qi)
for all 1 ≤ i ≤ n. According to the case 4 of Def. 3.22, we have that for each r,

val t(r) = val t(∩(α1 ; r1, ..., αn ; rn)) = val(α′) ◦ val(∩(r′1, ..., r
′
n))

if b = tt , where (b′, α′, (r′1 | ... | r′n)) = Mer(α1 ; r1 | ... |αn ; rn). From Def. 3.18 it is easy to
see that actually the values of b′ and α′ are only related to α1,...,αn and have nothing to
do with r1,...,rn, therefore, we have b′ = b and α′ = α (, where in the rule (∩,mer) we
have (b, α, (q′1 | ... | q′n)) = Mer(α1 ; q1 | ... |αn ; qn)). So we have

⋃
r∈τ(∩(α1 ; q1,...,αn ; qn)) val t(r) =⋃

r∈τ(∩(α1 ; q1,...,αn ; qn)) val(α)◦val(∩(r′1, ..., r
′
n)) = val(α)◦

⋃
r′1∈τ(q′1),...,r′n∈τ(q′n) val(∩(r′1, ..., r

′
n)) =

val(α) ◦ val(∩(q′1, ..., q
′
n)).

It remains to show the soundness of rule (∩, dis). We have that val(∩(..., p ∪ q, ...)) =⋃
r∈τ(∩(...,p∪q,...)) val t(r) =

⋃
r∈τ(∩(...,p,...)) val t(r) ∪

⋃
r∈τ(∩(...,q,...)) val t(r) = val(∩(..., p, ...)) ∪

val(∩(..., q, ...)) = val(∩(..., p, ...) ∪ ∩(..., q, ...)).

We introduce the level of a rewrite relation between two programs as the following definition.

Definition A.1 (Level of a Rewrite Relation). Given two SPs p, q and a rewrite relation p q
between them, we define the level of the relation, denoted as lev(p q), as follows:

1. lev(p q) =df 1 if p q is from one of the rules of the types (b) and (c) in Table 2.

2. lev(p q) =df 1 + lev(p′  q′) if there exist SPs p′, q′ and a program hole r{ } such that
p = r{p′}, q = r{q′} and p′  q′. In other words, p q is from rule (r2).
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Lemma A.1. Given a parallel program ∩(..., p{ }, ...) with a program hole p{ }, if p{q} p{r}
with q  r and lev(q  r) = 1 for some programs q and r, then

val(∩(..., p{q}, ...)) = val(∩(..., p{r}, ...)). (5)

Proof. We prove by analyzing two different cases of lev(q  r) = 1:

1. If q  r is from one of the rules of type (b) and rule (∩, dis) (of type (c)), then τ(p{q}) =
τ(p{r}), so the equation (5) holds obviously.

2. If q  r is from other rules of type (c) except rule (∩, dis), then the equation (5) holds.

The case 1 can be proved by induction on the syntactic structure of pi{ } for different rules.
Here we only take rule (;, dis1) as an example, other cases are similar.

Let q = u1 ;(u2∪u3) and r = u1 ;u2∪u1 ;u3. If pi{ } = , we need to prove that τ(q) = τ(r),
which holds because τ(u1 ;(u2 ∪ u3)) = {t1E t2 | t1 ∈ τ(u1), t2 ∈ τ(u2 ∪ u3)} = {t1E t2 | t1 ∈
τ(u1), t2 ∈ τ(u2)}∪{t1E t2 | t1 ∈ τ(u1), t2 ∈ τ(u3)} = τ(u1 ;u2)∪τ(u1 ;u3) = τ(u1 ;u2∪u1 ;u3).

If p{ } = p1{ } ; p2, by induction hypothesis we have τ(p1{q}) = τ(p1{r}), so τ(p{q}) =
{t1E t2 | t1 ∈ τ(p1{q}), t2 ∈ τ(p2)} = {t1E t2 | t1 ∈ τ(p1{r}), t2 ∈ τ(p2)} = τ(p{r}).

