
Improved Differential-neural Cryptanalysis for
Round-reduced Simeck32/64 ∗

Liu Zhang1,3[0000−0001−6106−3767], Jinyu Lu2(�)[0000−0002−7299−0934],
Zilong Wang1,3[0000−0002−1525−3356], and Chao Li2,3[0000−0001−7467−7573]

1 School of Cyber Engineering, Xidian University, Xi’an 710126, China
{liuzhang@stu., zlwang@}xidian.edu.cn

2 College of Sciences, National University of Defense Technology, Hunan, Changsha
410073, China, jinyu_smile@foxmail.com, lichao_nudt@sina.com

3 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China

Abstract. In CRYPTO 2019, Gohr presented differential-neural crypt-
analysis by building the differential distinguisher with a neural network,
achieving practical 11-, and 12-round key recovery attack for Speck32/64.
Inspired by this framework, we develop the Inception neural network that
is compatible with the round function of Simeck to improve the accuracy
of the neural distinguishers, thus improving the accuracy of (9-12)-round
neural distinguishers for Simeck32/64. To provide solid baselines for neu-
ral distinguishers, we compute the full distribution of differences induced
by one specific input difference up to 13-round Simeck32/64. Moreover,
the performance of the DDT-based distinguishers in multiple ciphertext
pairs is evaluated. Compared with the DDT-based distinguishers, the 9-,
and 10-round neural distinguishers achieve better accuracy. Also, an in-
depth analysis of the wrong key response profile revealed that the 12-th
and 13-th bits of the subkey have little effect on the score of the neu-
ral distinguisher, thereby accelerating key recovery attacks. Finally, an
enhanced 15-round and the first practical 16-, and 17-round attacks are
implemented for Simeck32/64, and the success rate of both the 15-, and
16-round attacks is almost 100%.

Keywords: Neural Distinguisher, Wrong Key Response Profile, Key
Recovery Attack, Simeck32/64

1 Introduction

Lightweight block ciphers present trade-offs between appropriate security and
small resource-constrained devices, which is an essential foundation for data con-
fidentiality in resource-constrained environments. Therefore, the design require-
ments and security analysis of lightweight block ciphers are of great importance.
Combining traditional analysis methods with “machine speed” to efficiently and

∗ Supported by organization x.
First Author and Second Author contribute equally to this work.

ar
X

iv
:2

30
1.

11
60

1v
1

 [
cs

.C
R

]
 2

7
Ja

n
20

23

intelligently evaluate the security of cryptographic algorithm components, is one
of the critical points and trends of current research. The development of Artificial
Intelligence (AI) provides new opportunities for cryptanalysis.

In CRYPTO 2019 [8], Gohr creatively combines deep learning with differ-
ential cryptanalysis and applies it to the Speck32/64, gaining the neural dis-
tinguisher (ND) can surpass the DDT-based distinguisher (DD). Then, a hy-
brid distinguisher (HD) consisting of a ND and a classical differential (CD)
with highly selective key search strategies result in forceful practical 11-, and
12-round key recovery attacks. In EUROCRYPT 2021 [7], Benamira et al. pro-
posed a thorough analysis of Gohr’s neural network. They discovered that these
distinguishers are basing their decisions on the ciphertext pair difference and the
internal state difference in penultimate and antepenultimate rounds.

To attack more rounds, the component CD or ND must be extended. In
ASIACRYPT 2022 [4], Bao et al. devised the first practical 13-round and an
improved 12-round ND-based key recovery attacks for Speck32/64 by enhanc-
ing the CDs, which they deeply explored more generalized neutral bits of dif-
ferentials, i.e., conditional (simultaneous) neutral bit/bit-sets. In addition, they
obtained NDs up to 11-round Simon32/64 by using DenseNet and SENet, thus
launching the practical 16-round key recovery attack. Zhang et al. [16] focused
on improving the accuracy of ND and added the Inception composed of the
multiple-parallel convolutional layers before the Residual network to capture
information on multiple dimensions. Under the combined effect of multiple im-
provements, they reduced the time complexity of key recovery attacks for 12-,
and 13-round Speck32/64 and 16-round Simon32/64. They also devised the
first practical 17-round key recovery for Simon32/64.

The Simeck algorithm [15], which combines the good design components
from both Simon and Speck [5] designed by National Security Agency (NSA),
has received a lot of attention for its security. In 2022, Lyu et al. [13] improved
Gohr’s framework and applied it to Simeck32/64. They obtained (8-10)-round
NDs for Simeck32/64 and successfully accomplished attacks for (13-15)-round
Simeck32/64 with low data complexity and time complexity. In the same year,
Lu et al. [12] adopted the multiple ciphertext pairs (8 ciphertext pairs) to train
the SE-ResNet neural network fed with a new data format for Simon and
Simeck. Finally, they obtained (9-12)-round NDs for Simeck32/64. This raises
the question of whether the key recovery attack for Simeck can be enhanced.

Our Contribution. The contributions of this work are summarized as follows.

• We improved the Inception neural network proposed by zhang et al. [16] ac-
cording to the number of cyclic rotation in the round function of Simeck32/64.
Meanwhile, to capture the connections between ciphertext pairs, we use mul-
tiple ciphertext pairs forming a sample as the input of the neural network.
Therefore, we improved the accuracy of (9-12)-round NDs using the ba-
sic training method and staged training method. The result can be seen in
Table 3.

• To provide solid baselines forNDs, the full distribution of differences induced
by the input difference (0x0000, 0x0040) is computed up to 13 rounds for
Simeck32/64. Also, to make a fair comparison with NDs, the accuracy of
the DDs with multiple ciphertext pairs under independent assumptions is
investigated. The comparison shows that the 9-, and 10-round NDs achieve
higher accuracy than the DDs, i.e., the ND contains more information than
the DDs (see Table 3).

• Based on the wrong key random hypothesis, we computed the score of the
ND for ciphertexts decrypted with different wrong keys and derived the
wrong key response profile (see Figure 3). Through a thorough study of the
wrong key response profile, we found that the 12-th and 13-th bit subkeys
have little effect on the score of the ND, but the ND is extremely sensitive
to the 14-th, and 15-th bit subkeys. Thus optimizing the Bayesian key search
algorithm (see Algorithm 3) and accelerating the key recovery attack.

