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Abstract

Transformer architectures have facilitated the
development of large-scale and general-purpose
sequence models for prediction tasks in natural
language processing and computer vision, e.g.,
GPT-3 and Swin Transformer. Although originally
designed for prediction problems, it is natural
to inquire about their suitability for sequential
decision-making and reinforcement learning
problems, which are typically beset by long-
standing issues involving sample efficiency, credit
assignment, and partial observability. In recent
years, sequence models, especially the Trans-
former, have attracted increasing interest in the
RL communities, spawning numerous approaches
with notable effectiveness and generalizability.
This survey presents a comprehensive overview
of recent works aimed at solving sequential
decision-making tasks with sequence models such
as the Transformer, by discussing the connection
between sequential decision-making and sequence

modeling, and categorizing them based on the way
they utilize the Transformer. Moreover, this paper
puts forth various potential avenues for future
research intending to improve the effectiveness
of large sequence models for sequential decision-
making, encompassing theoretical foundations,
network architectures, algorithms, and efficient
training systems. As this article has been accepted
by the Frontiers of Computer Science, here is an
early version, and the most up-to-date version can
be found at https://journal.hep.com.cn/
fcs/EN/10.1007/s11704-023-2689-5.
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1 Introduction

Large sequence models, which feature a significant
volume of parameters and auto-regressive data pro-
cessing, have recently been instrumental in predic-
tion tasks and (self-)supervised learning [1] in nat-
ural language processing (NLP) [2] and computer
vision (CV) [3], such as ChatGPT [4] and Swin
Transformer [5]. Furthermore, these models, espe-
cially the Transformer [6], have garnered substan-
tial interest from the reinforcement learning com-
munity in the past two years, spawning numerous
approaches as outlined in Section 5.

In addition, large sequence models have
emerged in the field of sequential decision-making
and reinforcement learning (RL) [7] with notable
effectiveness and generalizability, as evidenced by
Gato [8] and Video Pre-Training (VPT) [9]. These
methods suggest the potential for constructing a
large decision model for general purposes, that is, a
large sequence model that can harness a vast num-
ber of parameters to perform hundreds or more se-
quential decision-making tasks, analogous to the
way in which large sequence models have been
leveraged for NLP and CV.

This survey focuses on most of the current works
that leverage (large) sequence models, mainly the
Transformer, for sequential decision-making tasks,
while the application of various other types of
foundation models in practical decision-making
contexts could be found in the report by Sherry
et al. [10]. We offer an in-depth investigation of
the role of sequence models in sequential decision-
making problems, discussing their significance and
how sequence models like the Transformer are re-
lated to solving such problems. While surveying
how current works utilize sequence models to fa-
cilitate sequential decision-making, we also ana-

lyze major bottlenecks toward large decision mod-
els currently with regard to model size, data and
computation, and explore potential avenues for fu-
ture research in algorithms and training systems to
improve performance.

In the rest of this survey, Section 2 presents the
formulation of prediction and sequential decision-
making problems. Section 3 introduces deep re-
inforcement learning (DRL) as a classical solution
for sequential decision-making tasks and examines
three long-lasting challenges in DRL: sample ef-
ficiency problem, credit assignment problem, and
partial observability problem. Section 4 establishes
the connection between sequence models and se-
quential decision-making, highlighting the promo-
tion of sequence modeling regarding the three chal-
lenges raised in Section 3. Section 5 surveys most
of the current works that leverage the Transformer
architecture for sequential decision-making tasks
and discusses how the Transformer enhances se-
quential decision-making in different settings as
well as the potential for building large decision
models. Section 6 discusses the current progress
and potential challenges regarding the system sup-
port for training large decision models. Section
7 discusses current challenges and potential re-
search directions from the perspectives of theoret-
ical foundation, model architectures, algorithms,
and training systems. Finally, Section 8 takes con-
clusions of this survey with the hope for more in-
vestigation into the emerging topic of large deci-
sion models.

2 Formulation

2.1 Prediction Tasks

Prediction in deep learning refers to the output of
a neural network after it has been trained on a
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historical dataset and applied to new data when
forecasting the likelihood of a particular outcome,
e.g., image classification in CV and translation in
NLP. For a classification task in CV, given an im-
age x, the goal is to learn the estimation of the
distributions P(y|x), where y is a potential label
of x. It is normally solved with discriminative
models like Multi-layer Perceptron (MLP) or Con-
volution Neural Networks (CNNs) [11–13], ex-
tracting the high-dimensional representation c(x)
of the input image with convolution layers and es-
timating the distribution P[y|c(x)]. For a transla-
tion task in NLP, an input sentence x is decom-
posed into a sequence with n words {x1, . . . , xn}

to predict an output sentence y = {y1, . . . , yn}.
And the estimated distribution becomes P(y|x) =
P(y1, . . . , yn|x1, . . . , xn). Besides, other NLP tasks
like text generation, predicting the next poten-
tial word with previous contents, need to esti-
mate only the distribution of P(yn|x1, . . . , xn) in-
stead of P(y|x). Both P(y|x) and P(yn|x1, . . . , xn)
could be modeled with sequence models like Re-
current Neural Networks (RNNs) [14] and their
variants [15, 16], which use their hidden states
hn−1 = h(xn−1, hn−2) to retain previous content
and estimate the distribution of P(yn|xn, hn−1) recur-
sively.

2.2 The Transformer

As the state-of-the-art sequence model, the Trans-
former was originally designed for NLP tasks with
an encoder-decoder structure. The encoder maps
a sequence of tokens to latent representations, and
then the decoder generates a sequence of desired
outputs in an auto-regressive manner. Besides,
the encoder and decoder could also be used alone
as models like Bert [17] and GPT-3 [18], which
leverage the encoder and decoder architectures, re-

spectively. One of the most essential components
in Transformer is the scaled dot-product attention,
which captures the interrelationships of input se-
quences. The attention function is written as

Attention(Q,K,V) = softmax
(QKT

√
dk

)
V, (1)

where Q,K,V correspond to the vector of queries,
keys and values, which can be learned during train-
ing, and dk represents the dimension of Q and K.
Self-attentions refer to cases when Q,K,V share
the same set of inputs. With the help of the at-
tention mechanism, the Transformer abandons the
recursive process of RNNs and estimates the distri-
bution of P(y|x) or P(yn|x1, . . . , xn) more directly,
enjoying higher computation efficiency. Moreover,
although the Transformer is initially designed for
NLP tasks, it has the potential to be applied to CV
tasks as well. By splitting an image into fixed-size
patches, embedding each of them, and feeding the
resulting sequence of vectors to a Transformer en-
coder, recent works have demonstrated remarkable
performance of the Transformer in image classifi-
cation tasks [19].

2.3 Sequential Decision-Making Tasks

Unlike prediction, sequential decision-making in
deep learning refers to the process by which a
neural network, known as an agent, infers a se-
quence of actions that can be used to interact
with an environment and maximize its utility. In
most cases, a sequential decision-making prob-
lem is represented as a Markov decision process
(MDP), ⟨S,A, r, p, γ⟩, that satisfies the Markov
property [7]

p(st+1|st, at) = p(st+1|s0, a0, . . . , st, at). (2)

This property states that the current state of the pro-
cess completely captures all the relevant informa-
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Fig. 1 The difference between sequential decision-making tasks and prediction tasks, such as CV and NLP. (a) A sequential
decision-making task is a cycle of agent, task, and world, connected by interactions. (b) In prediction tasks, tasks form a
hierarchical structure.

tion about the system’s history, and thus the fu-
ture is independent of the past given the current
state [7]. In MDPs, S is the state space of the
environment and A is the action space of agents.
rt = r(st, at) is the reward function quantifying
the instant utility of an agent executing an action
at ∈ A on a specific state st ∈ S. p = p(st+1|st, at)
is the transition probability of performing action at

on state st at timestep t and then transiting to state
st+1. γ is the factor used to calculate discounted
returns

Gt =

∞∑
k=0

γkrt+k (3)

that starts from timestep t. At each timestep t, an
agent takes an action at based on the environmental
state st. After execution, it receives an instant re-
ward r(st, at) and observes a new state st+1, whose
probability distribution is p(st+1|st, at). Following
this process infinitely long, the agent earns a dis-
counted return of Gt. While r(st, at) is the mea-
surement of the instant utility of agents, E[Gt|st] is
the expected cumulative utility starting in st, which
is the objective of agents learning to maximize in
sequential decision-making tasks.