The case for p{ } = p1 ; p2{ } is similar.
If p{ } = p1{ } ∪ p2, by induction hypothesis we have τ(p1{q}) = τ(p1{r}), so τ(p{q}) =

{t | t ∈ τ(p1{q})} ∪ {t | t ∈ τ(p2)} = {t | t ∈ τ(p1{r})} ∪ {t | t ∈ τ(p2)} = τ(p{r}).
The case for p{ } = p1 ∪ p2{ } is similar.
If p{ } = (p1{ })∗, by induction hypothesis we have τ(p1{q}) = τ(p1{r}), so τ(p{q}) =⋃∞

n=0 τ(pn1{q}) =
⋃∞
n=0{t1E ...E tn | ti ∈ τ(p1{q}) for 1 ≤ i ≤ n} =

⋃∞
n=0{t1E ...E tn | ti ∈

τ(p1{r}) for 1 ≤ i ≤ n} =
⋃∞
n=0 τ(pn1{r}) = τ(p{r}).

If p{ } = ∩(p1, ..., pi{ }, ..., pn), by induction hypothesis we have τ(pi{q}) = τ(pi{r}), so
τ(p{q}) = {∩(t1, ..., tn) | t1 ∈ τ(p1), ..., ti ∈ τ(pi{q}), ..., tn ∈ τ(pn)} = {∩(t1, ..., tn) | t1 ∈
τ(p1), ..., ti ∈ τ(pi{r}), ..., tn ∈ τ(pn)} = τ(p{r}).

To prove the case 2, we analyze the rules (∩,1), (∩,0), (∩,mer) and rule (∩, seq) separately.
The cases for the rules (∩,1), (∩,0) and (∩,mer) can be proved according to the cases 1, 2

and 4 of Def. 3.22 respectively. Here we only consider the proof for rule (∩,mer) as an example,
other cases for the rules (∩,1) and (∩,0) are similar.

If q  r is from rule (∩,mer), let q = ∩(α1 ; q1, ..., αn ; qn) and r = α ;∩(q′1, ..., q
′
n) where

(b, α, (q′1 | ... | q′n)) = Mer(α1 ; q1 | ... |αn ; qn) and b = tt . In the sets τ(p{q}) and τ(p{r}), it is
easy to see that each trec r either has no holes and r ∈ τ(p{q}) ∩ τ(p{r}), or has a hole in the
same position of the hole p{ } and there exist two trecs r′ = ∩(α1 ;u1, ..., αn ;un) ∈ τ(q) and
r′′ = α ;∩(u′1, ..., u

′
n) ∈ τ(r) such that r{r′} ∈ τ(p{q}), r{r′′} ∈ τ(p{r}) and (b, α, (u′1 | ... |u′n)) =

Mer(α1 ;u1 | ... |αn ;un) since the return values b and α only depend on the events α1,...,αn. Let
r1 = ∩(..., r{r′}, ...) and r2 = ∩(..., r{r′′}, ...) be two trecs of ∩(..., p{q}, ...) and ∩(..., p{r}, ...)
respectively, it remains to show that val t(r1) = val t(r2). However, this is trivial according to
the case 4 of Def. 3.22. Therefore, we have the equation (5) holds for rule (∩,mer).

We show that Lemma A.1 can be extended to the case when lev(q  r) is an arbitrary
number.

Lemma A.2. The equation (5) of Lemma. A.1 holds for any lev(q  r).

Proof. We prove by induction on lev(q  r), where Lemma. A.1 has shown the base case. Now
for any n > 1, we assume that the equation (5) holds for lev(q  r) < n, next we prove that
the equation (5) holds for lev(q  r) = n.

Since lev(q  r) > 1, we know that there exist a program u and two programs u1, r1 such
that q = u{q1}, r = u{r1} and q1  r1. Let p{q1}1 = p{u{q1}} and p{r1}1 = p{u{r1}} (where
we use p{ }1 to distinguish itself from p{ }), since lev(q1  r1) < n, by induction hypothesis,
we immediately have val(∩(..., p{q1}1, ...)) = val(∩(..., p{r1}1, ...)). So val(∩(..., p{q}, ...)) =
val(∩(..., p{r}, ...)) holds.

Proposition A.5 (Soundness of Rule (r2) on level 1). Given a closed SP p and a program hole
p{ } of p, for any SPs q and r that satisfy q  r and lev(q  r) = 1, we have

val(p{q}) = val(p{r}). (6)
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Proof. We proceed the proof by induction on the syntactic structure of p.
If p{ } = , i.e., p{ } is just a hole, then we need to prove val(q) = val(r) for the closed

programs q and r, which are the direct results of Prop. A.3, Prop. A.4 and Prop. ?? for all the
cases when lev(q  r) = 1.

