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Abstract Accurately predicting the Remaining Useful Life
(RUL) of lithium-ion batteries is crucial for battery
management systems. Deep learning-based methods have been
shown to be effective in predicting RUL by leveraging battery
capacity time series data. However, the representation learning
of features such as long-distance sequence dependencies and
mutations in capacity time series still needs to be improved. To
address this challenge, this paper proposes a novel deep
learning model, the MLP-Mixer and Mixture of Expert
(MMMe) model, for RUL prediction. The MMMe model
leverages the Gated Recurrent Unit and Multi-Head Attention
mechanism to encode the sequential data of battery capacity to
capture the temporal features and a re-zero MLP-Mixer model
to capture the high-level features. Additionally, we devise an
ensemble predictor based on a Mixture-of-Experts (MoE)
architecture to generate reliable RUL predictions. The
experimental results on public datasets demonstrate that our
proposed model significantly outperforms other existing
methods, providing more reliable and precise RUL predictions
while also accurately tracking the capacity degradation process.
Our code and dataset are available at the website of github.

Keywords lithium-ion battery, remaining useful life, deep
learning, MLP-Mixer, mixture-of-experts

1 Introduction

Lithium-Ion Batteries (LIBs) have been widely used in various
applications, such as Electric Vehicles (EVs), Automated
Guided Vehicles (AGVs), and aerospace, owing to their
outstanding characteristics, including high energy density,
long service life, and low self-discharge rate [1]. However, the
performance of LIBs gradually deteriorates as they age, when
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the maximum discharging capacity of a LIB degrades to
70%—80% of its rated capacity, the LIB reaches its End-of-
Life (EOL). Using a battery beyond its EOL may cause
equipment failure or even catastrophic occurrences [2].
Therefore, to ensure the safety and reliability of battery-
powered systems, developing a method that accurately
estimates the Remaining Useful Life (RUL) of LIBs is
imperative to provide early warning of battery failure and
ensure reliable battery operation.

Over the past decade, there have been extensive approaches
to predicting RUL of Lithium-Ion Batteries (LIBs). Generally,
these methodologies can be divided into two main groups:
model-based methods and data-driven methods [3,4]. Model-
based methods construct mathematical or physical models
from measurement data to capture battery fading dynamics
[5,6]. These methods often require prior knowledge to
describe the internal physical-chemical reaction mechanisms
of the LIB, such as electrochemical models [7] and equivalent
circuit models [8], along with estimation/filtering observers
like Kalman filters [9], and particle filters [10,11] to determine
model parameters. However, due to the complex internal
reaction mechanism of batteries, it is difficult to establish a
robust mathematical or physical model under various working
conditions.

Recently, a plethora of data-driven solutions have emerged
in the literature, relying on statistical analysis or artificial
intelligence. Data-driven methods do not require prior
knowledge of LIBs but instead employ related data and select
suitable learning algorithms to directly model and predict
RUL [12]. Various data-driven techniques have been proposed
for RUL prediction, such as Support Vector Regression (SVR)
[13,14], Extreme Learning Machine (ELM) [15], and Wiener
process models [16]. The ever-growing availability of data
sources and computational resources has enabled the
advancement of deep learning techniques for RUL prediction,
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leading to exponential growth in the domain. Deep learning
methods accurately capture intricate and nonlinear
relationships between input and output. As a result, popular
deep learning architectures such as Convolutional Neural
Networks (CNNs) [17,18], Recurrent Neural Networks
(RNNs) [19,20], and Transformer [21] are extensively
employed in RUL prediction for LIBs. In particular, deep
learning methods based on CNNs utilize one-dimensional
convolutional neural networks to capture the relationship
between observed data and RUL [22]. However, their ability
to predict RUL is still limited, as they are not adept at
modeling long-range sequential dependencies in sensory data
[23].