• We enhanced the 15-round and launched the first practical 16-, 17-round
key recovery attacks for Simeck32/64 based on the ND. Table 1 provides a
summary of these results.

Table 1. Summary of key recovery attacks on Simeck32/64

Attacks R Configure Data Time Success Rate Ref.

ND

13 1+2+9+1 216 227.95+5? 88% [13]

14 1+3+9+1 223 232.99+5? 88% [13]

15
1+3+10+1 224 233.90+5? 88% [13]

1+3+10+1 222 235.309 99.17% Sect. 5

16 1+3+11+1 224 238.189 100% Sect. 5

17 1+3+12+1 226 245.037 30% Sect. 5

1. ?: Time complexity is calculated in terms of the number of full rounds of
Simeck32/64 encryption per second of 223.304 in [13]. For a fair comparison, we
convert the time complexity to be calculated in terms of the number of 1-round
decryption performed per second. These two benchmarks differ by about 25.

2. Time complexity is calculated based on that one-second equals to 226.693 1-round
decryption per second in this paper. Also, 221.762 full-rounds of Simeck32/64 en-
cryption per second can be performed on our device.

Organization. The rest of the paper is organized as follows. Section 2 introduces
the design of Simeck and gives the preliminary on the ND model. Section 3
gives the data format, network structure, training method, and result of NDs

The experiment is conducted by Python 3.7.15 and Tensorflow 2.5.0 in
Ubuntu 20.04. The device information is Intel Xeon E5-2680V4*2 with
2.40GHz, 256GB RAM, and NVIDIA RTX3080Ti 12GB*6. The source
code is available on GitHub https://github.com/CryptAnalystDesigner/
Differential-Neural-Cryptanalysis-Simeck32.git.

https://github.com/CryptAnalystDesigner/Differential-Neural-Cryptanalysis-Simeck32.git
https://github.com/CryptAnalystDesigner/Differential-Neural-Cryptanalysis-Simeck32.git

for Simeck32/64. Section 4 describes the neutral bits and wrong key response
profiles used for key recovery attacks. Section 5 exhibits details of the (15-17)-
round key recovery attacks. Section 6 concludes this paper.

2 Preliminary

In this paper, we denote an n-bit binary vector by x = (xn−1, . . . , x0), where
xi is the bit in position i with x0 the least significant one. ⊕ and � denote the
eXclusive-OR operation and the bitwise AND operation, respectively. x ≪ γ
or Sγ(x) represent circular left shift of x by γ bits. x≫ γ or S−γ(x) represent
circular right shift of x by γ bits. x ‖ y represents the concatenation of bit strings
x and y.

2.1 A Brief Description of Simeck

The Simeck family of lightweight block cipher was designed by Yang et al. in
CHES 2015 [15]. To develop even more compact and efficient block ciphers, it
incorporates good design components from both Simon and Speck designed by
NSA. A standardized approach for lightweight cryptography was proposed by
the National Institute of Standards and Technology (NIST) in 2019. Some ideas
for this project use modified Simeck as a fundamental module, such as ACE [1],
SPOC [2], and SPIX [3], which suggests that Simeck has more practical promise.

Simeck adopt the feistel structure to perform encryptions or decryptions on
2n-bit message blocks using a 4n-bit key, while n is the word size. The round
function of Simeck is defined as f5,0,1(x) =

(
S5 (x)� x

)
⊕ S1(x). Designers

reuse the round function in the key schedule to subkeys like Speck does. The
encryption algorithm of Simeck32/64 is listed in Algorithms 1.

Algorithm 1: Encryption of Simeck32/64.
Input: P = (x0, y0): the paintext, (k0, k1, · · · , k31): the round keys.
Output: C = (x32, y32): the ciphertext.

1 for r = 0 to 31 do
2 xr+1 ← (xr ≪ 5) & xr ⊕ (xr ≪ 1)
3 yr+1 ← xr
4 end

2.2 Overview of Neural Distinguisher Model

The ND is a supervised model which distinguishes whether ciphertexts are en-
crypted by plaintexts that satisfies a specific input difference or by random
numbers. Given m plaintext pairs {(Pi,0, Pi,1), i ∈ [0,m− 1]} and target cipher,
the resulting ciphertext pairs {(Ci,0, Ci,1), i ∈ [0,m−1]} is regarded as a sample.
Each sample will be attached with a label Y :

Y =

{
1, if Pi,0 ⊕ Pi,1 = ∆, i ∈ [0,m− 1]
0, if Pi,0 ⊕ Pi,1 6= ∆, i ∈ [0,m− 1]

A large number of samples are fed into the neural network for training. Then,
the ND model can be described as:

Pr(Y = 1 | X0, . . . , Xm−1) = F (f(X0), · · · , f(Xm−1), ϕ(f(X0), · · · , f(Xm−1))) ,
Xi = (Ci,0, Ci,1), i ∈ [0,m− 1],

Pr(Y = 1 | X0, · · · , Xm−1) ∈ [0, 1],

where f(Xi) represents the basic features of a ciphertext pair Xi, ϕ(·) is the
derived features, and F (·) is the new posterior probability estimation function.

3 Neural Distinguisher for Simeck32/64

It is crucial that a well-performing ND be obtained before a key recovery
can be conducted. In this section, we provided the state-of-the-art NDs for
Simeck32/64. More importantly, the DDs resulting from the input difference
(0x0000, 0x0040) are computed up to 13 rounds for Simeck32/64. These DDs
provide a solid baseline for NDs.

3.1 Construction of the Dataset

Data quality is fundamentally the most important factor affecting the good-
ness of a model. Constructing a good dataset for NDs requires answering the
following questions:

• How to select a good input difference?
• What data format is used for a sample?
• How many ciphertext pairs are contained in a sample?

Input Difference. Numerous experiments have shown that the input difference
has a significant impact on the accuracy of the NDs/DDs [4,6,7,8,9,10,13,14].
Simultaneously, obtaining better results for the key recovery attack depends on
whether the input difference of the NDs leads to better accuracy, while leading
to the prepended CDs with high probability. Therefore, it is also necessary to
consider the number of rounds and the neutral bits of the prepended CDs.