3 Deep RL for Sequential Decision-
Making

As a combination of deep neural networks and
RL, deep reinforcement learning (DRL) has drawn
much attention and emerged as a popular paradigm
for solving sequential decision-making tasks [7].
In recent years, its high potential has been demon-
strated by a series of notable achievements, such
as AlphaGo [20] and AlphaStar [21], which have
beaten human experts at Go chess and StarCraft II.

In nearly all value-based RL methods, an agent
measures the quality of an action under a spe-
cific state by learning an action-value function
Qπ(st, at),

Qπ(st, at) = Eπ[Gt|st, at]. (4)

Specifically, the action-value function Qπ(st, at) ap-
proximates the expected return starting from st

given that at is selected, assuming the agent follows
its policy π thereafter. A fundamental property of
the value function is that it satisfies a recursive rela-
tionship between the expected return from the cur-
rent state and the expected return from the follow-
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ing state, so-called the Bellman Equation [7]:

Qπ(st, at) = rt + γmaxat+1 Qπ(st+1, at+1). (5)

Through the utilization of the Bellman equation,
Temporal-Difference (TD) methods [22] can learn
from incomplete sequences of experience by ap-
proximating the authentic value of the current state
with the sum of the observed reward and the esti-
mated value of the subsequent state. Rather than
waiting until the end of an episode as in Monte
Carlo methods [23], TD methods thus update the
value functions in a more efficient and incremen-
tal manner. More specifically, in TD learning, an
agent updates its Qπ(st, at) by minimizing the mean
square TD error [22]:

Eπ[(rt + γmaxat+1 Qπ(st+1, at+1) − Qπ(st, at))2]. (6)

In DRL, the Q function could be approximated
with neural networks and trained with gradient
descent. After learning an effective Q network,
agents’ policies that maximize E[Gt|st] can be sim-
ply obtained by

π(st) = arg max
at

Q(st, at), (7)

which is widely adopted in many value-based
methods like DQN [24].

While value-based methods learn to approxi-
mate the action values and then make decisions
based on the estimates, policy-based methods, also
known as policy gradient methods, learn the policy
π that selects actions directly without consulting a
value function [7]. During training, policy gradi-
ent methods such as REINFORCE [23] optimize
the policy by maximizing the expected return be-
low through gradient ascent.

Eπ[log π(at|st)Gt] (8)

Combining the value-based and policy-based
methods, actor-critic methods [25] learn a state-
value function Vπ(st) as a critic to evaluate the qual-
ity of an actor given a state st, i.e., the expected
return commencing from st following the policy π:

Vπ(st) = Eπ[Gt|st]. (9)

Similar to the Q function, Vπ(st) also satisfies the
recursive relationship between the preceding and
following states,

Vπ(st) = Eπ[rt + γVπ(st+1)], (10)

and thus could be optimized by minimizing the
mean square TD error as well:

Eπ[(rt + γVπ(st+1) − Vπ(st))2]. (11)

While updating the critic, the actor is optimized
through policy gradient with the advantage func-
tion replacing the discounted return:

Eπ[log π(at|st)Aπ(st, at)], (12)

where the advantage function Aπ(st, at) measures
how well the selected action is compared with the
actor’s average performance.

Aπ(st, at) = Qπ(st, at) − Vπ(st)

= rt + γVπ(st+1) − Vπ(st) (13)

In model-based RL methods, a model can be em-
ployed to predict how the environment will respond
to agents’ actions under a given state, by estimat-
ing the MDP’s dynamics, p(st+1, rt|st, at) [7]. The
learning process for the model resembles a super-
vised learning task, but with data collected through
real-time interaction with the environment. Once
the model is trained, it can be leveraged to gen-
erate action sequences via planning methods such
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as model predictive control (MPC) [26], or to gen-
erate imagined data as supplements to further en-
hance the value approximation or policy with direct
RL, like what (deep) Dyna-Q does [7, 27].

However, despite DL having scaled RL to pre-
viously intractable problems, DRL is still not as
widely applied in the real world as supervised or
unsupervised learning. Several existing problems
involving sample efficiency, credit assignment and
partial observability have prompted extensive dis-
cussions [28–30].

3.1 Sample Efficiency Problem

Poor data efficiency is one of the major restrictions
of RL [28]. In supervised learning, training data is
labeled with ground truth y so that models can learn
to approximate the final distribution P(y|x) of data
from the beginning, which means models are fitting
the same distribution during the training process.
Unlike supervised learning, conventional RL opti-
mizes agents in a trial-and-error manner [7], which
means the data distribution changes according to
the current policy during the training process. Such
a paradigm needs a series of loops to improve the
quality of collected data and models alternately,
i.e., data collection, model optimization, and data
collection with optimized models. For example,
at the kth training epoch, agents collect dataset Dk

with πk, train a world model or value network with
Dk, update the policy and get πk+1, which is used to
collect Dk+1 for the next epoch. Since the policy π
for data collection is updated continuously, the col-
lected dataset D is changing as well, which means
the corresponding world model or value network
is approximating a new data distribution in each
training epoch and so is the policy. Further, for
environments with sparse rewards, the dilemma of
poor sample efficiency will be more pronounced in

the early training stages [31, 32], since the initial
random policies make it difficult to explore posi-
tive rewards and improve the quality of the dataset
D and models. Therefore, to guarantee the stability
and effectiveness of the learning process, massive
interactions with environments are indispensable
in each epoch to explore enough positive rewards
and fully reveal the new distribution. However,
these interactions can be expensive or even impos-
sible due to safety concerns in real-world applica-
tions (e.g., autonomous driving [33], industrial sce-
nario [34]). Moreover, even slight differences be-
tween simulators and real environments (i.e., the
reality gap) can lead to the vulnerability [35] of
trained RL agents, constraining the current appli-
cation of RL to a certain set of tasks.

3.2 Credit Assignment Problem

Mostly, the consequences of an action do not man-
ifest immediately, requiring RL algorithms to cap-
ture the cause-and-effect relationship between a se-
quence of decisions and resulting rewards, known
as the credit assignment problem [29], whose solu-
tion is crucial for effective and efficient algorithms.
While the simplest way to estimate the credit of a
given state involves averaging its discounted sum
of future rewards through Monte Carlo methods,
such methods may suffer from high variance esti-
mations and inefficient learning due to the random-
ness of trajectories [36]. To mitigate the variance,
many RL approaches place more emphasis on TD
methods with learned value approximation [22].
But the approximation is likely to introduce bias,
which spawns TD(λ) methods to balance the bias-
variance trade-off [22]. In most of the aforemen-
tioned methods, they rely solely on time as a met-
ric of relevance: the more recent the decision, the
more credit or blame it receives from a future re-
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sult, which is heuristic in general and can hence be
further improved by learning [7, 22, 36].

3.3 Partial Observability Problem

In many real-world environments, it is common
for parts of the state information to be unavailable
and needed to be inferred by combining current ob-
servations with historical or other agents’ observa-
tions [30]. This loss of state information can sig-
nificantly confuse agents’ decisions and hinder the
development of effective decision-making agents.
For instance, in the case of an auto-driving car,
providing only one image of a moment as the ob-
servation is insufficient to infer the speed of other
vehicles, which is a crucial factor in deciding the
next move. Or in multi-agent settings, each agent’s
observations and experiences are often partial and
potentially different from those of other agents,
necessitating communication between agents to
estimate the complete state of the system and
make decisions. This loss of full-state visibility
expands the Markov decision processes (MDPs)
to the partially observable Markov decision pro-
cesses (POMDPs) [30] for single-agent systems
and decentralized partially observable Markov De-
cision Processes (Dec-POMDPs) for multi-agent
systems [37]. A common approach for address-
ing the partial observability problem is to model
a sequence of observations with RNNs, expecting
the missing information can be reconstructed dur-
ing the training process [30]. However, informa-
tion from early observations might be continuously
diluted and even forgotten with the recursive func-
tion hn = h(xn, hn−1) in RNNs, harming agents’ per-
formance when modeling long sequences [6].