A Recurrent Neural Network (RNN) is a classical deep
learning network that considers both the current input and past
hidden state as input. By accounting for the number of time
steps, RNN is capable of effectively storing information from
the past, making it well-suited for time-series analysis.
Recently, RUL prediction models based on RNN and its
variants, such as Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU), have received increasing
attention in the literature [24-27]. To improve the
performance of RNN-based models, the attention mechanism
has been incorporated into LSTM, leading to further
improvements in prediction accuracy [28].

Recently, several deep learning models based on Multi-
Layer Perceptron (MLP), including MLP-Mixer [29],
ResMLP [30], CycleMLP [31], and S2MLP [32], have
regained attention in the literature. The pioneering works
MLP-Mixer and ResMLP stack two types of MLP layers,
namely, token-mixing MLP and channel-mixing MLP,
alternately. The token-mixing MLP encodes spatial
information by interacting across all tokens, while the
channel-mixing MLP mixes information across all channels of
each token. The results of these studies have shown that MLP
can be comparable to the Transformer in computer vision
tasks, which has had a positive impact on the field and
encouraged researchers to apply MLP to RUL prediction.

Although deep learning-based methods have demonstrated
promising results in estimating the RUL, most methods
consider that each time step’s features hold equal importance.
It should be noted that certain early steps in the sequence may
carry more significant contributions to the final RUL
prediction [28]. When data with varying degrees of
contribution are treated with equal weights, it can potentially
restrict the model’s feature extraction capability. In light of
this, there is value in exploring methods that can effectively
handle the varying contributions of different time steps in the
RUL estimation.

In this paper, we propose a novel approach called MMMe
for the accurate prediction of the RUL of lithium-ion batteries.
Specifically, MMMe first captures sequence information of
the inputs through a Bi-directional Gated Recurrent Unit with
Multi-Head Attention (BiGRU-MHA). Subsequently, the
MLP-Mixer module is introduced, which allows for the
communication of learned features in both temporal and
channel directions. Additionally, an ensemble predictor based
on the Mixture-of-Expert architecture [33] is devised to

determine the RUL value. The experiments conducted show
that MMMe has achieved state-of-the-art results on two public
datasets, demonstrating the competitiveness of the proposed
approach for RUL prediction.

2 Problem formulation

Battery RUL refers to the estimated number of charging and
discharging cycles before a battery reaches its EOL. For
batteries, EOL is closely related to their capacity. On this
basis, this paper defines the RUL of the battery as the time
interval between the current moment and the time when the
State of Health (SOH) drops to 80% for the first time.

Data-driven methods for predicting the RUL aim to
establish a mapping model f between available data x related
to battery life and RUL y. Depending on the nature of x, there
are two problem formulations that can be further
distinguished. 1) x represents monitoring data that indirectly
correlates with RUL, such as current, voltage, temperature,
and other observables in each charging/discharging cycle. In
this case, f attempts to express the relationship between these
observables and RUL. 2) x represents the battery capacity time
series, i.e., x={c,cp,...,cr}, where k is the length of the
known time series fragment. Then the mapping f between x
and the future capacity time series fragment x’=
{Ck+15Ck+25--->Ck+m} are attempted to be established, where m
is the length of the unknown time series fragment to be
predicted. By the function x’ = f(x), x’ can be iteratively
updated by switching the predicted time series fragment into
the “known” time series fragment until a cg4, in the currently
predicted time series fragment reaches the EOL condition. At
this point, the RUL y can be estimated. This formulation
essentially transforms the RUL prediction into a time series
prediction.

In this paper, we address the RUL prediction based on deep
learning in the second problem formulation framework.
Historical data is first used to construct N sample pairs (x;, x7),
and then a deep neural network model is trained using these
labeled data. This allows one to use the optimized neural
network model to predict the battery capacity for future m
time steps and estimate the RUL given a fixed-length battery
capacity time series x.