The choice of input difference of NDs varies depending on the block cipher.
For Simeck32/64, Lyu et al. [13] present two methods to select the input differ-
ence of the NDs. In the first method, the input difference for the NDs is selected
from the input difference of the classical differential trail of existing literature.
As part of the second method, the MILP model was used to find input differ-
ences for classical differential transitions that had high probabilities, then NDs
based on these input differences were trained with short epochs, and then the
NDs whose input differences had higher accuracy were selected for training long
epochs. But they did not consider the effect of the Hamming weight of the input
difference on the neural network. Lu et al. [12] studied the effect of the input
difference of NDs of Hamming weight less than or equal to 3 on the performance
of HDs, and their experiments showed that the input difference (0, ei) is a good

choice to obtain a HD for Simon-like ciphers. Eventually, they built NDs for
Simeck32/64 up to 12 rounds with input difference (0x0000, 0x0040).

In this paper, we further explore the neutral bit of the input difference
(0x0000, 0x0040) (see Sect. 4.1) and, in a comprehensive comparison, chose this
input difference.

Data Format. In the process of training a ND, the format of the sample needs
to be specified in advance. This format is referred to as the ND’s data format
for convenience. The most intuitive data format is the ciphertext pair (C,C ′) =
(xr, yr, x

′
r, y
′
r), which is used in Gohr’s network for Speck32/64 in [8,9]. As the

research progressed, Benamira et al. [7] constructed a new data format (xr ⊕
x′r, xr⊕x′r⊕ yr⊕ y′r, xr⊕ yr, x′r⊕ y′r) through the output of the first convolution
layer of Gohr’s neural network for Speck32/64, where xr ⊕ x′r represents the
left branch difference of the ciphertext, xr ⊕ x′r ⊕ yr ⊕ y′r represents the right
branch difference after decrypting one round of ciphertexts without knowing the
(r − 1)-th subkey according to the round function of Speck, xr ⊕ yr/x′r ⊕ y′r
represents the right branch ciphertext C/C ′ of the penultimate round. It shows
that the data format is closely related to the structure of the ciphers.

Bao et al. [4] accepted data of the form (xr−1, x
′
r−1, yr−1 ⊕ y′r−1) for Si-

mon32/64. Since when the output of the r-th round (C,C ′) = (xr, yr, x
′
r, y
′
r)

is known, one can directly compute (xr−1, x
′
r−1, yr−1 ⊕ y′r−1) without knowing

the (r−1)-th subkey according to the round function of Simon-like ciphers. Lu et
al. [12] further proposed a new data format (∆xr, ∆yr, xr, yr, x′r, y′r, ∆yr−1, p∆yr−2)
and obtained better performance. The details are illustrated in Fig. 1, and this
data format is used in this paper due to its superiority.

Using Multiple Ciphertext Pairs. Gohr et al. [9] showed that for a single
ciphertext pair, only their differences may provide information for Simon. One
option to surpass DDs is to use multiple ciphertext pairs simultaneously, us-
ing dependencies between the pairs, especially if the key is fixed. Therefore, in
order to surpass DDs, we use multiple ciphertext pairs for training, and the re-
sults (Section 3) confirm that multiple ciphertext pairs indeed help to surpass
DDs, albeit only in some rounds. One current trend in deep learning-assisted
cryptanalysis is the employment of multiple ciphertext pairs per sample, and
our results offer solid evidence in favor of this trend.

The three questions above have been addressed, and the dataset can be gen-
erated. Specifically, training and test sets were generated by using the Linux
random number generator to obtain uniformly distributed keys Ki and mul-
tiple plaintext pairs {(Pi,j,0, Pi,j,1), j ∈ [0,m − 1]} with the input difference
(0x0000, 0x0040) as well as a vector of binary-valued labels Yi. During the pro-
duction of the training or test sets for r-round Simeck32/64, the multiple plain-
text pairs were then encrypted for r rounds if Yi = 1, while otherwise, the second
plaintext of the pairs were replaced with a freshly generated random plaintext
and then encrypted for r rounds. Then use the r-round ciphertext pairs to gen-
erate samples with data of form (∆xr, ∆yr, xr, yr, x

′
r, y
′
r, ∆yr−1, p∆yr−2).

∆xr−1 = ∆yr ∆yr−1 = yr−1 ⊕ y
′
r−1

Sa

Sb

Sc

kr−1

∆xr = xr ⊕ x
′
r ∆yr = yr ⊕ y

′
r

∆xr−2 = ∆yr−1 p∆yr−2

Sa

Sb

Sc

kr−2

Fig. 1. Notation of the data format for Simon-like ciphers, where yr−1 = Sa(yr) �
Sb(yr)⊕Sc(yr)⊕xr⊕kr−1 , A⊕kr−1, y

′
r−1 = Sa(y

′
r)�Sb(y

′
r)⊕Sc(y

′
r)⊕x

′
r⊕kr−1 ,

A
′
⊕kr−1, and p∆yr−2 = Sa(A)�Sb(A)⊕Sc(A)⊕ yr⊕Sa(A

′
)�Sb(A

′
)⊕Sc(A

′
)⊕ y

′
r

3.2 Network Architecture

In CRYPTO 2019, Gohr [8] used the Residual Network to capture the dif-
ferential information between the ciphertext pairs, thus getting the ND for
Speck32/64. To learn the XOR relation at the same position of the cipher-
text, a one-dimensional convolution of kernel size 1 is used in Gohr’s network
architecture. Since there may be some intrinsic connection between several adja-
cent bits, Zhang et al. [16] added multiple one-dimensional convolutional layers
with different kernel sizes in front of the residual block according to the circular
shift operation in the round function of Speck32/64 and Simon32/64. In this
paper, we improved Zhang et al.’s neural network to fit with the round function
of Simeck to improve the accuracy of the NDs, the framework shown in Fig. 2.

Initial Convolution (Module 1). The input layer is connected to the initial
convolutional layer, which comprises two convolutional layers with Nf channels
of kernel sizes 1 and 5. The two convolution layers are concatenated at the chan-
nel dimension. Batch normalization is applied to the output of the concatenate
layers. Finally, rectifier nonlinearity is applied to the output of batch normaliza-
tion, and the resulting [m,ω, 2Nf] matrix is passed to the convolutional blocks
layer where m = 8, ω = 16 and Nf = 32.