4 Sequential Decision-Making as Se-
quence Modeling Problems

Fortunately, the challenges mentioned in Section 3
could be addressed by treating sequential decision-
making problems as sequence modeling problems
and then be solved by sequence models. In order
to overcome these challenges, several researchers
have attempted to simplify sequential decision-
making tasks by transforming them into supervised
learning problems, specifically, sequence modeling
problems. Imitation learning (IL), such as behav-
ioral cloning (BC) [38] and generative adversarial
imitation learning (GAIL) [39], trains agents with
the supervision of expert demonstrations, integrat-
ing advances in representation learning and trans-
fer learning, e.g., the BC-Z [40] or multi-modal in-
teractive agent (MIA) [41]. However, the perfor-
mance of IL depends heavily on high-quality ex-
pert data which is costly to obtain and conflicts
with the increasing data requirements as the model
size grows. Upside-down reinforcement learning
(UDRL) [42] is a novel approach that transforms
conventional reinforcement learning (RL) into a
purely supervised learning paradigm. Compared
with value-based RL, it reverses the roles of ac-
tions and returns during learning. Specifically,
it employs undiscounted desired returns as net-
work inputs, serving as commands to guide the
agent’s behavior. Thus, unlike conventional value-
based RL, which learns a value model to evalu-
ate the quality of each action and select the op-
timal one, UDRL learns to search for a sequence
of actions that satisfy specific desired returns. By
training the agent with pure SL on all past tra-
jectories, UDRL circumvents the issues of sensi-
tive discounted factors and the deadly trials aris-
ing from the combination of function approxima-
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tion, bootstrapping, and off-policy training in tra-
ditional RL [7, 42]. Moreover, despite classical
methods still being more effective in environments
with perfect Markov properties, experimental re-
sults demonstrate that UDRL surprisingly exceeds
conventional baselines, such as DQN and A2C, in
non-Markovian environments [42]. These results
suggest that the general principles of UDRL are not
restricted to Markovian environments only, indicat-
ing a promising direction for addressing sequential
decision-making in a broader context.

As a representative work, Decision Transformer
(DT) [43] frames RL problems as sequence mod-
eling problems, which enables drawing upon
the simplicity and scalability of the Transformer.
Based on the concept of UDRL, DT feeds a se-
quence of states, previous actions and desired re-
turns to a GPT-like network and infers actions
to achieve the desired returns, where the Trans-
former is served as a policy model. Different from
DT and UDRL, Trajectory Transformer (TT) [44]
maps transition sequences to shifted transition se-
quences entirely, incorporating states, actions and
instant rewards, where the Transformer is served
as a world model that captures the full dynamics
of environments. Although DT is a model-free
method while TT is a model-based method, both
approaches share a common foundation: treating
each temporal trajectory as a continuous sequence
of transitions and modeling it with the Transformer.
Based on this foundation, the Transformer could
be used to infer future states, actions, and rewards,
thus unifying many of the components that are typ-
ically required in IL, model-based RL, model-free
RL, or goal-conditioned RL [44], e.g., predictive
dynamics models in model-based methods, actor
and critic in actor-critic (AC) algorithms [25], and
behavior policy approximation in IL. Figure 2 com-

pares the paradigms between conventional RL, IL,
UDRL, DT and TT.

4.1 Improving Sample Efficiency

As mentioned in Section 3.1, conventional RL in a
trial-and-error manner suffers from poor sample ef-
ficiency that limits its application in the real-world
environment, because of the distribution shift at
each epoch and inefficient exploration in the early
training stages. One of the directions to bypass
this dilemma is pre-training [45–47], leveraging
previous experience from offline data to pre-train
a suboptimal policy in a supervised manner and
then fine-tuning it for downstream tasks, which
appears in multiple recent works with the Trans-
former [45, 48, 49]. In this way, the trial-and-error
process could start from the near-final stages with
the suboptimal policy and leave aside most of the
upfront exploration and interaction, reducing the
online sampling epochs. Especially for sparse re-
ward settings, it can help skip the harrowing ex-
ploration in the early training stages. With the
strong generalizability of the Transformer architec-
ture that has been validated in many practical re-
sults [8, 18, 50], we can not only leverage the ex-
perience from the same task but also experience
from many similar or related tasks, or even di-
rectly fine-tune the policies learned from other sim-
ilar tasks [51–55]. From this perspective, the sam-
ples produced in different tasks could be stored for
reuse when pre-training for new tasks, which im-
proves the efficiency of sample utilization implic-
itly and largely.

4.2 Effective Credit Assignment

As discussed in Section 3.2, numerous conven-
tional RL algorithms rely heavily on time as the
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Fig. 2 Paradigm comparison of conventional RL, IL, UDRL, DT and TT. (a) is a representative method of conventional
RL, where Rt indicates the estimated cumulative rewards with discount starting from st. (b) is a classic method in IL, i.e.
Behavioral Cloning. In (c) and (d), R̂t is the desired cumulative reward without discount. In (e), rt means the instant rewards
after executing at.

primary metric for determining the cause-and-
effect relationship between actions and rewards,
which suffer from the bias-variance trade-off and
require further improvement. Various works have
explored better credit assignment through state as-
sociation or learning additional reward functions
to facilitate reward propagation over long hori-
zons [36, 56, 57]. In contrast, sequence models
naturally embed this property in their architecture
without requiring the explicit learning of extra re-
ward functions [43,44,48]. Furthermore, instead of
assuming that recent actions receive more credit or
blame, the attention mechanism can directly model
the cause-and-effect relevance with undiscounted
return sequences. Experiments conducted by Chen
et al. [43] have confirmed that this approach is
more effective than conventional TD learning al-
gorithms.

4.3 Long Horizon for Partial Observability

As described in Section 3.3, conventional RL
methods have often relied on RNNs and their vari-
ants [15, 16] to recover the information lost from
historical or other agents’ observations [30]. How-
ever, these methods still suffer from shortsighted-
ness due to the limited capacity of hidden states,
leading to the gradual dilution of early observa-
tions during recursion. For instance, given a se-
quence of observations {o1, . . . , on}, an RNN mod-
els a policy as π(·|on, hn−1), which prioritizes the
last elements with limited capacity in the sequence
and is difficult to build up long-term dependencies.
Compared with RNN-based methods, transformer-
based methods model the policy as π(·|o1, . . . , on),
where the attention mechanism enables selective
focus on specific parts of the sequence when mak-
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ing decisions [43, 49, 53]. Specifically, the im-
pact of an early observation, such as o1, does not
have to be diluted since the impact is determined
by corresponding attention weights which are con-
tinually updated during training. Ablation experi-
ments conducted by Muning et al. [53] compare the
performance of transformer-based and RNN-based
policies and validate that the Transformer architec-
tures enjoy a longer horizon than RNNs.

5 How the Transformer Helps Se-
quential Decision-Making

The backbone architectures in machine learning
have gone through several iterations, and the fam-
ily of Transformers achieves a big convergence in
the era of large-scale pre-trained models. From
the linear model, Gaussian mixture model (GMM)
and support vector machine (SVM) in the classi-
cal ML stage, to MLP, RNN and CNN in the DL
stage, the Transformer and its variants rapidly be-
come dominant for large-scale pre-training models
in NLP [17, 18], CV [5, 58, 59], and multi-modal
domains [60–63]. Besides, with the appearance of
a series of recent works listed in Table 1, the Trans-
former has also shown tremendous potential in the
field of sequential decision-making.