3 Methodology

In this section, we introduce a deep learning framework called
MLP-Mixer with Mixture of Expert (MMMe) for predicting
RUL. The MMMe pipeline is illustrated in Fig. 1. The MMMe
framework begins with a Bi-directional Gated Recurrent Unit
(BiGRU) with Multi-Head Attention (MHA) block, which
aims to extract the temporal features X € R7*C from the input
battery sequences X € R7*P. The learned temporal features
X € RT*C enable the subsequent Mixer block to capture the
order of sequence data. Then, the MLP-Mixer block facilitates
communication between channel and temporal information by
employing two MLPs. Finally, the predicted RUL value is
generated by a Mixture-of-Experts (MoE) layer with a gating
function that combines the predictions from different
subnetworks (experts) based on the learned features from the
Mixer block.
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Fig. 1 Illustration of our proposed MMMe

3.1 Bi-GRU-MHA

A Bi-directional Gated Recurrent Unit with Multi-Head
Attention (BiGRU-MHA) is employed to effectively extract
features from battery sequence data. The BIGRU-MHA model
consists of two layers of Bi-directional Gated Recurrent Units
(BiGRU) and a multi-head attention mechanism. Given an M-
dimensional battery sequence data {x’lw ,x’z"’ ,. xf” ,. x’}” 1,
the GRU takes the input vector x; and the previous hidden
state h,_; to produce the current hidden state 4;. The following
equations demonstrate the detailed process in the GRU.

re=0Wexi+Urhi-y),

2 =0 Wyxi +Uzhiy), |
hy =tanh(W;,xt+U/‘1(Vt®ht—1)), 0
hy=1-2z)0h— +Z[®il,,

where the r; and z; represent the output of the update gate and
reset gate respectively. o and tanh denotes the activation
functions. BiGRU has the advantage of taking into account
both past and future information by propagating in both
directions, thus providing a better performance than the
traditional GRU. The output of BiGRU is denoted as

— «— = — .
O; = [h,,h,], which A, and h; represent the hidden state from
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forward and backward directions.

It has been shown that not all features have an equal impact
on the prediction of RUL [34]. To ensure the effectiveness and
distinguishability of input features in the prediction model,
Multi-Head Attention was employed to assign different
weights to different features. To clarify, the scaled-dot product
attention, as presented in Vaswani et al. [35], is defined as in
the following manner:

Attention(Q, K, V) = softmax( K" ) V.
o Vai | )

attentionmatrix

The scaled dot-product attention mechanism is capable of
modeling the inter-dependencies within input battery data
sequences. This attention mechanism maps a set of queries, Q,
a set of keys, K, and a set of values, V, into an output vector.

In multi-head attention, the input features are projected into
different subspaces to obtain different queries, keys, and
values in parallel £ times. The scaled-dot product attention is
then applied to each of the obtained queries, keys, and values.

MultiHead(Q, K, V) = Concat(heady,... ,headh)WO
where head; = Attention(QWZ, KWX, VW), (3)

3.2 Rezero MLP-Mixer module

The MLP-Mixer was initially developed for image
classification tasks but has since found applications in natural
language processing and speech recognition. In this study, a
novel variant of the MLP-Mixer is proposed for RUL
prediction tasks, called the Rezero MLP-Mixer. This variant
incorporates residual connections and zero initialization to
enhance the model’s performance.

Similar to the original MLP-Mixer architecture, the Rezero
MLP-Mixer comprises two MLP blocks: the Channel-mixing
MLP and the Temporal-mixing MLP, as shown in Fig. 2. The
Channel-mixing MLP enables the communication between
different feature channels within each time point, while the
Temporal-mixing MLP operates on the time dimension.
Suppose that X € RT*P represents the learned features
obtained by BiGRU-MHA. The Rezero MLP-Mixer can be
formulated as follows:

Z =X+ a; Wo,®(W;Norm(X)), 4)

Y =Z+ ay Wy O(W3Norm(2)). )

Norm and @ represent the LayerNorm and activate function.
W1, Wy, W3 and Wy denote the weights of the MLP. | and a»
are the learnable residual weight that rescales the contribution
of the MLP layer with respect to the input.

