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Abstract Federated learning is a promising learning
paradigm that allows collaborative training of models across
multiple data owners without sharing their raw datasets. To
enhance privacy in federated learning, multi-party computation
can be leveraged for secure communication and computation
during model training. This survey provides a comprehensive
review on how to integrate mainstream multi-party
computation techniques into diverse federated learning setups
for guaranteed privacy, as well as the corresponding
optimization techniques to improve model accuracy and
training efficiency. We also pinpoint future directions to deploy
federated learning to a wider range of applications.

Keywords federated learning, multi-party computation,
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1 Introduction

Federated learning (FL) has emerged as a popular machine
learning paradigm which allows multiple data owners to train
models collaboratively without sharing their raw datasets
[1-4]. It holds potential for a wide spectrum of analytics
applications on sensitive data. For example, federated learning
has been applied on medical big data analysis such as disease
prediction and diagnosis without revealing the patients’
private medical information to third-party services [5]. It has
also been exploited by banks and insurance companies to train
an accurate machine learning model for risk assessment or
customer recommendation [6,7].

Federated learning enables collaborative model training
without sharing raw datasets among data owners by
decomposing the training procedure into local training and
model aggregation. Each data owner performs local training
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on its own data partition and only communicates intermediate
results e.g., gradients for model aggregation at either a
centralized server or other data owners. Federated learning
with a central server to coordinate the model aggregation is
called centralized FL [8,9], while model aggregation in a peer-
to-peer manner is known as decentralized FL [2,10].
Centralized FL imposes high computation workload to the
server, whereas decentralized FL involves excessive
communication among peers. Consequently, semi-centralized
FL [11-13] is recently proposed to balance the computation
and communication cost by conducting clustered or
hierarchical model aggregation.

We focus on federated learning with privacy guarantees.
Note that exchanging intermediate results e.g., gradients rather
than raw datasets may still leak privacy [14,15]. Accordingly,
extra techniques are compulsory for secure communication
and computation during federated learning. Of our particular
interest is multi-party computation, a generic and fundamental
category of techniques that takes multi-party private inputs for
aggregated computation without revealing the private data of
each party [16-18]. Common multi-party computation
techniques include garbled circuit, secret sharing,
homomorphic encryption, differential privacy, and so on.
Recent years have witnessed a surge to enhance the privacy of
federated learning via multi-party computation [19-25].

This survey aims at a comprehensive overview on federated
learning with privacy guarantees in the lens of multi-party
computation. We review which multi-party computation
schemes are suited for privacy protection in centralized,
decentralized, and semi-centralized federated learning. We
also discuss how to improve the accuracy and efficiency of
federated learning when adopting diverse multi-party
computation techniques.

The rest of this survey is organized as follows. We first
introduce the basics and taxonomy of federated learning and
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multi-party computation in Section 2. We then explain the
appropriate multi-party computation techniques as well as
representative optimizations on the accuracy and efficiency for
centralized (Section 3), decentralized (Section 4), and semi-
centralized federated learning (Section 5), respectively.
Finally, we summarize the future directions in Section 6 and
conclude in Section 7.

2 Basic concepts and taxonomy

This section presents an overview of the basic concepts of
federated learning and multi-party computation. Furthermore,
we introduce a taxonomy of federated learning, which is
grounded in the perspective of multi-party computation.

2.1 Federated learning

Federated learning is a paradigm that aims to enable multiple
data owners F; to collaboratively train a machine learning
model M using their respective datasets D;, while ensuring the
data kept locally for each data owners. Traditional approaches
often require the integration of all data to create a universal
dataset D = D{U---U D,, on which the model Mj,,, is trained.
However, this method can lead to privacy breaches and can
potentially violate relevant regulations. On the contrast,
federated learning enables the training of a federated model
Mgy using secure transmission of intermediate results,
without requiring data owners to directly provide their data D,.
With federated learning, the performance V¢, of the federated
model My.q can approach that of the direct training model
Mg,m, denoted by V,,,. Formally,

|erd = Viuml <A, (1)

where A is a small positive number used to measure the
precision loss of model in federated learning. In contrast to
general distributed learning, which typically involves
manually adjusting the data distribution of each party to
achieve faster convergence, federated learning leverages the
local data of each participating party to train the model. In
federated learning, each data owner trains the model on its
own local data, and only the updated model weights are
transmitted to a central server for aggregation.