In Section 5.1, we explore the empirical and the-
oretical advantages of the Transformer architecture
as well as how it has become a popular choice in
many state-of-the-art NLP or CV models. We then
examine the development of the Transformer in the
field of sequential decision-making, which can be
divided into two parts. The first part focuses on re-
cent works converting the reinforcement learning
problem into sequential form to leverage sequence
modeling for specific reinforcement learning set-
tings, which will be surveyed in Section 5.2. The
second part concentrates on leveraging diverse data

to pre-train a large-scale sequence model for vari-
ous downstream sequential decision-making tasks,
inspired by the tremendous success of NLP and
CV, which will be discussed in Section 5.3. Finally,
in Section 5.4, we discuss the potential of building
a large decision model and relevant characteristics
that must be carefully considered.

5.1 The Rise of the Transformer

Transformers have a shown substantial impact on
the progress of a large variety of machine learn-
ing tasks since the efficient expansion of model size
helps harness massive amounts of data. Scale is a
significant ingredient in achieving excellent results.
Therefore, the model size is growing faster than
ever before: benefiting from the Transformer archi-
tecture, large language models have scaled up from
340 million [17] to 1.6 trillion parameters [68] in a
few years. As a result, the Transformers have out-
performed previous standard networks (CNN and
RNN) on numerous benchmarks and become gen-
eral choices in the state-of-the-art model [5, 69],
e.g., image classification, semantic segmentation,
text classification, text generation, question an-
swering, image caption, etc. [63]. Despite there be-
ing some attempts to build large pre-trained mod-
els based on CNN [69], Transformer architectures
still take the dominant position in the field of large
models. From empirical results and theoretical per-
spectives, Transformers have advantages in high
parallelization [17, 18], scalability [18, 58, 70], and
appropriate inductive bias [71]. In general, the ad-
vantages of Transformers supported by empirical
evidence and theoretical analysis are summarized
as follows.

Scaling law. The existence of the scaling law
in Transformer architecture indicates that the loss
scales as a power-law with model size, the amount
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Table 1 Detailed comparison between different Transformer-based methods for sequential decision-making.

Method Sequence Prediction Discretized Tokens Benefit Notes

UPDeT [51] s a No
Multi-task;

Few-shot learning;
Interpretability

Model-free;
Online;

Multi-agent

PIT [52] s Q values No
Multi-task;

Few-shot learning;
Credit assignment

Model-free;
Online;

Multi-agent

DT [43] rtg-s-a a No
Long sequence;

POMDP;
Credit assignment

Model-free;
Offline

TT [44] s-a-r(-rtg) s-a-r Yes
Long sequence;

POMDP;
Sparse-reward

Model-based;
Offline

GDT [64] ψ(s, a)-s-a a No HIM problems
Model-free;

Offline

PDT [45] s-a a No Few-shot learning
Model-free;

Pre-train

MADT [49] s-a a No
Multi-task;

Long Sequence

Model-free;
Offline;

Multi-agent

ODT [48] rtg-s-a a No Few-shot learning
Model-free;

Online

MAT [53] s a No
Monotonic improvement;

Multi-Task;
Few-shot learning

Model-free;
Online;

Multi-agent

MGDT [54] s-a-r-rtg a-r-rtg Yes
Multi-task;

Few-shot learning
Model-free;

Offline

TrMRL [65] s a No
Multi-task;

Few-shot learning

Model-free;
Online;

Meta-learning

PG-AR [66] s a No Monotonic improvement
Model-free;

Online;
Multi-agent

Prompt-DT [55] rtg-s-a a No
Multi-task;

Few-shot learning
Model-free;

Offline

BooT [67] s-a-r-rtg s-a-r-rtg Yes Data Augmentation
Model-based;

Offline
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of data, and the training computation [70, 72].
There are several detailed and adequate experi-
ments showing that the capacity of Transformer
architectures increases smoothly following power
law and the bigger models are more sample ef-
ficient in a series of tasks, such as ViT-G in
CV benchmarks [58] and GPT in NLP bench-
marks [70]. This finding has encouraged re-
searchers to scale up their models to pursue higher
performance.

Higher throughput. In the domain of sequence
modeling, Transformer architectures exhibit supe-
rior throughput compared to RNNs, which possess
inherent sequentiality: each hidden state is depen-
dent on the previous hidden state. This fundamen-
tal characteristic limits their ability to be paral-
lelized across multiple GPUs, resulting in a con-
siderable slowdown during training [14]. For in-
stance, supposing a sequence with a length of n, a
recurrent layer has to execute n operations sequen-
tially to backpropagate gradients for one training
epoch. In contrast, the Transformer architecture of-
fers more computational efficiency and paralleliz-
ability by avoiding sequential computation over
time. Instead, it performs self-attention operations
across the entire sequence at once, reducing the
number of operations required for gradient back-
propagation [6]. This property helps Transformer-
based methods to be trained at larger scale scenar-
ios with acceptable computing budgets.

Long-term interaction modeling ability. In
terms of long sequence inputs, MLP suffers from
the linear increase of the input layer dimension,
vanilla CNN is limited by the local convolution
kernel, and RNN is limited by an exponential de-
cay of mutual information in the temporal dis-
tance [73], which leads to difficulty in accurately
modeling interactions between the long-spanning

pairs. However, the attention mechanism enables
the Transformer to efficiently handle very long se-
quences [18], which is discussed in Section 4.3 as
well.

More stable training process. RNN frequently
suffers from vanishing and exploding gradient
problems [74]. On the contrary, Transformers are
more robust in training. Researchers [70] observe
the insensitivity of Transformers to some archi-
tectural hyper-parameters, which is vital for the
training of large models considering the expen-
sive training cost of conducting a hyper-parameter
search.

Efficient inductive bias. Edelman et al. [71]
reveal that the inductive bias of self-attention is a
creation of sparse variables to capture features of
the input sequences. Olsson et al. [75] demonstrate
that the Transformer not only memorizes data pat-
terns but also tries to conduct abstract reasoning.
Researchers also have provided theoretical analy-
sis for the features of the Transformer, e.g., the
inductive bias, sample complexity, and the gener-
alization bound of the attention mechanism [76].
The others focus on measuring the model expres-
sivity of the Transformer under the framework of
universal function approximation and Turing com-
pleteness [62, 77].

5.2 RL with the Transformer

Due to the noticeable effectiveness of DT and
TT, many Transformer-based variants have re-
cently emerged for sequential decision-making
tasks, spanning from offline RL, model-based RL,
meta RL, multi-agent RL, and goal-conditioned RL
to agent architecture in the general RL setting. RL
is suitable for the sequence modeling method, as a
sequence of transition (trajectory) data includes in-
formation like environment states, actions decided
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by agents, and how the action affects the world,
i.e., transition dynamics to the next stage, and task-
specific rewards to measure the performance of be-
haviors. The major differences among these meth-
ods are listed in Table 1, such as the components
in the sequence, how to process the sequence ele-
ments, benefits from sequence modeling, and spe-
cific reinforcement learning settings.

5.2.1 Offline RL

Offline reinforcement learning [78] focuses on
leveraging static datasets collected by behavior
policy in various qualities without further interac-
tion to train a better policy or evaluate it [79].
The sequence model provides a new perspective
to tackle offline RL problems at the trajectory
level. Because of the high similarity of the ap-
proach to using offline datasets with prediction
tasks, this is the first area where sequence models
are applied in RL. Decision Transformer (DT) [43]
adopts the reward condition from UDRL to boost
the performance of the policy, and models a se-
quence of return-to-go, states, and actions. Af-
ter supervised learning on offline data, DT demon-
strates strong generalization to decode the better
action when conditioned on an appropriately high
return-to-go. However, it lacks a guiding princi-
ple to find an appropriately high return-to-go to
achieve expert performance. To alleviate this issue,
Multi-Game Decision Transformer (MGDT) intro-
duces an expert classifier to conduct discriminator-
guided generation for expert action. Trajectory
Transformer(TT) [44] learns a world model to pre-
dict the future trajectory from offline data and
chooses the desired action by planning through
beam search during execution. Extended from TT,
Bootstrapped Transformer (BooT) [67] boosts the
sequence model training process with bootstrap-

ping data argumentation. Although offline RL has
advantages in data efficiency, sometimes an online
fine-tuning process is necessary to achieve further
performance improvements after offline learning.
However, DT is conservative due to the supervis-
ing manner, which impedes the exploration of the
online process. For this purpose, the Online De-
cision Transformer (ODT) [48] appends DT with
hindsight return relabeling and entropy terms to en-
courage exploration.