Convolutional Blocks (Module 2). Each convolutional block consists of two
layers of 2Nf filters. Each block applies first the convolution with kernel size

Output

Module 3

Module 2

Module 2

Module 1

Input

F (·)

f(·)
Module 1

Conv, 1, Nf Conv, 5, Nf

Concatenate, 2Nf

BN

Relu

Module 2

ks = ks + 2

Conv, ks, 2Nf

BN

Relu

Conv, ks, 2Nf

BN

Relu

⊕

Module 3

FC, d1

BN

Relu

FC, d2

BN

Relu

Output

FC, 1

Sigmod

Fig. 2. The network architecture for Simeck32/64

ks, then a batch normalization, and finally a rectifier layer. At the end of the
convolutional block, a skip connection is added to the output of the final rec-
tifier layer of the block to the input of the convolutional block. It transfers the
result to the next block. After each convolutional block, the kernel size ks in-
creases by 2 where ks = 3. The number of convolutional blocks is 5 in our model.

Prediction Head (Module 3 and Output). The prediction head consists of
two hidden layers and one output unit. The three fully connected layers comprise
d1, d2 units, followed by the batch normalization and rectifier layers where d1 =
512 and d2 = 64. The final layer consists of a single output unit using the
Sigmoid activation function.

3.3 The Training method of Differential-Neural Distinguisher

The accuracy is the most critical indicator reflecting the performance of the neu-
ral distinguisher. The following training method was carried out to verify the
performance of our NDs.

Basic Training Scheme. We run the training for 20 epochs on the dataset for
N = 2∗107 and M = 2∗106. We set the batch size to 30000 and used Mirrored-
Strategy of TensorFlow to distribute it equally among the 6 GPUs. Optimization
was performed against mean square error loss plus a small penalty based on L2
weights regularization parameter c = 10−5 using the Adam algorithm [11]. A
cyclic learning rate schedule was applied, setting the learning rate li for epoch i

to li = α+ (n−i) mod (n+1)
n · (β−α) with α = 10−4, β = 2×10−3 and n = 9. The

networks obtained at the end of each epoch were stored, and the best network
by validation loss was evaluated against a test set.

Training using the Staged Train Method. We use several stages of pre-
training to train an r-round ND for Simeck. First, we use our (r−1)-round dis-
tinguisher to recognize (r− 3)-round Simeck with the input difference (0x0140,
0x0080) (the most likely difference to appear three rounds after the input differ-
ence (0x0000, 0x0040). The training was done on 2 ∗ 107 instances for 10 epochs
with a cyclic learning rate schedule (2×10−3, 10−4). Then we trained the distin-
guisher to recognize r-round Simeck with the input difference (0x0000, 0x0040)
by processing 2 ∗ 107 freshly generated instances for 10 epochs with a cyclic
learning rate schedule (10−4, 10−5). Finally, the learning rate was dropped to
10−5 after processing another 2 ∗ 107 new instances for 10 epochs.

3.4 Compared Result

We presented the state-of-the-art NDs for Simeck32/ 64. Meanwhile, we calcu-
late the DDs for Simeck32/64 triggered by the input difference (0x0000, 0x0040)
up to 13 rounds to give baselines for NDs (see Table 2). This is accomplished
through the use of the frameworks of Gohr’s implementation for Speck32/64
and Bao et al.’s implementation for Simon32/64. The calculation is feasible on
Simeck32/64 but quite expensive. In fact, the calculation took about 939 core-
days of computation time and yielded about 34 gigabytes of distribution data
for each round, which was saved on disk for further studies.

Table 2. Accuracy of theDDs for Simeck32/64 with input difference (0x0000, 0x0040).
Combined means that the corresponding single pair distinguisher was used by combin-
ing the scores under independence assumption. For this, 2×106 samples, each consisting
of the given number of pairs m, were used to evaluating the accuracy.

R

m
1 2 4 8 16 32 64 128 256

7 0.9040 0.9765 0.9936 0.9996 1.0 1.0 1.0 1.0 1.0

8 0.7105 0.7921 0.8786 0.9518 0.9907 0.9995 1.0 1.0 1.0

9 0.5738 0.6097 0.6590 0.7221 0.8011 0.8848 0.9554 0.9919 0.9998

10 0.5194 0.5299 0.5462 0.5677 0.5984 0.6403 0.6977 0.7690 0.8517

11 0.5044 0.5068 0.5109 0.5176 0.5247 0.5364 0.5530 0.5761 0.6085

12 0.5010 0.5017 0.5025 0.5039 0.5055 0.5083 0.5121 0.5176 0.5259

13 0.5002 0.5001 0.5007 0.5009 0.5012 0.5016 0.5032 0.5039 0.5086

It is important to note that when multiple ciphertext pairs are used as a
sample in the NDs, comparing the accuracy of the DDs computed with a single
ciphertext pair as a sample is not fair. Actually, the accuracy of the DDs with
multiple ciphertext pairs per sample can be calculated. This calculation is im-
plicitly used by Gohr in [8], and later Gohr et al. [9] explicitly proposed rules for
combining probabilities/distinguisher responses (see Corollary 2 in [9]). One can
use this rule to explicitly convert a distinguisher for one ciphertext pair into one
for an arbitrary number of ciphertext pairs. Algorithm 2 gives the pseudo-code
for computing this distinguisher, and the results are shown in Table 2.

Algorithm 2: Convert the DD for one ciphertext pair into one for an
m number of ciphertext pairs.

Input: DDT: the R round DDT table; N : the number of samples for single
ciphertext pairs; m: the combined number of ciphertext pairs for one
sample.

Output: the combined Acc, TPR, TNR with m ciphertext pairs.
1 Y ← {}
2 for i = 1 to N do
3 Y[i ∗m] ← random{0, 1}
4 for j = 1 to m− 1 do
5 Y[i ∗m− j] ← Y[i ∗m]
6 end
7 end
8 Randomly generate N ∗m samples [x1, x2, · · · , xN∗m] according to Y
9 Z ← {}

10 for i = 1 to N ∗m do
11 Z[i] ← DDT[xi]
12 end
13 Z ← Z / (Z+2−32)
14 Z ← mean(Z.reshape(N ,m), axis=1)
15 predict_Y ← {}
16 for i = 1 to N ∗m do
17 if Z[i] > 0.5 then
18 predict_Y[i] ← 1
19 end
20 else
21 predict_Y[i] ← 0
22 end
23 end
24 calculate Acc, TPR, TNR based on (Y, predict_Y)
25 return Acc, TPR, TNR

/* In our experiments, N takes 220 when m no more than 210. */

In addition, r-round ND should be compared with (r− 1)-round DD. Since
the data fed to r-round ND is the value of the ciphertext, one can directly com-

pute the differences on (r − 1)-round outputs without knowing the subkey. The
results are represented in Table 3, which shows that we improved the accuracy of
the NDs for Simeck32/64. More importantly, it is able to surpass the accuracy
of DDs for 9- and 10-round.