The two fundamental dimensions of data used in federated
learning are records and their associated features, denoted by
U and X, respectively. To illustrate, consider a federated
learning scenario where two data owners participate, each with
their own set of records denoted as U; and U,, and their
respective feature sets denoted as X; and X,. Given that the
feature sets and records may differ between data owners,
federated learning can be classified into horizontal federated
learning [8], vertical federated learning [26], and federated
transfer learning [27] based on the overlap of features and
records. The current literature on federated learning is
typically categorized based on the aforementioned horizontal,
vertical, and transfer perspectives. Thus, we omit the details of
this classification and refer a comprehensive survey [2] for
more details.

2.2 Multi-party computation
The multi-party computation is a fundamental techniques that

can take multi-party private inputs and perform aggregated
output without revealing the private data of each party. It can
be described by the mathematical model that:

y:f(xl9x29---’-xn)a (2)

where x1,x7,...,x, are the private input of each data owner, y
is the aggregated output, and f is the agreed function with all
data owners. During the computation of y, all private data x;
should be kept in each data owner locally. Federated learning
typically utilizes multi-party computation techniques to enable
efficient and secure data aggregation across multiple data
owners. These techniques can be categorized into two types
based on whether a centralized server is used for the
aggregation: centralized multi-party computation and
decentralized multi-party computation.

2.2.1 Centralized multi-party computation

Centralized multi-party computation can securely aggregate
data from multiple data owners at a centralized server. To
preserve data privacy, data owners should obfuscate their local
models before uploading them to the server. Popular
techniques in this category include (central) differential
privacy and local differential privacy [28]. Due to the
obfuscation, however, more bias may be introduced into the
federated model training process [29]. As a result, researchers
working with centralized multi-party computation often focus
on developing optimization techniques that can improve
model accuracy while accounting for this source of bias [30].

Central differential privacy Central differential privacy
(CDP) [31] works by adding random noise to uploaded
parameters to prevent individual data from being identified.
The idea is to make it difficult for an adversary to determine
whether a particular individual’s data is included in a dataset,
while still allowing for accurate statistical analysis. It is
defined on two adjacent datasets D and D/, i.e., two datasets
differing from one record. Specifically, a randomized
algorithm M is called (e,0o)-differentially private if for all
S € Range(M) and for all adjacent datasets D and D,

Pr[M(D) € S] < exp(e)Pr[M(D’) € 8]+, 3)

where € >0 is the private budget. As described above, the
definition of differential privacy guarantees privacy
theoretically, but implementation requires perturbing the data
by adding noise.

Local differential privacy Local differential privacy (LDP)
[16] is a privacy-preserving technique that operates directly on
individual data points, rather than on aggregated data or query
results. In local differential privacy, each data point is
perturbed with random noise before it is shared, rather than
perturbing the output of a query or aggregation. This helps to
prevent individual data points from being linked to specific
users, while still allowing for accurate analysis of the data. It
is defined on two arbitray data x and x:

Pr{M(x) € S] < exp(e)Pr[M(x") € S]+6. 4)

The main difference between local differential privacy and
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differential privacy is the level at which the privacy protection
is applied. Differential privacy perturbs the output of queries
or aggregations on data, while local differential privacy
perturbs the individual data points themselves. As a result,
local differential privacy can provide stronger privacy
guarantees than differential privacy in some cases, but may
also be more computationally expensive, as it requires adding
noise to each individual data point. Thus, shuffler-based
solutions are gradually used to improve the utility of local
differential privacy [32].

2.2.2 Decentralized multi-party computation

Decentralized multi-party computation enables secure
aggregation without the need for a third-party server. This
approach can be traced back to the millionaires’ problem first
proposed by Yao in 1982 [33], which allowed two millionaires
to determine who was richer without revealing their actual
wealth. In decentralized multi-party computation, parties
communicate with each other to aggregate the final results,
resulting in lower efficiency compared to centralized
computation techniques. However, decentralized multi-party
computation does not introduce additional bias to the results
and can provide better accuracy for federated models.
Representative techniques of decentralized multi-party
computation include garbled circuit, secret sharing,
homomorphic encryption, etc. [34]

Garbled circuit Garbled circuit (GC) is first introduced by
Yao in 1986 [35], wherein a Boolean circuit is constructed to
enable secure computation between two parties. The
development of GC technology has been focused on two key
aspects: performance and security enhancements. The security
aspect of the GC is mainly reflected in its ability to provide
protection against both semi-honest and malicious adversaries.
Meanwhile, research on enhancing the performance of GC
schemes while maintaining a similar level of security remains
an active area of investigation.