3.3 MoE predictor

The MoE predictor is comprised of two main components:
experts and gating. In this proposed approach, a single MLP is
not relied upon to predict RUL. Instead, multiple experts,
typically small MLPs, are used where each expert is trained to
predict the RUL value using different subsets of the input
features. The RUL predictions from the different experts are
then combined using a gating mechanism that adjusts the
contribution of each expert. The resulting formulation for the
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MoE predictor is presented in Eq. (6), and a visual MSE = 1 Z (P, —T)> )
representation of the architecture is provided in Fig. 3. This n& Lo

approach offers several advantages, such as reducing the risk
of overfitting and improving the generalization ability of the
model. Moreover, it allows for a more interpretable model, as
the contribution of each expert can be analyzed to gain insight
into the importance of different input features in predicting
RUL.

K
=D Gi0E(x), (6)
i=1

where K is the number of experts; G;(-) : R¢ — R is the gating
function and YK, Gi(x) = 1,0 < gn(x) < 1. Ei():RY > R? is
the i expert in learning RUL value based on the input
features. In this study, each expert is a two-layer MLP.

3.4 Learning

As the RUL prediction is treated as a regression task, the
Mean Squared Error (MSE) loss function is employed to guide
the model training. The MSE loss function is defined as
follows:

Gatings

Fig.3 Visualization of MoE predictor

Table 1 Detailed information of NASA dataset

where P is the prediction RUL value, and T corresponds to
the true value. n indicates the number of samples.

4 Experiments and results

4.1 Experimental data

This paper presents the results of experiments conducted on
two publicly available datasets: NASA and CALCE. The
NASA dataset, which is available from the NASA Ames
Research Center website, uses 18650 model lithium batteries
as the subject of study, with accelerated aging tests used to
collect data. The researchers controlled the conditions of
temperature, discharge cut-off voltage, and discharge current,
and collected records from four different groups of lithium
batteries (B0005, B0006, BO007, and B0018), each of which
was subjected to three repetitive operations of charging,
discharging, and impedance measurements. The detailed
specifications of the selected NASA lithium-ion batteries are
shown in Table 1. Similarly, the CALCE dataset is available
from the Center for Advanced Life Cycle Engineering
(CALCE) at the University of Maryland, with CS2 33,
CS2 34, CS2 35, CS2 36, CS2 37, and CS2 38 being the
selected batteries. The detailed specifications of the selected
CALCE Li-ion batteries are shown in Table 2. In this study,
the EOL for each battery was set to 70% of its rated capacity,
which is 1.40 Ah and 0.77 Ah for the NASA and CALCE
datasets, respectively. At the same time, the leave-one-out
method was used to partition the NASA dataset and the
CALCE dataset: one battery was randomly selected, and the
rest was used for training. Figures 4 and 5 present the capacity
degradation curves of the NASA and CALCE datasets,
respectively.

4.2 Baseline methods
The MMMe method used in this article was compared with
the following deep models:

- MLP [36]: This approach is based on MLP to predict

Battery Discharge current (A)  Rated capacity (Ah)  Charing/discharge cut-off voltage (V)  Minimal charge current (mA)  Failure threshold (Ah)
B0005 2 2 4.2/2.7 20 1.4
B0006 2 2 42/2.5 20 1.4
B0007 2 2 42/2.3 20 1.4
B0018 2 2 42/2.5 20 1.4




Lingling ZHAO et al.