Table 3. Comparison of NDs on Simeck32/64 with 8 ciphertext pairs as a sample.
The input difference of ND/DD is (0x0000, 0x0040). *: The staged training method is
used to train ND.

R Attack Network Acc TPR TNR Ref.

9
DD DDT 0.9518 0.9604 0.9433 Sect. 3

ND SE-ResNet 0.9952 0.9989 0.9914 [12]

ND Inception 0.9954 0.9986 0.9920 Sect. 3

10
DD DDT 0.7221 0.7126 0.7316 Sect. 3

ND SE-ResNet 0.7354 0.7207 0.7501 [12]

ND Inception 0.7371 0.7165 0.7525 Sect. 3

11

DD DDT 0.5677 0.5416 0.5940 Sect. 3

ND SE-ResNet 0.5646 0.5356 0.5936 [12]

ND Inception 0.5657 0.5363 0.5954 Sect. 3

ND Inception 0.5666? 0.5441 0.5895 Sect. 3

12
DD DDT 0.5176 0.4737 0.5615 Sect. 3

ND SE-ResNet 0.5146? 0.4770 0.5522 [12]

ND Inception 0.5161? 0.4807 0.5504 Sect. 3

4 Neutral bits and Wrong Key Response Profile

In Sect. 3, we provided the state-of-the-art NDs for Simeck32/64, which use to
perform better key recovery attacks in the following section. In [8], Gohr provides
a framework of (1+s+r+1)-round key recovery attack (refer to Appendix A.1)
consisting of three techniques to increase the success rate and speed up the at-
tacks, where s is the length of the CD, and r is the length of the ND. Here is a
description of these techniques.

Neutral Bits. In the key recovery attack, multiple samples (formed into a ci-
phertext structure) decrypted by the guessed subkey are predicted using the
distinguisher. Then, the multiple scores are combined according to formula vk =∑nb

i=1
Zk

i/1−Zk
i as the final score of that guessed subkey to reduce the misjudgment

rate of the ND. Since the CD suspended in front of the ND are probabilistic, re-
sulting in sample entering the distinguisher not satisfying the same distribution.

Multiple samples generated by neutral bits will have the same distribution. Also,
the lower the accuracy of the distinguisher, the more neutral bits are needed.

Priority of Ciphertext Structure. Spending the same amount of compu-
tation on every ciphertext structure is inefficient. Gohr used a generic method
(automatic exploitation versus exploration tradeoff based on Upper Confidence
Bounds) to focus the key search on the most promising ciphertext structures.
The priority score of each ciphertext structure is si = ωimax +

√
nc ·

√
log2(j)/ni

where denote by ωimax the highest distinguisher score, ni the number of previous
iterations in which the ith ciphertext structure, j the number of the current
iteration and

√
nc the number of ciphertext structures available.

Wrong Key Response Profile. The key search policy based on Bayesian Op-
timization drastically reduces the number of trial decryptions. The basic idea
of this policy is the wrong key randomization hypothesis. This hypothesis does
not hold when only one round of trial decryption is performed, especially in a
lightweight cipher. The expected response of the ND upon wrong-key decryp-
tion will depend on the bitwise difference between the trial and real keys. This
wrong-key response profile can be captured in a precomputation. Give some
trial decryptions, the optimization step then trials to come up with a new set
of candidate keys to try. These new candidate keys are chosen to maximize the
probability of the observed distinguisher responses.

4.1 Exploring Neutral Bits

To be able to attack more rounds with the ND, the CD is generally prepended
in front of the ND. For the resulting HD used in the key recovery attack, it is
not straightforward to aggregate enough samples of the same distribution fed to
the ND due to the prepended CD. To overcome this problem, Gohr [8] used the
neutral bits of the CD. The more neutral bits there are for the prepended CD, the
more samples of the same distribution could be generated for the ND. However,
generally, the longer the CD, the fewer the neutral bits. Finding enough neutral
bits for prepending a long CD over a weak ND becomes a difficult problem for
devising a key recovery to cover more rounds. To solve this problem, Bao et al.
exploited various generalized NBs to make weak ND usable again. Particularly,
they employed conditional simultaneous neutral bit-sets (CSNBS) and switching
bits for adjoining differentials (SBfAD), which are essential for achieving efficient
12-round and practical 13-round attacks for Speck32/64.

Thus, the first part of the key recovery attack focuses on finding various
types of neutral bits. Given a differential, in order to find the neutral bits, it is
generally divided into two steps: firstly, collect enough conforming pairs (correct
pairs); secondly, flip the target bits of the conforming pair, or flip all the bits
contained in the target set of bits, and check the probability that the new plain-
text pair is still the conforming pair.

Finding SNBSs for 3-round Differential. For the prepended 3-round CD
(0x0140, 0x0200) → (0x0000, 0x0040) on top of the NDs, one can experimen-
tally obtain 14 deterministic NBs and 2 SNBSs (simultaneously complementing
up to 4 bits) using an exhaustive search. Concretely, for the 3-round differential
(0x0140, 0x0200) → (0x0000, 0x0040), (simultaneous-) neutral bits and bit-sets
are [3], [4], [5], [7], [8], [9], [13], [14], [15], [18], [20], [22], [24], [30], [0, 31], [10, 25].

Finding SNBSs for 4-round Differential. For the prepended 4-round CD
(0x0300, 0x0440) → (0x0000, 0x0040) on top of the NDs, there are 7 com-
plete NB/SNBS: [2], [4], [6], [8], [14], [9, 24], [9, 10, 25]. Still, the numbers of
NBs/SNBSs are not enough for appending a weak neural network distinguisher.
Thus, conditional ones were searched using Algorithm 3 in paper [4], and the
obtained CSNBSs and their conditions are summarized together in Table 4.