If p{ } = p1{ } ; p2, by induction hypothesis we have that val(p1{q}) = val(p1{r}), hence
val(p{q}) = val(p1{q}) ◦ val(p2) = val(p1{r}) ◦ val(p2) = val(p{r}).

The case for p{ } = p1 ; p2{ } is similar.
If p{ } = p1{ } ∪ p2, by induction hypothesis we have that val(p1{q}) = val(p1{r}), hence

val(p{q}) = val(p1{q}) ∪ val(p2) = val(p1{r}) ∪ val(p2) = val(p{r}).
The case for p{ } = p1 ∪ p2{ } is similar.
If p{ } = (p1{ })∗, by induction hypothesis we have that val(p1{q}) = val(p1{r}), so

val(p{q}) =
⋃∞
i=0 valn(p1{q}) =

⋃∞
i=0 valn(p1{r}) = val(p{r}).

If p{ } = ∩(p1, ..., pi{ }, ..., pn), we directly obtain the result by Lemma A.1.

With Prop. A.5, now we consider the soundness of rule (r2) on an arbitrary level.

Proposition A.6 (Soundness of Rule (r2)). The equation (6) of Prop. A.5 holds for any lev(q  
r).

Proof. We prove by induction on lev(q  r). By Prop. A.5 we obtain the base case. Now for
any n > 1, we assume that the equation (6) holds for lev(q  r) < n, next we show that the
equation (6) holds for lev(q  r) = n.

We prove the proposition by induction on the structure of p{ }.
If p{ } = , i.e., p{ } is just a hole, then we need to prove val(q) = val(r) for the closed

programs q and r. Since lev(q  r) > 1, there exist a program u and two programs q1, r1 such
that q = u{q1}, r = u{r1} and q1  r1. Because lev(q1  r1) < n, by induction hypothesis we
immediately obtain that val(q) = val(r).

The proofs for the inductive cases of p{ } = p1{ } ; p2, p{ } = p1 ; p2{ }, p{ } = p1{ } ∪ p2,
p{ } = p1 ∪ p2{ } and p{ } = (p1{ })∗ are similar to those in Prop. A.5 and we omit them here.

The case when p{ } = ∩(p1, ..., pi{ }, ..., pn) is straightforward by Lemma A.2.

Proposition A.7 (Soundness of Rule (∩, seq)). Given a well-defined parallel program ∩(p1, ..., pn),
val(∩(p1, ..., pn)) = val(Brz (∩(p1, ..., pn)).

Proof. The soundness of rule (∩, seq) is directly from Arden’s rule (Prop. 4.1) and the soundness
of rule (r2) and other rewrite rules of the types (b) and (c).

Proposition A.8 (Soundness of Rule (r1)). The rewrite rule (r1) is sound.

Proof. Since the programs p and q in rule (r1) are closed programs, it is enough to prove that
if val(p) = val(q), then val(φ{p}) = val(φ{q}).

We proceed by induction on the syntactic structure of φ{ }, where the base cases are φ{ } =
[r{ }]ψ and φ{ } = [r{ }]�φ.

For the base cases, we consider φ{ } = [r{ }]ψ for example, the case of φ{ } = [r{ }]�ψ
is similar. If φ{ } = [r{ }]ψ, by the soundness of rule (r2) (Prop. A.6) and the rules of the
types (b) and (c) (Prop. A.3, A.4 and A.7), we have val(r{p}) = val(r{q}). By Def. 3.23, we
immediately obtain the result.

The cases for φ{ } = ¬ψ{ }, φ{ } = φ1{ } ∧ φ2, φ{ } = φ1 ∧ φ2{ } and ∀x.ψ{ } are similar,
we only take φ{ } = ¬ψ{ } as an example. If φ{ } = ¬ψ{ }, by induction hypothesis we have
val(ψ{p}) = val(ψ{q}), then the result is straightforward by Def. 3.23.

B Proofs for the Relative Completeness of SDL

In the proofs below, we often denote an AFOL formula φ as φ[ to distinguish it from an SDL
formula.