5.2.2 Model-based RL

Model-based RL [80] utilizes historical data to
build a world model to improve data efficiency
and conduct safe planning. Sequence models use
a historical sequence to predict the future and
thus effectively reduce cumulative error. Trans-
Dreamer [81] and Dreamer with Transformers [82]
inherit the learning framework from Dreamer [83],
a notable MBRL algorithm, and simply change
the backbone network architecture for agents and
world models from RNN to Transformer. Ben-
efiting from long-range modeling capability in
Transformer, TransDreamer significantly surpasses
Dreamer in benchmarks requiring complex mem-
ory. Compared with learning a latent state repre-
sentation and assuming that state distribution fol-
lows a prior distribution in TransDreamer, TT dis-
cretizes the continuous state and action into a se-
quence of discrete tokens, which represents a fixed
width or quantile range of the original continuous
space. Therefore, TT outputs an arbitrary proba-
bilistic distribution of the next token conditioned
on the historic discrete token sequence, signifi-
cantly reducing the dynamic prediction error.
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5.2.3 Meta RL

Meta RL aims to train on diverse tasks to allow
agents to adapt to new tasks quickly without much
interaction in the environment. Pre-trained Deci-
sion Transformer (PDT) [45] combines DT with
semi-supervised learning to reduce the demand for
labeled data through pre-training on massive unla-
beled data, in which reward is regarded as the la-
bel in RL. Multi-Game Decision Transformer [54]
has no special design for meta RL pre-training,
but simply uses a mixed dataset including several
Atari trajectories with diverse performance. How-
ever, MGDT demonstrates rapid adaptation ability
in out-of-distribution tasks with 1% data to fine-
tune. Prompting Decision Transformer (Prompt-
DT) [55] leverages a prompting framework to en-
able rapid adaptation in offline RL, in which seg-
ments of task-specific demonstration are concate-
nated with input to guide agents to understand the
new task. TrMRL (the Transformer for Meta Rein-
forcement Learning) [65] employs a Transformer
architecture to create an episodic memory to con-
textualize the policy, which is called the memory
reinstatement mechanism. Generalized Decision
Transformer (GDT) [64] proposes a unified frame-
work for hindsight information matching and a bi-
directional DT which performs well in an offline
one-shot imitation learning setting.

5.2.4 Multi-Agent RL

Multi-agent RL is proposed for the interactive
scenario with several smart agents. Sequence
models in Multi-agent RL generally treat agents
as a sequence, rather than a transition trajec-
tory. Therefore, the interactions among agents
can be captured by sequence modeling, which
brings extra benefits, such as a monotonic im-

provement guarantee. Based on the DT, Multi-
Agent Decision Transformer (MADT) [49] extends
it into multi-agent systems by directly applying
the same architecture to independent agents with
shared parameters. While Wei et al. [66] ana-
lyze the monotonic improvement property of auto-
regressive policies in conventional multi-agent RL
methods and propose the Auto-Regressive Policy
Gradient (PG-AR) paradigm, Multi-Agent Trans-
former (MAT) [53], which is inspired by the Ad-
vantage Decomposition Theorem, incorporates the
entire Transformer architecture and auto-regressive
decision process into online multi-agent RL algo-
rithms for monotonic improvement of joint policies
and achieves state-of-the-art performance.

5.2.5 Goal-conditioned RL

Goal-condition RL [84–86] learns a general policy
function to finish a series of simple tasks, for in-
stance, to reach different goal states. TT can also
be used in goal-conditioned RL by conditioning the
goal state tokens in the planning process. Despite
most of the sequence models in RL being GPT-
style auto-regressive models, FlexiBiT [87] uses
a BERT-style bi-directional Transformer as back-
bone architecture to model the entire trajectory.
Instead of predicting the next token from history,
FlexiBiT is trained to predict some masked tokens
given other tokens as context. Therefore, FlexiBiT
is competent in goal-conditioned RL because it can
predict the next action conditioned on the goal state
by masking the intermediate sub-sequence. Flex-
iBiT provides a unified way to treat distinct RL
tasks as different mask schemes, such as behav-
ior cloning, offline RL, inverse dynamics, waypoint
conditioning, goal-conditioning, etc. However, the
current performance of the masked model is not
satisfactory enough in general. Text-Conditioned
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Decision [88] trains an agent to follow the instruc-
tions with the goal to take action.

5.2.6 Agent Architecture

Since the attention mechanism has some unique
advantages, for instance, flexible input length and
permutation invariance, the agents’ backbone ar-
chitecture based on Transformer enhances perfor-
mance, which easily plugs into any conventional
RL methods. Universal Policy Decoupling Trans-
former (UPDeT) [51] leverages the Transformer ar-
chitecture to fit tasks with different observation and
action configuration requirements. Population In-
variant agent with Transformer (PIT) [52] utilizes
the Transformer architecture to achieve coordina-
tion transfer in universal scenarios.

5.3 Scalable Pre-Trained Decision Models

The huge amount of multi-modal interaction data
on the Internet could be used to train a general
model, helping agents understand their tasks and
make various decisions according to humans’ in-
structions in real-world applications [50]. While
detailed comparisons between these Transformer-
based sequence modeling methods are shown in
Table 2.

5.3.1 Pre-Training for Sequential Decision-
Making

The essential differences between prediction and
sequential decision-making problems make the
current success of large sequence models in NLP or
CV cannot be directly transferred to the latter. Be-
cause the sequential decision-making process in-
volves a feedback loop, subtle changes in behavior
would lead to severe data distribution shifts. There-
fore, new algorithms are demanded to learn stable

representation, mitigate distribution shifts, and im-
prove data efficiency.

We cannot expect that pre-training a single
model would lead to strong generalization ability
in all out-of-distribution tasks. Therefore, how to
learn a universal and consistent representation for
all the downstream tasks and minimize the distance
between the training data distribution and the eval-
uation data distribution are the major issues that re-
main unsolved for effective large decision models
with a reliable theoretical guarantee.

In general, representation learning and how to
deal with distribution shifts are significant in pre-
training, thus attracting interest from both CV
and NLP. Self-supervised learning contributes pro-
foundly to the development of large models in
representation learning. NLP adopts the masking
mechanism [17] and auto-regressive process [18],
while CV develops contrastive learning, such as
SimCLR [93] and MoCo [94]. These methods help
not only the utilization of unlabeled data but also
produce a stable, informative, and consistent rep-
resentation of data to speed up the downstream
tasks. Prompting [55], a recently proposed train-
ing paradigm in NLP is challenging the typical
pre-train and fine-tune paradigm. Briefly, prompt-
ing methods transfer downstream tasks into some
prompt templates. In essence, prompts convert the
evaluation distribution into the training distribu-
tion, therefore being a promising solution for the
zero-shot setting.

However, this issue is more challenging in the
sequential decision-making domain. First, as Fig-
ure 1 shows, the relationship between pre-trained
tasks and downstream tasks is hierarchical in pre-
diction problems, while it is cyclic in sequential
decision-making problems. This difference makes
learning what kind of representation and how to
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Table 2 We analyze what kind of data is used by these models (knowledge domain), how to understand the zero-shot gen-
eralization task (task indicator), what kind of component the sequence model is deployed as (what to pre-train), how to pre-
train the model, and how to use the pre-trained model. Below is an explanation of the abbreviations in the table: Language
model (LM), language and vision model (LVM), and behavior cloning (BC).