Table 4. CSNBS for 4-round Classical Differential (0x0300, 0x0440) →
(0x0000, 0x0040) of Simeck32/64

Bit-set C. Bit-set C.

x[0, 10] x[2, 12]

[21] 00 [23] 00
[21, 5] 10 [23, 12] 10
[21, 10] 01 [23, 7] 01
[21, 10, 5] 11 [23, 12, 7] 11

C.: Condition on x[i, j], e.g., x[i, j] = 10 means x[i] = 1 and x[j] = 0.

4.2 Wrong Key Response Profile

To calculate the r-round wrong key response profile, we generated 3000 random
keys and multiple input pairs {(Pi,0, Pi,1), i ∈ [0,m − 1]} for each difference
δ ∈ (0, 216) and encrypted for r+1 rounds to obtain ciphertexts {(Ci,0, Ci,1), i ∈
[0,m − 1]}, where Pi,0 ⊕ Pi,1 = ∆. Denoting the final real subkey of each
encryption operation by k, we then performed single-round decryption to get
E−1k⊕δ({Ci,0, i ∈ [0,m − 1]}), E−1k⊕δ({Ci,1, i ∈ [0,m − 1]}) and had the resulting
partially decrypted ciphertext pair rated by an r-round ND. µδ and σδ were
then calculated as empirical mean and standard deviation over these 3000 trials.
We call the r-round wrong key response profile WKRPr. From the wrong key
Response Profile, we can find some rules to speed up the key recovery attack.

• Analysis of WKRP9. In Figure 3a, when the difference between guessed
key and real key δ is greater than 16384, the score of the distinguisher is
close to 0. This phenomenon indicates that the score of the distinguisher
is very low when the 14-th and 15-th bit is guessed incorrectly. When δ ∈
{2048, 4096, 8192, 10240, 12288, 14436}, the score of the distinguisher is greater

than 0.6. This indicates that when the 11-th, 12-th, and 13-th bits are guessed
incorrectly, it has little effect on the score of the distinguisher.

• Analysis of WKRP10 and WKRP11. It is clear from Figure 3b that
when the δ is greater than 32768, the score of the distinguisher is less than
0.45, i.e., the 15-th bit has a greater impact on the distinguisher score. When
δ ∈ {4096, 8192, 12288}, the score of the distinguisher is close to 0.55. This
indicates that when the 12-th and 13-th bits are guessed incorrectly, it has
little effect on the score of the distinguisher. It can also be observed from
Figure 3c that the 12-th and 13-th bits have less influence on the score of
the distinguisher, and the 14-th and 15-th bits have more influence on the
score of the distinguisher.

• Analysis of WKRP12. Despite the small difference in scores in Figure 3d,
it was found that when only the 12-th and 13-th bits are wrongly guessed,
the score of the distinguisher is still higher than the other positions.

(a) WKRP9 (b) WKRP10

(c) WKRP11 (d) WKRP12

Fig. 3. Wrong Key Response Profile for Simeck32/64.

From the four wrong key response profiles, we can conclude that when the
14-th and 15-th bit subkeys are guessed incorrectly, it has a greater impact on
the score of the distinguisher; when the 12-th and 13-th bit subkeys are guessed
incorrectly, it has a smaller impact on the score of the distinguisher. According
to these phenomena, we can speed up the key recovery attack.

• Guess the 14-th and 15-th bit subkeys. Since the difference between
the score of the distinguisher of bits 14 and 15 in the case of correct and
incorrect guesses is relatively large, we can first determine the values of these
two bits. Before performing a Bayesian key search, a random set of subkeys
is guessed, then the 14-th and 15-th bits of the subkeys are traversed, and
the ciphertext is decrypted using the subkeys. Thus, the values of the 14-th
and 15-th bits can be determined based on the score of the distinguisher.
The Bayesian key search algorithm can easily recover these two bits even if
the values of these two bits are not determined in advance.

• Ignore the 12-th and 13-th bit subkeys. Since the 12-th and 13-th bit
subkeys have less influence on the score of the distinguisher, we first set
these two bits to 0 when generating the first batch of candidate subkeys and
then randomize the values of the two bits after completing the Bayesian key
sorting and recommending the new candidate subkeys. Previous researchers
have also exploited this feature to accelerate key recovery attacks, and the
14-th and 15-th bit subkeys have little impact on the score of the distin-
guisher when guessed incorrectly for Speck32/64 and Simon32/64[4,8,16].
The Bayesian key search algorithm considering insensitive key bits is shown
in Algorithm 3.

5 Practical Key Recovery Attack

When a fast graphics card is used, the performance of the implementation is not
limited by the speed of neural network evaluation but by the total number of
iterations on the ciphertext structures. We count a key guess as successful if the
sum of the Hamming weights of the differences between the returned last two
subkeys and the real two subkeys are at most two. The experimental parameters
for key recovery attacks are denoted as follows.

1. ncts: the number of ciphertext structure.
2. nb: the number of ciphertext pairs in each ciphertext structures.
3. nit: the total number of iterations on the ciphertext structures.
4. c1 and c2: the cutoffs with respect to the scores of the recommended last

subkey and second to last subkey, respectively.
5. nbyit1, ncand1 and nbyit2, ncand2: the number of iterations and number of key

candidates within each iteration in the BayesianKeySearch Algorithm for
guessing each of the last and the second to last subkeys, respectively.

Algorithm 3: BayesianKeySearch Algorithm For Simeck32/64.
Input: Ciphertext structure C := {C0, · · · , Cnb−1}, a neural distinguisher

ND, and its wrong key response profile µ and σ, the number of
candidates to be generated within each iteration ncand, the number of
iterations nbyit

Output: The list L of tuples of recommended keys and their scores
1 S := {k0, k1, · · · , kncand−1} ← choose ncand values at random without

replacement from the set of all subkey candidates
2 S = S & 0xCFFF
3 L← {}
4 for t = 1 to nbyit do
5 for ∀ki ∈ S do
6 for j = 0 to nb − 1 do
7 C

′
j,ki

= F−1
ki

(Cj)

8 vj,ki = ND(C
′
j,ki

)
9 sj,ki = log2(vj,ki/(1− vj,ki))

10 end
11 ski =

∑nb−1
j=0 sj,ki ; /* the combined score of ki using neutral

bits. */
12 L← L‖(ki, ski);
13 mki =

∑nb−1
j=0 vj,ki/nb

14 end
15 for k ∈ {0, 1, · · · , 216 − 1} & 0xCFFF do
16 λk =

∑ncand−1
i=0 (mki − µki⊕k)

2/σ2
ki⊕k; /* using wrong key response

profile. */
17 end
18 S ← argsortk(λ)[0 : ncand − 1];
19 r := {r0, r1, · · · , rncand−1} ← choose ncand values at (0, 4) at random
20 r = r << 12; /* Randomize the 12-th and 13-th bit subkeys. */
21 S = S ⊕ r
22 end
23 return L

5.1 Complexity Calculation

Theoretical Data Complexity. The theoretical data complexity of the exper-
iment is calculated by the formula nb × nct ×m × 2. In the actual experiment,
when the accuracy of the ND is high, the key can be recovered quickly and suc-
cessfully. Not all the ciphertext structure is used, so the actual data complexity
is lower than the theoretical.