Table 2 Detailed information of CALCE dataset
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Battery Discharge current (A)  Rated capacity (Ah)  Charing/Discharge cut-off voltage (V)  Minimal charge current (mA)  Failure threshold (Ah)
€S2 35 1.1 1.1 42/2.7 50 0.77
CS2_36 1.1 1.1 4.2/2.7 50 0.77
€S2 37 1.1 1.1 42/2.7 50 0.77
CS2 38 1.1 1.1 4227 50 0.77
. . . . (RMSE), and Mean Absolute Error (MAE). These metrics are
200 e B000S ] calculated as follows:
~-Q>1'?1\vf- === Do red true
sl \'”'\‘--"'"""}‘\'“Fr\ ——B0007 ] RE - |RULPrd — RUL™ | ®
% YN ‘({ R ---- B0018 - RU Ltrue >
< oIR8
Zef N "“\\'\:Qf“\. ]
] “ha e ~
§ 14 _________________\\\_\\E,i"‘.\.;‘;;\":_\#::_\__l_\_-s__ 2
Failure threshold L ‘\\“;\ )
1.2 A 1<
e , , ] MAE = - Y |lx, =% (10)
0 50 100 150 " ; =]
Discharge cycles In these equations, n denotes the length of battery degradation
Fig.4 NASA batterics capacity decay data trajectory; x; and X; are the corresponding capacity measured
and prediction values at the rth cycle, respectively. RULP™d
' ' ' ' ' ' and RUL"™® indicate the predicted and true value of RUL.
1.0+ %\n’l;%'&“:;% 1 4.4 Implementation details
i M The MMMe model proposed in this study was implemented
=08 e T T h-- e using PyTorch 1.11.0, with Adam utilized as the optimizer and
= lure threshold a learning rate of le-2 [21]. To prevent overfitting, the
% 0o R 1 MMMe model was trained for a maximum of 1000 epochs and
g 2 .
O o4l - CS2.36 ] early stopping technology was employed.T}.le hyper-
) ——CS2 37 parameters of the proposed model are presented in Table 3.
L CS2_38 1 All experiments were conducted on a single NVIDIA GeForce
‘ RTX 3090 GPU, while the CPU model used was the Intel(R)
0200 400 600 800 1000 Xeon(R) Gold 6226R CPU @ 2.90 GHz.
Discharge cycles
4.5 Comparison with the state-of-the-art approaches
Fig. 5 CALCE batteries capacity decay data Table 4 summarizes the comparison results of the proposed
MMMe model with the aforementioned methods on NASA
the RUL.

-RNN [37]: This baseline constructs the adaptive/
recurrent neural network model to predict the RUL.

- LSTM [19]: This method trains the LSTM with the
resilient mean square back-propagation method to
predict the RUL task.

- GRU [38]: This baseline is originally designed for the
SoC prediction task with the GRU model. Chen et.al
[21] change it to an RUL prediction task.

- Dual-LSTM [39]: The Dual-LSTM connects the
change point detection and RUL prediction with a
newly proposed HI construction function [39].

- DeTransformer [21]: DeTransformer employs a
Denoising Auto-Encoder to denoise the raw data and a
Transformer to learn the feature for capacity fading.

4.3 Evaluation metrics

In this paper, to thoroughly assess the effectiveness of the
selected model, three indicators have been chosen to evaluate
the performance of RUL prediction. The three evaluation
indicators are Relative Error (RE), Root Mean Squared Error

and CALCE datasets. It should be noted that we reported the
published results of the compared methods as we used the
same datasets and experimental settings. The best results are
shown in bold. It can be observed that MMMe outperforms
the other methods in all three metrics. For the NASA dataset,
MMMe achieves RE, MAE, and RMSE of 0.005, 0.04, and
0.0515, respectively, which significantly outperforms the
comparison methods under the same conditions. For the
CALCE dataset, the proposed method reduces RE, MAE, and
RMSE scores by at least 97.5%, 60.6%, and 56.6% compared

Table 3 Parameters used in MMMe

Parameters Settings
No. of GRU layer 2
Hidden dim of GRU 16
No. of the head of MHA 2
No. of Experts 32
No. of MLP-Mixer layer 2
Learning rate le-2
Early stopping patience 200
Max No. of training epochs 1000
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NASA CALCE