The proof of Theorem 5.3 mainly follows that of the “main theorem” in [25], but is augmented
to fit the condition (iv).
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The proof of Theorem 5.3. For an SDL formula φ, we can convert φ into a semantical equivalent
conjunctive normal form: C1 ∧ ... ∧ Cn. Each clause Ci is a disjunction of literals: Ci =
li,1 ∨ ...∨ li,mi

, where li,j (1 ≤ i ≤ n, 1 ≤ j ≤ mi) is an atomic SDL formula, or its negation. By
the FOL rules, it is sufficient to prove that for each clause Ci, |= Ci implies `+Ci. We proceed
by induction on the sum n, of the number of the appearances of [p] and 〈p〉 and the number of
quantifiers ∀x and ∃x prefixed to dynamic formulas, in Ci.

If n = 0, there are no appearances of [p] and 〈p〉 in Ci, so Ci is an AFOL formula, thus we
immediately obtain `+Ci.

Suppose n > 0, it is sufficient to consider the following cases:

Ci = φ1 ∨ op φ2, Ci = φ1 ∨ [p]�φ2, Ci = φ1 ∨ 〈p〉♦φ2

where op ∈ {[p], 〈p〉,∀x, ∃x}.
If Ci = φ1 ∨ op φ2, which is equivalent to ¬φ1 → op φ2, by the condition (i), there exist two

AFOL formulas ψ[1 and ψ[2 such that |= ψ[1 ↔ ¬φ1 and |= ψ[2 ↔ φ2. Then we have |= ψ[1 → opψ[2
holds. By the condition (ii) we have

`+ψ[1 → opψ[2. (7)

Since in ψ[1 ↔ ¬φ1 and ψ[2 ↔ φ2 the sum is strictly less than n, by inductive hypothesis we can
get that

`+¬φ1 → ψ[1 (8)

and `+ψ[2 → φ2 hold. By the condition (iii) we know that

`+ opψ[2 → op φ2 (9)

holds. Based on (7), (8), (9) and the FOL rules in Table 3 and 4 we can conclude that `+¬φ1 →
op φ2.

If Ci = φ1∨[p]�φ2, which is equivalent to ¬φ1 → [p]�φ2, now we prove that `+¬φ1 → [p]�φ2.
By the condition (i) there exists an AFOL formula ψ[1 such that |= ψ[1 ↔ ¬φ1. Note that in
ψ[1 ↔ ¬φ1 the sum is strictly less than n, by inductive hypothesis we have `+¬φ1 → ψ[1.
On the other hand, by the condition (iv), |= ¬φ1 → [p]�φ2 and |= ψ[1 ↔ ¬φ1, we have that
`+ψ[1 → [p]�φ2 holds. Thus we have `+¬φ1 → [p]�φ2.

Similar for the case Ci = φ1 ∨ 〈p〉♦φ2.

The proof of Theorem 5.3(i). It is known that an FODL formula of the form [p]φ[ can be ex-
pressed as an AFOL formula (refer to page 326 of [24]). In SDL, it is easy to see that closed
sequential SPs have the same expressiveness as the regular programs in FODL. Because a
closed sequential SP can be taken as a regular program by simply ignoring the differences
between macro and micro events in this SP which only play their roles in parallel SPs. For
example, an SP p = (x := 1 . x >= 1? . ε ; y := x + 2) can be taken as a regular program
p′ = (x := 1 ;x >= 1? ; tt? ; y := x + 2) by replacing all operators . with the operator ; and the
event ε with tt?. p and p′ have the same semantics.

Therefore,

any SDL formula of the form [p]φ[, where p is a sequential program,

can be expressed as an AFOL formula.
(10)

Based on this fact, we now show that any SDL formula is expressible in AFOL. Actually, we
only need to consider the case when all programs of an SDL formula are sequential, because a
parallel SP is semantically equivalent to a sequential one according to the procedure Brz .