Experimental Time Complexity. The time complexity calculation formula
in our experiments is 226.693 × rt × log1−sr 0.01, which is borrowed from [16].
Our device can perform 226.693 1-round decryption per second. rt is the average
running time of multiple experiments. The success rate sr is the number of suc-
cessfully recovered subkeys divided by the number of experiments. We calculate
how many experiments need to be performed to ensure at least one successful
experiment. When the overall success rate is 99%, we consider the experiment
to be successful, and the number of experiments ne is: 1− (1−sr)ne = 0.99, i.e.,
log1−sr 0.01.

5.2 Key Recovery Attack on 15-round Simeck32/64

Experiment 1: The components of key recovery attack ASimeck15R of 15-round
Simeck32/64 are as follows.

1. 3-round CD (0x0140, 0x0200)→ (0x0000, 0x0040).
2. neutral bits of generating multiple ciphertext pairs: [3], [4], [5].
3. neutral bits of combined response of neural distinguisher: [7], [8], [9], [13], [14],

[15], [18], [20].
4. 10-round neural distinguisher NDSimeck10R and wrong key response profiles
NDSimon10R · µ and NDSimeck10R · δ.

5. 9-round distinguisherNDSimeck9R and wrong key response profilesNDSimon9R ·
µ and NDSimeck9R · δ.

Concrete parameters used in our 15-round key recovery attack ASimeck15R are
listed as follows.

m = 8 nb = 28 ncts = 210 nit = 211

c1 = 10 c2 = 10 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

The theoretical data complexity is m×nb×ncts×2 = 222 plaintexts. The ac-
tual data complexity is 219.621. In total, 120 trials are running and 119 successful
trials. Thus, the success rate sr is 99.17%. The average running time of the exper-
iment rt is 407.901s. The time complexity is 226.693× rt× log1−sr 0.01 = 235.309.

5.3 Key Recovery Attack on 16-round Simeck32/64

Experiment 2: The components of key recovery attack ASimeck16R of 16-round
Simeck32/64 are shown as follows.

1. 3-round CD (0x0140, 0x0200)→ (0x0000, 0x0040).
2. neutral bits of generating multiple ciphertext pairs: [3], [4], [5].
3. neutral bits of combined response of neural distinguisher: [7], [8], [9], [13], [14],

[15], [18], [20], [22], [24].
4. 11-round neural distinguisher NDSimeck11R and wrong key response profiles
NDSimeck11R · µ and NDSimeck11R · δ.

5. 10-round neural distinguisher NDSimeck10R and wrong key response profiles
NDSimeck10R · µ and NDSimeck10R · δ.

Concrete parameters used in our 16-round key recovery attack ASimeck16R are
listed as follows.

m = 8 nb = 210 ncts = 210 nit = 211

c1 = 10 c2 = 10 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

The theoretical data complexity is m × nb × ncts × 2 = 224 plaintexts. The
actual data complexity is 222.788. We use 6 processes, each running 20 experi-
ments. Since the memory limit was exceeded during the experiment, one process
was killed, leaving 100 experiments, 100 of which successfully recovered the key.
Thus, the success rate sr is 100%. The average running time of the experiment
rt is 2889.648s. The time complexity is 226.693 × rt = 238.189.

5.4 Key Recovery Attack on 17-round Simeck32/64

Experiment 3: The components of key recovery attack ASimeck17R of 17-round
Simeck32/64 are shown as follows.

1. 3-round CD (0x0140, 0x0200)→ (0x0000, 0x0040).
2. neutral bits of generating multiple ciphertext pairs: [3], [4], [5].
3. neutral bits of combined response of neural distinguisher: [7], [8], [9], [13], [14],

[15], [18], [20], [22], [24], [30], [0, 31].
4. 12-round neural distinguisher NDSimeck12R and wrong key response profiles
NDSimeck12R · µ and NDSimeck12R · δ.

5. 11-round neural distinguisher NDSimeck11R and wrong key response profiles
NDSimeck11R · µ and NDSimeck11R · δ.

Concrete parameters used in our 17-round key recovery attack ASimeck17R are
listed as follows.

m = 8 nb = 212 ncts = 210 nit = 211

c1 = 20 c2 = −120 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

The theoretical data complexity is m × nb × ncts × 2 = 226 plaintexts. The
actual data complexity is 225.935. In total, trials are 50 running, and there are
15 successful trials. Thus, the success rate sr is 30%. The average running
time of the experiment rt is 25774.822s. The time complexity is 226.693 × rt ×
log1−sr 0.01 = 245.037.

Remark 1. There are two reasons why we do not launch a 17-round key recovery
attack using a 4-round CD and an 11-round ND. One is that the probability
of the 4-round CD (0x0300, 0x0440)→ (0x0000, 0x0040) is about 212 (the prob-
ability of the 3-round CD (0x0140, 0x0200) → (0x0000, 0x0040) is about 2−8),
resulting in too much data required, and the second is that there are not enough
neutral bits in the 4-round CD.

6 Conclusion

In this paper, we show practical key recovery attacks up to 17 rounds of Simeck
32/64, raising the technical level of practical attacks by two rounds. We design
neural network that fits with the round function of Simeck to improve the ac-
curacy of the neural distinguishers, and is able to outperform the DDT-based
distinguisher in some rounds. To launch more rounds of the key recovery attack,
we make a concerted effort on the classical differential and the neural distin-
guisher to make both modules good. In addition, we optimize the key recovery
attack process by deeply analyzing the wrong key response profile, thus reducing
the complexity of the key recovery attack.