The increasing demand for multi-party computation
applications in real-world scenarios has led to a surge in
research on Garbled circuit schemes involving multiple
parties. Furthermore, several compilers [36,37] for secure two-
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and multi-party computation that employ Garbled circuit have
been developed.

Secret sharing Secret sharing (SS) is a cryptographic
technique used to distribute a secret among a group of
participants in such a way that no single participant has access
to the complete secret. Instead, the secret is divided into
shares, and each participant is given a share of the secret [38].
Only when a sufficient number of shares are combined
(known as the “threshold”) can the original secret be
reconstructed.

By dividing the data into shares, SS can ensure that no
single participant has access to the complete data. This makes
it possible to train the machine learning model securely
without disclosing the raw data to any participant [39]. This
can be done by dividing the model into shares and distributing
them among the participants, so that the model can only be
reconstructed when a sufficient number of shares are
combined (i.e., the threshold).

Homomorphic encryption Homomorphic encryption is a
type of encryption technique that allows computations to be
performed on encrypted data without requiring decryption
[40]. This means that the data remains encrypted throughout
the computation process, protecting the privacy and
confidentiality of the data. In other words, homomorphic
encryption enables data to be securely processed and
manipulated while it is still in an encrypted state. It can help to
protect the privacy of the data during the model training
process. By using homomorphic encryption, data owners can
perform computations on their encrypted data and share the
encrypted results with each other without revealing any
information about the underlying data.

2.3 Taxonomy

According to the wunderline multi-party computation
techniques, federated learning can be classified into three
categories: centralized FL, decentralized FL, and semi-
centralized FL. Figure 1 shows the relationship between the
federated learning and multi-party computation.
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Centralized FL The prevailing federated learning models
assume the presence of a central server for coordinating the
model aggregation process [8,41,42]. For example, the
FedAvg algorithm [8] follows the centralized federated
learning process. First, the central server initializes the global
federated model. Next, a randomly selected subset U of data
owners download the global model from the central server,
followed by training and updating the model based on their
local data. These data owners then upload their local models to
the central server. Finally, the central server aggregates the
uploaded local models from all participants. This process
repeats until the global federated model satisfies the
convergence condition.

Decentralized FL Decentralized FL eliminates the need for
coordinators in federated learning. Instead, they are based on a
peer-to-peer network that supports model aggregation, with
participants requiring predefined permissions to access the
federated learning process [43—45]. For example, Kim et al.
[45] designed a decentralized federated learning framework
based on blockchain technology that leverages the verifiability
and incentivization properties of blockchain. By updating
models asynchronously through a distributed ledger
mechanism, they avoid the waiting problem that arises from
synchronous updates. The verifiability of block-chain also
supports the validation of local model training results and
extends the scope of federated learning to untrusted public
network environments.

Semi-centralized FL Since the centralized FL usually
involves high computation overhead for server, and the
decentralized FL requires high peer-to-peer communication
cost, a new federated learning called semi-centralized FL has
been proposed to trade off the communication cost and
computation overhead. There are two types of semi-
centralized FL methods: clustered federated learning [12] and
hierarchical federated learning [13]. In clustered federated
learning, the data owners are clustered based on the inference
of their task types, and multiple cluster centers are united to
aggregate the global models. On the other hand, hierarchical
federated learning aims to reduce the communication delay in
wireless networks. Local model aggregation is carried out at
the intermediate nodes, thereby reducing the communication
costs of the data owners who need to communicate with the
remote central server over long distances.

3 Centralized FL

This section introduces the related work about centralized FL
from three aspects: privacy preservation, accuracy
optimization, and efficiency improvement.

3.1 Privacy preservation

To preserve the data privacy of each data owner, both the data
owners themselves and the central server must implement
privacy protection techniques. One such technique that has
proven successful in federated learning is differential privacy,
which operates on a probabilistic basis. Research into
differential privacy techniques in the context of federated
learning can be classified into two categories: federated

learning using central differential privacy (CDP) and local
differential privacy (LDP).