Given an SDL formula φ, in which all programs are sequential, we prove by induction on
the number of the appearances of [p] in φ. The base case is trivial. For the inductive cases, the
only non-trivial cases are φ = [p]ψ and φ = [p]�ψ, where by inductive hypothesis there exists an
AFOL formula such that |= ψ ↔ ψ[1. From the fact 10 above, we already prove the case [p]ψ[1.
It remains to show that [p]�ψ[1 is expressible according to different cases of p. Below we prove
[p]�ψ[1 by induction on the structure of p.
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• The base cases are p = 1, p = 0 and p = α. We only take p = α for example, other cases
are similar. By the soundness of rule (α,�φ), we obtain that |= [α]�ψ[1 ↔ (ψ[1 ∧ [α]ψ[1),
where by 10 [α]ψ[1 is expressible in AFOL. So ψ[1 ∧ [α]ψ[1 is also expressible in AFOL.

• If p = p1 ; p2, by the soundness of rule (;,�φ), we have that |= [p1 ; p2]�ψ[1 ↔ ([p1]�ψ[1 ∧
[p1][p2]�ψ[1). By inductive hypothesis, we have [p1]�ψ[1 and [p2]�ψ[1 are expressible in
AFOL. So by 10, [p1][p2]�ψ[1 is also expressible in AFOL. So [p1]�ψ[1 ∧ [p1][p2]�ψ[1 is
expressible in AFOL.

• If p = p1 ∪ p2, by the soundness of rule (∪), we have that |= [p1 ∪ p2]�ψ[1 ↔ ([p1]�ψ[1 ∧
[p2]�ψ[2). By inductive hypothesis, [p1]�ψ[1 and [p2]�ψ[1 are expressible in AFOL, so is
[p1]�ψ[1 ∧ [p2]�ψ[2.

• If p = q∗, by the soundness of rule (∗,�φ), we have that |= [q∗]�ψ[1 ↔ [q∗][q]�ψ[1. By
inductive hypothesis, [q]�ψ[ is expressible in AFOL. By 10 we then get that [q∗][q]�ψ[ is
expressible in AFOL.

The proof of Theorem 5.3(ii). We prove by induction on the syntactic structure of p. In φ[ →
opψ[, when op is ∀x or ∃x, the proof is trivial, because φ[ → op φ[ itself is an AFOL formula so
there must be `+φ[ → opψ[.

We first consider the case when op is [p].

• The base cases are p = 1, p = 0 and p = α, we only take p = α for example, other cases
are similar. We prove by induction on the number k of micro events in α. If k = 1, then
α = ε. From |= φ[ → [ε]ψ[, by the soundness of rule (ε), we have |= φ[ → ψ[. Since
φ[ → ψ[ is an AFOL formula, `+φ[ → ψ[ holds. By rule (ε) and the FOL rules in Table 3
and 4, we obtain that `+φ[ → [ε]ψ[. Suppose k > 1, α is either of the form ψ0? . β or
x := e . β. We only consider the case α = (x := e . β), the other case is similar. From
|= φ[ → [x := e . β]ψ[, by the soundness of rule (x := e) we have that |= φ[ → ([β]ψ[)[e/x].
By inductive hypothesis, we know that `+φ[ → ([β]ψ[)[e/x], therefore by rule (x := e)
and the FOL rules we can derive `+φ[ → [x := e . β]ψ[.

• If p = p1 ; p2, from |= φ[ → [p1; p2]ψ[, by the soundness of rule (;, φ), we obtain |=
φ[ → [p1][p2]ψ[. By the condition (i), there exists an AFOL formula ψ[1 such that |=
[p2]ψ[ ↔ ψ[1. Hence |= ψ[1 → [p2]ψ[ and |= φ[ → [p1]ψ[1. By inductive hypothesis, we have
`+ψ[1 → [p2]ψ[ and `+φ[ → [p1]ψ[1. Applying rule ([], gen) on `+ψ[1 → [p2]ψ[, we obtain
`+[p1]ψ[1 → [p1][p2]ψ[. From `+φ[ → [p1]ψ[1 and `+[p1]ψ[1 → [p1][p2]ψ[, by applying rule
(;, φ) and the FOL rules in Table 3 and 4, we can derive `+φ[ → [p1 ; p2]ψ[.

• If p = p1 ∪ p2, from |= φ[ → [p1 ∪ p2]ψ[, by the soundness of rule (∪), there is |= φ[ →
([p1]ψ[ ∧ [p2]ψ[), which is equivalent to |= φ[ → [p1]ψ[ and |= φ[ → [p2]ψ[. By inductive
hypothesis we have that `+φ[ → [p1]ψ[ and `+φ[ → [p2]ψ[. By rule (∪) and the FOL
rules in Table 3 and 4, we have `+φ[ → [p1 ∪ p2]ψ[.