References

1. Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit, R.: Ace: An authenticated
encryption and hash algorithm. Submission to NIST-LWC (announced as round 2
candidate on August 30, 2019) (2019)

2. AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., Rohit, R.: Spoc:
an authenticated cipher submission to the nist lwc competition (2019)

3. AlTawy, R., Gong, G., He, M., Mandal, K., Rohit, R.: Spix: An authenticated
cipher submission to the nist lwc competition. Submitted to NIST Lightweight
Standardization Process (2019)

4. Bao, Z., Guo, J., Liu, M., Ma, L., Tu, Y.: Enhancing differential-neural cryptanal-
ysis. In: International Conference on the Theory and Application of Cryptology
and Information Security. Springer (2022)

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The simon and speck lightweight block ciphers. In: Proceedings of the 52nd annual
design automation conference. pp. 1–6 (2015)

6. Bellini, E., Gerault, D., Hambitzer, A., Rossi, M.: A cipher-agnostic neural train-
ing pipeline with automated finding of good input differences. Cryptology ePrint
Archive (2022)

7. Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine
learning-based cryptanalysis. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 805–835. Springer (2021)

8. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In:
Annual International Cryptology Conference. pp. 150–179. Springer (2019)

9. Gohr, A., Leander, G., Neumann, P.: An assessment of differential-neural distin-
guishers. Cryptology ePrint Archive (2022)

10. Hou, Z., Ren, J., Chen, S.: Improve neural distinguishers of simon and speck.
Security and Communication Networks 2021 (2021)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Lu, J., Liu, G., Liu, Y., Sun, B., Li, C., Liu, L.: Improved neural distinguishers
with (related-key) differentials: Applications in simon and simeck. arXiv preprint
arXiv:2201.03767 (2022)

13. Lyu, L., Tu, Y., Zhang, Y.: Deep learning assisted key recovery attack for round-
reduced simeck32/64. In: International Conference on Information Security. pp.
443–463. Springer (2022)

14. Yadav, T., Kumar, M.: Differential-ml distinguisher: Machine learning based
generic extension for differential cryptanalysis. In: International Conference on
Cryptology and Information Security in Latin America. pp. 191–212. Springer
(2021)

15. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The simeck family of
lightweight block ciphers. In: International Workshop on Cryptographic Hardware
and Embedded Systems. pp. 307–329. Springer (2015)

16. Zhang, L., Wang, Z., Wang, B.: Improving differential-neural cryptanalysis with
inception blocks. Cryptology ePrint Archive (2022)

A Appendix

A.1 Procedure of (1 + s + r + 1)-round key recovery attack

The attack procedure is as follows.

1. Initialize variables Gbestkey ← (None, None), Gbestscore ← −∞.
2. Generate ncts random plaintext pairs with difference ∆P .
3. Using ncts plaintext pairs and log2m neutral bit with probability one to

generate ncts multiple plaintext pairs. Every multiple plaintext pairs have
m plaintext pairs.

4. From the ncts multiple plaintext pairs, generate ncts plaintext structures
using nb generalized neutral bit.

5. Decrypt one round using zero as the subkey for all multiple plaintext pairs
in the structures and obtain ncts plaintext structure.

6. Query for the ciphertexts under (1 + s + r + 1)-round Simeck32/64 of the
ncts × nb × 2 plaintext structures, thus obtain ncts ciphertext structures,
denoted by {C1, . . . , Cncts

}.
7. Initialize an array ωmax and an array nvisit to record the highest distinguisher

score obtained so far and the number of visits have received in the last subkey
search for the ciphertext structures.

8. Initialize variables bestscore ← −∞, bestkey ← (None, None), bestpos ←
None to record the best score, the corresponding best recommended values
for the two subkeys obtained among all ciphertext structures and the index
of this ciphertext structures.

9. For j from 1 to nit:
(a) Compute the priority of each of the ciphertext structures as follows:

si = ωmaxi + α ·
√

log2 j/nvisiti, for i ∈ {1, . . . , ncts}, and α =
√
ncts;

The formula of priority is designed according to a general method in
reinforcement learning for achieving automatic exploitation versus ex-
ploration trade-off based on Upper Confidence Bounds. It is motivated
to focus the key search on the most promising ciphertext structures [8].

(b) Pick the ciphertext structure with the highest priority score for further
processing in this j-th iteration, denote it by C, and its index by idx,
nvisitidx ← nvisitidx + 1.

(c) Run BayesianKeySearch Algorithm [8] with C, the r-round neural
distinguisher NDr and its wrong key response profile NDr ·µ and NDr ·
σ, ncand1, and nbyit1 as input parameters; obtain the output, that is a
list L1 of nbyit1 × ncand1 candidate values for the last subkey and their
scores, i.e., L1 = {(g1i, v1i) : i ∈ {1, . . . , nbyit1 × ncand1}}.

(d) Find the maximum v1max among v1i in L1, if v1max > ωmaxidx, ωmaxidx ←
v1max.

(e) For each of recommended last subkey g1i ∈ L1, if the score v1i > c1,
i. Decrypt the ciphertext in C using the g1i by one round and obtain

the ciphertext structures C′ of (1 + s+ r)-round Simeck32/64.

ii. Run BayesianKeySearch Algorithm [8] with C′ , the neural dis-
tinguisher NDr−1 and its wrong key response profile NDr−1 ·µ and
NDr−1 ·σ, ncand2, and nbyit2 as input parameters; obtain the output,
that is a list L2 of nbyit2×ncand2 candidate values for the last subkey
and their scores, i.e., L2 = {(g2i, v2i) : i ∈ {1, . . . , nbyit2 × ncand2}}.

iii. Find the maximum v2i and the corresponding g2i in L2, and denote
them by v2max and g2max.

iv. If v2max > bestscore, update bestscore ← v2max, bestkey ← (g1i,
g2max), bestpos ← idx.

(f) If bestscore > c2, go to Step 10.
10. Make a final improvement using VerifierSearch [8] on the value of bestkey

by examining whether the scores of a set of keys obtained by changing at
most 2 bits on top of the incrementally updated bestkey could be improved
recursively until no improvement obtained, update bestscore to the best score
in the final improvement; If bestscore > Gbestscore, update Gbestscore ←
bestscore, Gbestkey ← bestkey.

11. Return Gbestkey, Gbestscore.

	Improved Differential-neural Cryptanalysis for Round-reduced Simeck32/64