Methods Knowledge Domain
Downstream

Task Indicator
What to

Pre-Train
How to

Pre-Train
How to Use

Pre-Trained Model

Xland [89] Online tasks Predicates Policy RL
Zero-shot;
Finetune

MIA [41] Offline human demo Text Policy BC
Zero-shot;
Finetune

Gato [8]
Offline expert demo;

Multi-modal data
Prompt Policy BC

Zero-shot;
Finetune

SayCan [90] Pre-trained LM Text Perception
SL;
RL

zero-shot

Minedojo [50]
Internet video;

Pre-trained LVM;
Text Reward SL Online RL

VPT [9]
Internet video;

Manual annotation
-

Policy;
World Model

BC Finetune

LM-Nav [91]
Pre-trained LVM;
Pre-trained LM

Text Perception SL Search method

Inner Mono. [92]
Pre-trained LM;
Pre-trained VM

Text Perception
SL;
BC

Zero-shot
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organize the downstream tasks remains an open
problem. Second, since the decision made by
the agent would affect the world, the sequential
decision-making problems suffer from severe dis-
tribution shifts, which impede generalization [95].
This problem is abstracted as the auto-induced dis-
tributional shift [96], which means the output of a
system causes a change in input data. Although
researchers provided a theoretical analysis frame-
work of the distribution shift from the difference
between behavior policy and training policy [97],
we should consider more factors, such as the dif-
ferent world dynamics and task objectives in down-
stream tasks.

5.3.2 Data Collection for Pre-Training

Data, model size, and computing are the three main
performance bottlenecks, according to empirical
findings [70]. There are two potential research top-
ics for expanding the available data in the sequen-
tial decision-making domain, while model size and
computation are discussed in Section 5.1 and 6, re-
spectively.

The first focuses on creating a procedural frame-
work to generate a wide spectrum of tasks and sce-
narios in simulators to eliminate bottlenecks from
a limited number of human-designed tasks [89].
Massively diverse and flexible tasks provide essen-
tial knowledge to develop skills in logical reason-
ing, understanding, planning, and memory to solve
new complex sequential decision-making prob-
lems. However, since all the training tasks are gen-
erated in the same format, how to eliminate the
gap between training tasks and downstream tasks
remains an open problem. Proposing efficient al-
gorithms to transfer the skills from simulation to
the real world [98] for large model settings or con-
structing realistic but scalable simulators to reflect

the real world as much as possible [99] are promis-
ing directions.

The second way focuses on leveraging diverse,
large but static datasets without further interac-
tion to train a sequential decision-making system,
termed offline reinforcement learning [78]. This
paradigm greatly extends the boundaries of ap-
plications, as interaction with the environment is
infeasible, expensive, and unsafe in most real-
world tasks, e.g., automatic driving, recommenda-
tion systems, and robotics. Although offline algo-
rithms have the aforementioned advantages, offline
RL faces a series of challenges, including smoothly
transitioning from offline pre-training to online
fine-tuning to achieve better performance [100,
101], hyper-parameter sensitivity, and a lack of
an efficient evaluation method to search for better
hyper-parameters and examine policy robustness.

5.3.3 Recent Advances in Scaling Pre-Trained
Decision Models

As shown in Table 2, there are several attempts in
pre-trained decision models trying to answer the
aforementioned questions. Researchers utilize di-
verse datasets from distinct knowledge domains,
including online interactions with environments or
offline demonstrations, to pre-train different com-
ponents in decision systems. These methods are
characterized by what kind of component in deci-
sion systems is pre-trained and how to use the pre-
trained model.

Pre-Training for Policy. A policy with ideal
initialization can mitigate the exploration problem
better than learning from scratch, which is ver-
ified in many scenarios, e.g., Go and Starcraft.
Therefore, pre-training a policy on enough diverse
and massive experience data can improve data ef-
ficiency in the new downstream tasks. In an im-
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portant attempt, Gato [8] pre-trains a single large
model on multi-modal data to master hundreds of
tasks, including sequential decision-making tasks,
image captions, chitchat, etc. By simple imita-
tion learning on expert demonstrations, Gato suc-
cessfully pushes the model parameter scale in the
sequential decision-making domain to the billion
level. Also, it avoids some primary challenges in
sequential decision-making, such as learning abil-
ity with suboptimal offline data and high data effi-
ciency in the online fine-tuning process. VPT pre-
trains a single sequence model to imitate human
player behavior from massive YouTube videos.
The pre-trained model served as a general be-
havioral prior, showing zero-shot capabilities and
making exploration easier and more efficient in
fine-tuning. MGDT focuses more on policy trans-
ferring or few-shot adaptation across multiple tasks
with the strong generalizability of Transformer ar-
chitectures. Crucially, Gato, VPT, and MGDT all
show scaling law in the RL field, indicating the pur-
suit of large decision models is promising.

Pre-Training for Reward Function. The re-
ward function plays a key role in sequential
decision-making systems, and defines the target of
tasks or the preferences over a series of different
policies. On account of the importance of the re-
ward function, pre-training a reward function for
downstream tasks helps RL work on completely
new tasks without human design. Minedojo [50]
pre-trains a large language and vision model to ap-
proximate reward functions and guide the online
reinforcement learning to generalize into unseen
task instructions.

Pre-Training for World Model. In a specific
setting, a world model simulates the environment
that agents interact with, which is a reusable com-
ponent shared by a series of tasks. Although TT

provides a promising tool to train a world in a se-
quential manner for robotics or other similar sce-
narios, to the best of our knowledge, there is no
study to fill this gap. However, an inverse world
model has been introduced to increase the diver-
sity and quantity of offline data. The inverse world
model in VPT [9] expands the sources of data from
laboratories to large-scale realistic internet infor-
mation produced by humans. Specifically, VPT
collects a relatively small dataset with game videos
played by volunteers labeled with action sequences
and a large set of videos without action labels from
YouTube. Then an inverse dynamic world model
is trained on the small dataset to label massive
YouTube videos, and human demonstrations with
action labels are used to pre-train a policy.

Pre-Trained Multi-Modal Perception Model
for Sequential Decision-Making. To attain agents
with general skills, basic common sense is indis-
pensable, such as the ability to recognize objects
from pictures, understand semantics from text, and
decompose a task into steps [102]. Multi-modal al-
gorithms [90–92] improve data efficiency by trans-
ferring knowledge from off-the-shelf pre-trained
large sequence models in the language or vision
domains, rather than cultivating basic ability in a
trial-and-error manner. SayCan combines a value
function and a pre-trained language model to con-
trol a real robot, following task instructions [90].
Specifically, the value function figures out what ac-
tion can be completed, while the pre-trained lan-
guage model figures out whether this action is
appreciated to achieve the task goal. Huang et
al. [103] decompose a complex task into several
simple goals, speeding up the learning process of
downstream tasks and showing strong generaliza-
tion. Inner Monologue [92] implements a closed-
loop feedback control system for robotics based on
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a pre-trained language model and a collection of
perception models, thinking of completing the en-
tire task as a conversation. Perception models pro-
vide scene information. An agent driven by the lan-
guage model decides what to do next and inquires
for human feedback to give the correct response,
and the human describes the tasks and interacts
with agents. It is observed that all participants in
a conversation give information in language form.
LM-Nav [91] achieves impressive performance in
open real-world robotic navigation tasks, powered
by large pre-trained models of language, vision,
and action. The language model is responsible
for converting navigation commands into a series
of landmarks, and the vision-and-language model
grounds the landmarks in the topological map.
The knowledge from the pre-trained model signif-
icantly eliminates the bottleneck caused by limited
language-annotated robot data.

5.4 The Next Step: Large Decision Models

Gato [8] and VPT [9] have shown the potential
of building large decision models for general pur-
poses in the field of sequential decision-making,
like what large sequence models have done for
NLP and CV tasks. However, to build a large de-
cision model, some modifications in architecture
are significant with increasing data and model size,
while naively scaling up models might fail as the
number of parameters increases. That is, with the
same volume of data and parameters, the network
architecture can be the determining factor to im-
prove the performance of large decision models.
In this section, some important characteristics are
listed since they can serve as consultative princi-
ples when designing network architecture for large
decision models in the future. Noticed that the
Transformer and its variants are suggested to be

promising candidates recently, but any other model
architectures [104–106] meeting the requirements
below are still worth an exploration.

5.4.1 Multi-Task

To take full advantage of high-capacity models,
how to utilize data from diverse tasks is critical for
generalization. Some techniques in model archi-
tecture have been investigated, e.g., transfer learn-
ing can be accomplished with the mixture of ex-
perts (MoE) [107] and modularization [108, 109].
Related research can help large models in the se-
quential decision-making domain attain better gen-
eral intelligence.