• If p = q∗, by the condition (i), there exists an AFOL formula φ[1 such that |= [q∗]ψ[ ↔ φ[1.
From |= φ[ → [q∗]ψ[, we also have |= φ[ → φ[1. From |= [q∗]ψ[ ↔ φ[1, by the soundness of
the rules (∗), (∪), (1) and (;, φ), it is not hard to see that |= φ[1 ↔ [q∗]ψ[ ↔ [1∪q ; q∗]ψ[ ↔
[1]ψ[ ∧ [q ; q∗]ψ[ ↔ ψ[ ∧ [q][q∗]ψ[ ↔ ψ[ ∧ [q]φ[1. From these logical equivalences we can
see that |= φ[1 → [q]φ[1 and |= φ[1 → ψ[. By inductive hypothesis, from |= φ[ → φ[1,
|= φ[1 → [q]φ[1 and |= φ[1 → ψ[, we get that `+φ[ → φ[1, `+φ[1 → [q]φ[1 and `+φ[1 → ψ[. By
rule ([∗]) and the FOL rules, finally there is `+φ[ → [q∗]ψ[.

• If p = ∩(q1, ..., qn), by applying rule (∩, seq), we can transform p into a sequential program
p′, i.e., p  p′. By the soundness of rule (r1 ), from |= φ[ → [p]ψ[, we can get that
|= φ[ → [p′]ψ[. Since p′ is sequential, we can analyze it based on the cases given above.
Using inductive hypothesis, we can prove that `+φ[ → [p′]ψ[. By rule (r1 ) we can obtain
`+φ[ → [p]ψ[.
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For the case when op is 〈p〉, the proofs for the cases p = 1, p = 0, p = α, p = p1 ; p2,
p = p1 ∪ p2 and p = ∩(q1, ..., qn) are similar to the proofs above, since 〈p〉ψ[ equals to ¬[p]¬ψ[
and the rules (ε), (x := e), (;, φ), (∪), (∗), (∪), (1) used in the proofs above are bidirectional. (For
rule ([], gen), we have the rule (〈〉, gen).) In the following we only prove the case p = q∗.

• If p = q∗, by the condition (i) and the way of expressing regular programs in AFOL
in [?], we know that for any n, 〈qn〉ψ[ can be expressed as an AFOL formula φ[1(n), i.e.,
|= 〈qn〉ψ[ ↔ φ[1(n). From the semantics of 〈q∗〉ψ[, it is easy to see that |= 〈q∗〉ψ[ ↔
∃n ≥ 0.φ[1(n). From |= φ[ → 〈q∗〉ψ[, there is |= φ[ → ∃n ≥ 0.φ[1(n). On the other hand,
when n > 0, by the soundness of rule (;, φ), we have |= φ[1(n)↔ 〈qn〉ψ[ ↔ 〈q ; qn−1〉ψ[ ↔
〈q〉〈qn−1〉ψ[ ↔ 〈q〉φ[1(n − 1). From these logical equivalences we can get that |= φ[1(n) →
〈q〉φ[1(n − 1). When n = 0, from |= 〈qn〉ψ[ ↔ φ[1(n), by the soundness of rule (ε), we
have |= 〈q0〉ψ[ ↔ 〈1〉ψ[ ↔ ψ[ ↔ φ[1(0). So |= φ[1(0) → ψ[. By inductive hypothesis,
from |= φ[ → ∃n ≥ 0.φ[1(n), |= φ[1(n) → 〈q〉φ[1(n − 1) and |= φ[1(0) → ψ[, we have that
`+φ[ → ∃n ≥ 0.φ[1(n), `+φ[1(n)→ 〈q〉φ[1(n− 1) and `+φ[1(0)→ ψ[. By rule (〈∗〉) and the
FOL rules in Table 3 and 4, we obtain `+φ[ → 〈q∗〉ψ[.