Methods

RE MAE RMSE RE MAE RMSE
MLP 0.3851 0.1379 0.1541 0.4018 0.1557 0.2038
RNN 0.2851 0.0749 0.0848 0.1614 0.0938 0.1099
LSTM 0.2648 0.0829 0.0905 0.0902 0.0582 0.0736
GRU 0.3044 0.0806 0.0921 0.1319 0.0671 0.0946
Dual-LSTM 0.2557 0.0815 0.0879 0.0885 0.0636 0.0874
DeTransformer 0.2252 0.0713 0.0802 0.0764 0.0613 0.0705
MMMe 0.005 0.04 0.0515 0.0019 0.0229 0.0306

to the second-best method. These results demonstrate that the
MMMe model provides a more accurate and robust RUL
prediction for lithium-ion batteries.

Figure 6 presents the RUL prediction results of MMMe and
DeTransformer on the NASA dataset, with the starting point
of prediction at 17. The results in Fig. 6 demonstrate that the
proposed MMMe’s prediction capacity degradation curve is
closer to the real one for each battery. Specifically, Figs. 6(a)
and 6(b) show the predicted capacity degradation curve and
the true curve for batteries BO005 and B0006, respectively. It
is evident that as the cycle increases, the predicted curve of
DeTransformer moves away from the real curve, whereas our
proposed method demonstrates better consistency between the
estimates and the actual capacity. This consistency leads to
accurate predictions of the RUL for each cycle. However, for
battery B0007, DeTransformer shows a complete divergence

Real ===+ MMMe == == DeTransformer

240 H T T T
| Prediction start point=17

1.6

Capacity (Ah)

Failure threshold

100

50 150
Discharge cycles
(a)
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=
O S CEELEEEEECEREE R,
2 1.6
g
&)

1.4 Fomm e e e e e el
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1‘2 1 1 1
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Discharge cycles

(©

phenomenon, possibly due to its different deterioration
characteristics from other batteries [40]. Nonetheless, the
proposed MMMe still tracks capacity degradation well.
Battery B0018 exhibits significant local regeneration during
capacity degradation, bringing challenges to RUL prediction.
In this case, MMMe still achieves higher accuracy than
DeTransformer, as shown in Fig. 6(d).

Figure 7 compares the predicted capacity degradation curve
of MMMe and DeTransformer for CALCE batteries with the
starting point of prediction at 65. The predictive results on the
CALCE dataset demonstrate that, apart from a few isolated
instances, the proposed model provides a predicted curve that
closely approximates the ground truth curve. Our method
demonstrates a remarkable capacity for accurately tracking the
degradation trend of battery capacity and for providing highly
precise RUL predictions. Conversely, the capacity curve
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Fig. 6 RUL prediction results of the proposed method for NASA dataset. (a) Battery B0005; (b) Battery B0006; (c) Battery B0007; (d) Battery

B0018
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Fig. 7 RUL prediction results of the proposed method for CALCE dataset. (a) Battery CS2_35; (b) Battery CS2_36; (c) Battery CS2_37; (d)

Battery CS2 38

tracking of the DeTransformer exhibits considerable deviation
from the ground truth curve, especially for the battery CS2 37
(as shown in Fig. 7(c)), and its RUL prediction errors are
likewise greater. This suggests that our deep learning model
exhibits superior feature extraction capabilities for capacity
time series compared to the comparative method. Furthermore,
upon comparison with the predictions on the NASA dataset, it
is evident that the MMMe model offers superior accuracy in
tracking capacity degradation. This may be attributed to the
fact that the batteries from the CALCE dataset seldom