5.4.2 Sparse Activation

When decision models are scaled to extreme sizes,
a computing request involving the full set of pa-
rameters can be incredibly expensive and ineffi-
cient. However, for dense models, each piece of
inference or training data activates the entire set of
model parameters, resulting in high training and in-
ference costs and latency. Therefore, the parse ac-
tivation [5, 110] methods are proposed to balance
model size and performance. For each piece of
data, only a subset of the parameters is activated
to process the input in a sparse model during train-
ing and testing. Even if sparse models usually have
more parameters when compared to their equal-
quality dense alternatives [111], their training or in-
ference cost and latency are significantly reduced.

5.4.3 Multi-Modality

Data in different modalities provides information
from distinct perspectives. Model architectures
supporting multi-modality are capable of a broader
range of applications and more complicated in-
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teractions. Vision endows agents with the ability
to observe, make a reasonable response [89], and
form general knowledge about the shape of ob-
jects [9, 91]. Natural language instructs agents and
deepens their understanding of the new tasks [103],
divides the high-level goal into detailed steps [50,
91, 92] and provides a natural interface for agents
to cooperate with humans [41].

6 Training Systems
In this section, we discuss the systems that can sup-
port the training of large decision models based
on sequence models. Sequence models, especially
with Transformer architectures, have achieved sub-
stantial improvements in accuracy and generaliz-
ability by scaling up, usually following scaling
laws [58, 70, 72].

Model and Data Scaling. Although based on
highly different test suits and tasks (image classi-
fication [58], language translation [72]), prior re-
search reports that Transformers exhibit highly pre-
dictable scaling patterns in many of these tasks. As
proposed, the test loss of the model when saturat-
ing (given enough training data) follows a general
form:

L̂(Nc) = α(Nc/N)−β +L∞, (14)

where α, β, L∞ are fitted parameters depending on
tasks and data. Nc is the number of non-embedding
parameters. N is a fixed normalization term for Nc

and L∞ represents the irreducible part of the loss
in scaling due to data noise. Besides the model
saturating law revealed by Equa. 14, empirical re-
sults [70] show that models have better data effi-
ciency and can benefit from a larger dataset when
scaling up. In the language translation tasks [70],
the number of training data that saturates models
when scaling can be fitted by a sub-linear power-
law (dataset volume D ∼ N0.74). To get the most

out of scaling, the sizes of the model and data are
required to be expanded simultaneously, imposing
new challenges to the design of efficient training
systems due to issues such as massive memory and
computational budget demanded.

Scaling decision models. While there exists a
fruitful line of work on scaling behaviors of vision
and language Transformers, that of large decision-
making Transformers is still under-explored. Even
though both are trained in a supervised manner,
recent researches [8, 41] on large decision mod-
els report different scaling patterns, not to men-
tion their reinforced counterparts, which often have
a stronger dependency on resource-demanding on-
line data generation. Efficient training of large de-
cision models is not a trivial problem, and the lack
of a handy training toolkit and systems for large de-
cision models is holding back more research forces
from entering this area.

6.1 Existing Challenges

6.1.1 Hybrid Parallelism

Gigantic sequence models can contain trillions of
parameters. These parameters consume tremen-
dous amounts of memory and must be distributed
to multiple devices. The distributed execution
is usually achieved through a hybrid parallelism
scheme that combines data parallelism, model par-
allelism, and pipeline parallelism, as shown in
Fig. 3. To train large sequence models, training
systems must have effective ways to optimize hy-
brid parallelism schemes and distribute computa-
tion to multiple devices.

6.1.2 Large Datasets and Massive Environments

Sequence models need to be pre-trained using of-
fline datasets and fine-tuned (i.e., few-shot learn-



21

Fig. 3 (a) shows a data-paralleled three-layer model with a parallel size of 2. Data Parallelism (DP) creates replicas of
the entire model across the cluster, with each device holding one (or more) of these replicas. (b) illustrates the same three-
layer model being assigned to 4 physical devices under Model Parallelism (MP), with a layer-wise (vertical) slicing schema
and a horizontal slicing scheme on the second layer (the 2-nd layer being internally sliced and assigned to worker-1 and
worker-2). MP splits the model either horizontally (inside a layer, where Tensor Parallelism is often involved since parameters
like weights are sliced, e.g., split matrix multiplication into operations into sub-matrices) or vertically (layer-level slice). (c)
GPipe [112]: A 4-layer model assigned to 4 physical devices (the vertical axis) with a parallel parallelism schema. Parallel
Parallelism (PP) combines DP and MP by slicing the model vertically into chunks, mapping them to different devices, and
splitting the mini-batch input into micro-batches fed into the pipeline sequentially to reduce bubbles (device under-utilized
periods). Hybrid Parallelism: Though PP has already been a hybrid of DP and MP, it can be further integrated with DP
inside a parallel schema by serving multiple homogeneous pipelines (parameters can differ depending on the synchronization
schema), orchestrated as a hybrid parallelism schema. A hybrid parallelism schema is often a combination of DP, MP and PP
to have fine-grained placement and execution plans based on diverse IO, memory, and computing characteristics of different
parallelism methods with an overall optimization goal of efficiency.

ing) for downstream tasks by interacting with envi-
ronment simulators online, as shown in Fig. 4. The
pre-training datasets can be as large as 500 billion
tokens [18]. The parallel execution of environment
simulators is also challenging. These simulators
need to be parallelized using thousands of CPUs
(and even GPUs), thus producing a sufficient work-
load for fine-tuning sequence models.

6.2 Hybrid Parallelism Systems

For training large Transformer architectures, many
hybrid parallelism systems have been proposed.
For example, GPipe [112] introduces pipeline par-
allelism for the Transformer, DeepSpeed partitions
the states of the optimizer to reduce communica-
tion overhead, and Colossal-AI [113] attempts to

automatically parallelize the training of gigantic
neural networks. Though promising, these systems
fail to fully support large decision models for sev-
eral reasons.

6.2.1 Lack of Designs for Synchronizing Model
Checkpoints

Existing hybrid parallelism systems are often de-
signed for offline training scenarios where mod-
els are trained for a long time, and model check-
points are deployed into inference servers only
once. In the scenarios of training decision models,
the models need to be continuously checkpointed
and repetitively deployed to the inference servers
(i.e., model synchronization); otherwise, the infer-
ence servers will have stale models that offer sub-
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Fig. 4 The data-flow comparison between the paradigms of
offline RL and online RL, where offline pre-training relies
on large datasets and online fine-tuning requires paralleliz-
ing massive environments to accelerate online interaction and
data collection. Moreover, the online fine-tuning phase im-
poses more communication pressure due to strict parameter
synchronization requirements between inference and training
servers.

optimal performance when interacting with envi-
ronment simulators. As large decision models can
have trillions of parameters, continuously check-
pointing and deploying large model checkpoints
can incur severe network bottlenecks, making the
training of large decision models prohibitively ex-
pensive.

6.2.2 Lack of Designs for Handling Simulation
Environments

Existing hybrid parallelism systems are originally
designed for processing training datasets stored on
disks, and they are ill-suited to processing simula-
tion environments that continuously produce train-
ing samples in memory. Different from on-disk
training datasets, simulation environments can re-
turn highly complex nested observations, and those
observations are produced at dynamic rates (i.e.,
observations are produced at a different rate at
the beginning of training because initial decision
models often offer insufficient performance). In-
tegrating these environments into existing offline-

oriented hybrid parallelism systems requires non-
trivial research and implementation efforts.

6.3 Distributed RL Systems

Distinct from building hybrid parallelism systems,
practitioners have also made parallel efforts in de-
signing distributed RL systems. Ray allows mul-
tiple RL tasks (e.g., simulating environments or
training RL models) to be dynamically dispatched
to CPUs and GPUs. Impala [114] adopts an Actor-
Learner architecture where actors (consisting of
an inference model and an environment simulator)
produce trajectories in parallel, and learners repli-
cate RL models on multiple GPUs. Seed-RL [115]
further speeds up actors by allowing GPUs to be
effectively used in model inference.