The proof of Theorem 5.3 (iii). When op ∈ {[p], 〈p〉}, the condition (iii) is in fact stated as the
rules ([], gen) and (〈〉, gen). So we only need to prove when op ∈ {∀x, ∃x}. Below we only
consider the case when op is ∀x. The case when op is ∃x can be similarly obtained by using the
dual rules of the rules used in the proof below.

Actually, using the FOL rules in Table 3 and 4, we can construct the following deductions:

· ⇒ φ[x′/x]→ ψ[x′/x]

φ[x′/x]⇒ ψ[x′/x]
(→l)

∀x.φ⇒ ψ[x′/x]
(∀l)

∀x.φ⇒ ∀x.ψ
(∀r)

· ⇒ ∀x.φ→ ∀x.ψ
(→r)

where x′ is a new variable w.r.t. φ and ψ.

The proof of Theorem 5.3 (iv). As the proof of Theorem 5.3 (ii), we proceed by induction on
the syntactic structure of p. Below we only consider the case φ[ → [p]�ψ[. The proof of the
case φ[ → 〈p〉♦ψ[ is similar by the relation between 〈p〉♦ψ[ and its dual form [p]�ψ[.

The cases for p = 1, p = 0, p = p1 ∪ p2 and p = ∩(q1, ..., qn) are similar to the corresponding
cases in the proof of Theorem 5.3 (ii) above. We omit them here.

• For the base case, we only consider p = α. From |= φ[ → [α]�ψ[, by the soundness of rule
(α,�φ), there is |= φ[ → (ψ[∧ [α]ψ[), which is equivalent to |= φ[ → ψ[ and |= φ[ → [α]ψ[.
Obviously there is `+φ[ → ψ[. By the condition (ii), we have `+φ[ → [α]ψ[. Therefore,
by the FOL rules in Table 3 and 4 we have `+φ[ → (ψ[ ∧ [α]ψ[). By rule (α,�φ) and the
rules in FOL, we obtain that `+φ[ → [α]�ψ[.

• If p = p1 ; p2, from |= φ[ → [p1 ; p2]�ψ[, by the soundness of rule (;,�φ), there is |= φ[ →
([p1]�ψ[ ∧ [p1][p2]�ψ[), which is equivalent to |= φ[ → [p1]�ψ[ and |= φ[ → [p1][p2]�ψ[.
From |= φ[ → [p1]�ψ[, by inductive hypothesis we can have `+φ[ → [p1]�ψ[. According
to the condition (i), there is an AFOL formula ψ[1 such that |= [p2]�ψ[ ↔ ψ[1. So |=
φ[ → [p1]ψ[1 and |= ψ[1 → [p2]�ψ[. By inductive hypothesis, there are `+φ[ → [p1]ψ[1
and `+ψ[1 → [p2]�ψ[. From `+ψ[1 → [p2]�ψ[, by applying rule ([], gen), we get that
`+[p1]ψ[ → [p1][p2]�ψ[. By `+φ[ → [p1]ψ[1 and `+[p1]ψ[ → [p1][p2]�ψ[, we conclude that
`+φ[ → [p1][p2]�ψ[. From `+φ[ → [p1]�ψ[ and `+φ[ → [p1][p2]�ψ[, by applying rule
(;,�φ) and other FOL rules, we can derive `+φ[ → [p1 ; p2]�ψ[.

• If p = q∗, from |= φ[ → [q∗]�ψ[, by the soundness of rule (∗,�φ), we have that |=
φ[ → [q∗][q]�ψ[. According to the condition (i), there exists an AFOL formula ψ[1 such
that |= [q]�ψ[ ↔ ψ[1. Hence there are |= φ[ → [q∗]ψ[1 and |= ψ[1 → [q]�ψ[. By the
condition (ii), from |= φ[ → [q∗]ψ[1 we have `+φ[ → [q∗]ψ[1. From |= ψ[1 → [q]�ψ[, by
inductive hypothesis, we have `+ψ[1 → [q]�ψ[. Applying rule ([], gen), there is `+[q∗]ψ[1 →
[q∗][q]�ψ[. From `+φ[ → [q∗]ψ[1 and `+[q∗]ψ[1 → [q∗][q]�ψ[, we conclude that `+φ[ →
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[q∗][q]�ψ[. Applying rule (∗,�φ) and other rules in FOL, it is easy to see that `+φ[ →
[q∗]�ψ[.
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