CDP based solutions Since federated learning is vulnerable to
differential attacks [19], there has been a growing interest in
exploring federated learning methods that incorporate central
differential privacy. The conventional approach to preventing
differential attacks involves introducing noise into aggregated
results through a third-party server, which, unfortunately,
results in a loss of accuracy. To address this issue, Agarwal
et al. [46] suggested using the binomial mechanism along with
a stochastic k-level quantization method and randomized
rotation method. Canonne et al. [47] presented a discrete
Gaussian mechanism as an alternative approach. Agarwal et
al. [48] further proposed a new multi-dimensional Skellam
mechanism to enhance privacy protection. Meanwhile, Jiang
et al. [49] focused on the problem of client dropout in
distributed differential privacy and developed a secure
federated learning framework. There are some other studies
about the centralized FL based on DP, such as [50,51].
Triastcyn et al. [20] proposed the use of Bayesian differential
privacy, which facilitates more precise communication. In the
same vein, Wei et al. [21] proposed a novel federated learning
method known as NbAFL, which involves adding manual
noise to client-side parameters before aggregation. NbAFL
meets central differential privacy standards at various levels of
preservation. Furthermore, Zhang et al. [22] proposed a
clipping-enabled FedAvg approach that incorporates the
clipping technique into federated learning and central
differential privacy. To minimize the loss of accuracy, Hu
et al. [52] proposed a new scheme known as Fed-SMP, which
guarantees differential privacy at the data owner level. And
the differential privacy based federated topic modeling has
been studied in [23,53,54]. Truex et al. [55] further proposed a
hybrid privacy-preserving federated learning framework by
combining differential privacy and homomorphic encryption.

LDP based solutions Kasiviswanathan et al. [56] were the
first to propose federated learning with local differential
privacy. Later, Erlingsson et al. [57] introduced a privacy-
preserving mechanism called Randomized Aggregatable
Privacy-Preserving Ordinal Response (RAPPOR), which
enables the collection of statistics on the population of client-
side strings while offering strong privacy guarantees for each
client. Truex et al. [9] proposed LDP-Fed, which provides
formal differential privacy guarantees for the collection of
parameters in federated neural networks. Additionally, Girgis
et al. [58] proposed a novel shuffle privacy mechanism where
each party randomizes its response, and the server only
receives a random shuffle of the clients’ responses. Numerical
results indicate significant improvements in privacy
guarantees. Wang et al. [59] studied the federated topic
modeling based on local differential privacy. And a three-
plane approach was proposed by [60] that applies local
differential privacy to user data before it is uploaded.

3.2 Accuracy optimization
The essence of federated learning is to generate a machine
learning model with strong generalization ability on specific
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tasks through multi-client cooperation. It can enable all data
owners to train the machine learning model under the premise
of ensuring data security, so that data owners can share data
value without sharing the data itself. In the actual application
scenario of federated learning, data heterogeneity challenges
the generalization performance of the algorithm. In order to
reduce the impact of data heterogeneity on model
performance, Mcmahan et al. [8] of Google Research Institute
first proposed FedAvg algorithm. This algorithm trains the
federated model on a mixed distribution D = Zfi  wiD;, where
the weight w; = |D;|/|D| is the proportion of data size for each
client, and |D| is the total data size. However, the resulting
model will be biased towards clients with large amounts of
data, thus affecting the generalization performance of the
model. Mohri et al. [41] proposed an agnostic federated
learning framework to analyze the generalization performance
of federated learning in heterogeneous data scenarios. For the
distribution of multi-clients {Dy,...,Dy}, the agnostic
federated learning train the federated models on all possible
test distribution D = Zf\; , AiD;, where the weight A belongs to
a n-dimension single pure Ay. Based on the skewness of
weight A, sample ratio |D;|/|D|, and Rademacher complexity
[61], it gives the generalized error bound of the unknowable
federated learning.

Agnostic federated learning can produce a global model
with robust performance on any target distribution by solving
the corresponding minmax optimization problem. However,
for clients with large differences between distribution and
global distribution, the performance of a single global model
on this client is usually poor. In order to remedy the
limitations of a single model, Mansour et al. [62] proposed
three methods that can customize personalized models for
clients, namely client clustering, data interpolation and model
interpolation, and gave the corresponding generalization error
bounds; Deng et al. [63] also improved the model
interpolation of the client, and proposed a learning method of
adaptive generalization error bound.