However, there are non-trivial challenges for ex-
isting variants of distributed RL systems to accom-
modate the training tasks of large decision models.
We observe several reasons for this problem.

6.3.1 Lack of End-to-End Performance
Optimization

Training a large decision model requires a com-
plex pipeline. Specifically, the model requires (1)
processing large training datasets first, (2) interac-
tion with environments, and (3) using hybrid par-
allelism to partition large model states finally. This
pipeline requires various techniques to optimize
hardware performance: there are techniques for us-
ing GPUs to speed up dataset processing and envi-
ronment simulation or parallelize the computation
of large tensors. These days, all these techniques
are applied in an isolated manner, and they are
not coordinated in existing RL systems. Such sys-
tems thus lack end-to-end performance optimiza-
tion, leaving underlying hardware resources ineffi-
ciently utilized.
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6.3.2 Lack of Automatic Resource Management

An enabling scenario for large decision models
is multi-task pre-training. These tasks need to
be driven by different environments, and the pre-
trained models can adopt a mixture-of-expert ar-
chitecture. These days, users must manually al-
locate GPU resources to different environments,
and further reserve GPUs for pre-trained models.
This manual resource allocation is, however, te-
dious and often sub-optimal, and we anticipate fu-
ture distributed RL systems to realize fully auto-
matic resource management, making them capable
of supporting large-scale multi-task pre-training.

7 Discussion and Future Prospects

7.1 Theoretical Foundation

Although converting RL problems into sequence
modeling problems has yielded numerous bene-
fits recently, it has also resulted in a loss of theo-
retical guarantees for policy optimization, in con-
trast to traditional RL approaches. While satis-
factory performance has been achieved in some
experiments, this superiority is heavily dependent
on the generalization ability of network architec-
tures, data quality, and specific problem scenarios.
For instance, DT-type algorithms might experience
significant degradation in environments with high
randomness destabilizing the desired returns. The
lack of effective theoretical analysis and guarantees
for policy optimization constrains further improve-
ment of decision models. Therefore, it is highly
meaningful to research the organic integration of
sequence modeling methods with traditional RL
methods that offer theoretical guarantees in the fu-
ture.

7.2 Network Architectures

In terms of network architecture, most of the RL
methods directly rely on vanilla Transformers from
NLP and CV without customized design, leaving
ample room for performance improvement. Devel-
oping customized Transformer architectures pri-
marily involves defining sequences, designing to-
kens, targeted attention calculation, and employ-
ing MoE layers. Consequently, promising re-
search directions include integrating RL-specific
semantics into the token design, combining atten-
tion masks with the Markov properties, and al-
locating MoE specifically to sequential decision-
making tasks. Additionally, in-context learning
is an important feature of large language models
that often require lengthy sequences to emerge.
Leveraging the Markov properties of sequential
decisions to reduce computation complexity from
quadratic to linear is a highly valuable research
problem with the potential to facilitate in-context
learning. Lastly, the recent surge of diffusion mod-
els yields novel implications for modeling decision
sequences.

7.3 Algorithms

Despite recent advancements, many RL algorithms
with sequence models remain domain-specific.
Therefore, a unified framework capable of encom-
passing various RL scenarios is an area of future
research that requires attention. Notably, GPT
and multi-modal BeITv3 [63] have demonstrated
a trend toward unifying upstream and downstream
tasks and achieved remarkable results. Although
UniMask [116] is trying to unify upstream and
downstream tasks in RL, it still falls short in perfor-
mance. Thus, the development of a unified mod-
eling approach in sequential decision-making do-
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mains will continue to be a critical issue.

In the context of large-scale pre-training, effec-
tively incorporating multi-modal knowledge of vi-
sion and language into sequential decision-making
is of utmost importance. While semantic common-
sense information plays a critical role in enhanc-
ing the efficiency and effectiveness of sequen-
tial decision-making for general purposes, Chat-
GPT [4] achieves a remarkable breakthrough as a
powerful knowledge base. However, the integra-
tion between sequential decision-making and per-
ception modalities still lacks naturalness. For ex-
ample, LM-Nav and SayCan manually design the
fusion mechanism of multiple outputs from large
perception models, but fail to perform joint train-
ing. While Gato performs joint training of multiple
modalities, it lacks alignment between modalities
in terms of tasks. It would be interesting to ex-
plore the possibility of learning an extra module
to splice cross-modal large models together, such
as an adapter or an inverse dynamic model. Fur-
thermore, the emergence of in-context learning and
chain-of-thought abilities [117] in large language
models may be the ingredients for creating general
self-improving agents without the need for super-
vised knowledge from humans.

7.4 Efficient Training Systems

Training Efficiency represents a significant imped-
iment that hinders the development of large deci-
sion models, which requires additional efforts and
extensive exploration in future research aimed at
designing efficient training systems.

7.4.1 Requirements for Offline Pre-Training

Although the offline pre-training of decision mod-
els shares similarities in data flow and control flow

with language and vision transformers, data load-
ing might impede the scalability of the former. The
offline datasets for large-scale models may exceed
the capacity of host memory or even the hard drives
of a compute node, necessitating to be served over
networks. In NLP and CV tasks, training datasets
can be shuffled prior to the training phase and se-
quentially read during the epochs, and thus they
can be efficiently cached and accelerated due to un-
derlying space locality. However, decision models’
performance and stability depend on the data distri-
bution, consequently requiring runtime sampling.
The random access behavior of sampling might
cause a high miss rate for vanilla caching poli-
cies and poor performance in data loading. There-
fore, future researches for training systems with ef-
ficient data placement and caching are crucial for
pre-training large decision models.

7.4.2 Requirements for Online Training

Large decision models impose unique workload
characteristics in online training due to the RL
paradigm. During the online learning phase, since
these models periodically interact with the envi-
ronment and collect mini-batches of training data,
these models have to switch repeatedly between
inference and training modes. As a result, while
more researchers and industries have been utilizing
high-end GPUs shipped with large GPU memory
to accommodate model parameters, their comput-
ing resources are often underutilized in distributed
training.

Modern GPUs are designed for parallel and
batch execution, whereas most existing environ-
ments are CPU-oriented and executed sequen-
tially. Although the overall environmental through-
put can be greatly extended in multi-core systems,
a throughput gap may still exist between many
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CPU-served environments and GPU-served mod-
els. Therefore, extra abstraction layers and imple-
mentation are required to efficiently parallelize and
distribute CPU environments.

Besides, since GPU-served models and CPU-
served environments have bi-directional depen-
dencies on each other, their overall performance
should be optimized from a systematic view. For
example, larger batches may lead to high peak uti-
lization of devices, while the latency from batch-
ing, environment scheduling, and network commu-
nication can result in a poor average utilization rate
of devices. Moreover, frequent communication
and synchronization for mode coordination can be
expensive in large-scale training. The parameter
server, a common component for the asynchronous
training paradigm, can easily become a bottleneck
for massive parameters and large clusters. There-
fore, joint efforts in training system design and al-
gorithms are indispensable to address these issues.

8 Conclusions
In this survey, we explored the current progress of
leveraging the sequence modeling methods for se-
quential decision-making tasks. Tackling sequen-
tial decision-making problems via sequence mod-
eling can be a promising solution to address those
long-lasting issues in conventional RL methods, in-
volving sample efficiency, credit assignment, and
partial observability. Besides, sequence models
can bridge the gap between RL and offline self-
supervised learning in terms of data efficiency and
transferability.

We conclude that model architecture for large
decision models should be designed with the
awareness of support for multi-modality, multi-
task transferability, and sparse activation, while the
algorithms should address the concerns about both

the quality and quantity of data. And the overall
training efficiency should be systematically opti-
mized via parallelism. Following a series of dis-
cussions about the theoretical foundation, network
architecture, algorithm design and training system
support, this survey provides potential research di-
rections toward building a large decision model.
We hope this survey could inspire more investi-
gation into this trending topic and ultimately em-
power more real-world applications, e.g., robotics,
automatic vehicles, and the automated industry.
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