4.6 Effect of number of experts

In this study, experiments were conducted on the NASA
dataset to examine the impact of the number of experts in the
Mixture-of-Experts (MoE) layer. Different models with
varying numbers of experts were compared, and the average
scores of RE, MAE, and RMSE were evaluated, as shown in
Fig. 8. It is evident that the scores generally increase and then
decrease as the number of experts increases. This pattern may
be attributed to the fact that increasing the number of experts
effectively increases the model capacity. However, when the

undergo regeneration, thereby reducing the prediction number of experts becomes too large, the model parameters
challenge. also increase, resulting in over-fitting.
0.030 | e 10.058
—@— RMSE o
0.025 |- MAE
10.056
m 0020 F 7%
[~ =
[=4
0.015 40.054
0.010
1 0.052
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# of Experts
Fig. 8 The RE, RMSE, and MAE of MMMe with a different number of experts
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Table 5 Results of ablation experiments

NASA CALCE

Methods

RE MAE RMSE RE MAE RMSE
BiGRU 0.3044 0.0806 0.0921 0.1319 0.0671 0.0946
BiGRU+MOoE 0.021 0.065 0.081 0.111 0.068 0.095
BiGRU+Mixer-MLP+MoE 0.076 0.077 0.102 0.008 0.053 0.066
BiGRU+MHA+MoE 0.031 0.058 0.084 0.009 0.023 0.039
MMMe 0.005 0.04 0.0515 0.0019 0.0229 0.0306
4.7 Ablation experiments Acknowledgements We are very grateful to the anonymous reviewers for

In this ablation experiment, the performance of a combined
model architecture that integrates the Gated Recurrent Unit
(GRU), Multi-Head Attention, MLP-Mixer, and Mixture of
Experts (MoE) predictor models are investigated. The
objective is to evaluate the impact of each component on
Lithium-ion battery RUL prediction tasks and assess the
overall performance gain achieved through their combination.
The evaluation will be based on the indicators of Relative
Error (RE), Mean Error (ME), and Root Mean Squared Error
(RMSE).

In order to prove the effectiveness of the strategy used in the
algorithm of this paper, five sets of ablation experiments are
conducted in this paper based on the proposed model,
including 1) BiGRU model, 2) BiGRU+MoE model,
3) BiGRU+Mixer-MLP+MoE model, 4) BIGRU+MHA-+MoE
model, 5) BiGRU+MHA-+Mixer-MLP+MoE model (this
algorithm). The results of the ablation experiments are shown
in Table 5.

The analysis of Table5 reveals the better predictive
capabilities of the proposed MMMe model, thereby validating
the substantial contributions made by its constituent
components: MHA, MoE, Mixer-MLP, and BiGRU. In
addition, the comparison between the “BiGRU” and
“BiGRU+MoE”  configurations demonstrates significant
improvements in RE, MAE, and RMSE across both datasets.
Particularly noteworthy is the 0.28 enhancement in RE
observed on the NASA dataset. Building upon the foundation
of “BiGRU+MoE”, the integration of Multi-Head Attention
and MLP-Mixer models in “BiGRU+Mixer-MLP+MoE” and
“BiGRU+MHA+MOoE”  respectively exhibits substantial
improvements in terms of RE, MAE, and RMSE on the
CALCE dataset. These findings affirm the effectiveness of the
combined architecture within the MMMe model.

5 Conclusion

This paper proposes a novel deep-learning model for
predicting the Remaining Useful Life (RUL) of Lithium-Ion
Batteries (LIBs). The proposed method first constructs a time
series matrix to preserve temporal information and projects the
original input into high-dimensional space using the Bi-
directional Gated Recurrent Unit with Multi-Head Attention
(BiGRU-MHA) encoder. To learn abstract features for
capacity fading, the ReZero MLP-Mixer is employed. Finally,
the Mixture-of-Experts (MoE) mechanism is utilized to predict
the RUL based on the learned features. Extensive experiments
conducted on two publicly available LIB datasets demonstrate
that the proposed MMMe method outperforms all baseline
methods for RUL prediction.
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