3.3 Efficiency improvement
Federated learning is affected by the heterogeneity of
participants’ equipment and the limited network bandwidth,
which leads to the biggest challenge that hinders its
implementation. The main factor that affects the efficiency of
the federated learning algorithm is the communication cost of
transferring parameters between the client and the central
service, especially in a scenario with a large number of clients.
In the scenario with a large number of clients, the federated
learning algorithm needs to communicate with each client,
resulting in a low efficiency of the algorithm. The existing
research aims at this problem by selecting a certain number of
clients from many clients and training them as representatives
to reduce communication costs and optimize the efficiency of
the algorithm. According to whether the online status of the
client changes dynamically during the federated learning
process, the client selection algorithm can be divided into two
categories: static client selection and dynamic client selection.
In the static client selection, there is no downtime and
sudden exit of the federated learning client. The client
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selection only need to perform once during the federated
learning process. The FedAvg algorithm proposed by
Mcmahan et al. [8] adopted a simple random sampling
strategy, which can also achieve good training results when
the data distribution satisfies the assumption of independent
identical distribution. Wei et al. [64] and Song et al. [65]
introduced the concept of Sharpley value into federated
learning, and the data quality was evaluated by efficiently
calculating the Sharpley value of data owners in federated
learning, so as to effectively select clients. Chai et al. [66]
proposed a tier-based federated learning (TiFL) system. The
participants of federated learning are layered based on the
training performance, and the participants are selected
according to the level of participants in the training, which
improves the convergence speed of federated learning in
heterogeneous scenarios.

In dynamic client selection, the state of the client is
dynamic, and each data owner in federated learning may be
offline due to network, hardware, etc. Huang et al. [67]
dynamically selected clients in each round based on multi-arm
bandit machines. Lai et al. [68] further implemented a
federated learning client selection algorithm based on explor-
ation-utilization strategy. Zhang et al. [69] proposed a
submodular based solution for client selection. And Wang et
al. [70] evaluated the value of clients in each round by training
a deep reinforcement learning model, and selected K
participants with the highest value to conduct federated
learning training. However, this method requires additional
deep model training on the basis of the federated model, which
puts forward higher requirements for computing resources.

4 Decentralized FL

In this section, we introduce the optimization techniques of
decentralized FL.

4.1 Privacy preservation

In decentalized FL, the model is aggregated without relying on
a central server. Instead, data owners communicate directly
with each other to perform the model aggregation, typically
using decentralized multi-party computation techniques to
preserve individual data privacy. Techniques commonly used
in decentralized FL include garbled circuits, secret sharing,
and homomorphic encryption. These techniques enable secure
multi-party computation without revealing any sensitive
information, facilitating effective collaboration while
maintaining individual data privacy.

It is worth noting that blockchain-based solutions [44,45]
can also be considered a form of decentralized FL. While
blockchain-based solutions can offer benefits such as
verifiability and transparency, they must also address data
privacy concerns to ensure that individual data remains
protected.

GC and SS based solutions The secret sharing involves
participants calculating the share of different secret data and
obtaining the share of calculation results, which are combined
to recover the calculation results [71]. SecureML [10] is the
first federated learning system that uses secret-sharing and
Yao’s Garbled Circuit [33] for encryption to ensure security.
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And Google [1] proposed an efficient and secure aggregation
method that utilizes secret sharing technology, enabling
servers to securely aggregate gradients without leaking the
gradient of a single user.

The advantage of adding MPC protocols to FL based on
secret sharing is its ability to extend to a large number of users
with relatively low computational cost. However, the
weakness of generic MPC protocols based on secret sharing is
the huge communication cost. Chen et al. [72] and Ziller et al.
[73] implemented the federated learning via a general
decentralized multi-party computation framework, SPDZ [74].
And Shamir’s t-out-of-n Secret Sharing was used in the
protocol of [17] under the assumption of an honest-but-curious
setting, which allows a user to split a secret into shares. Liu
[24] proposed a PFK-Means profile that combines secret
sharing and federated learning, by transmitting secret shared
gradients instead of uploading encrypted data directly. Jeon et
al. [75] proposed a secret-sharing based model aggregation m-
ethod called Alternating Direction Method of Multiplier
(ADMM), which can control the communication pattern
among data owners.

HE based solutions Homomorphic encryption (HE) enables
computation on ciphertext, but it is expensive and involves
modular computations, leading to high computational and
communication overhead. CryptoNets [76] used leveled
homomorphic encryption for encrypted prediction on the
server side, but it has limitations due to the degree of
polynomial approximation of non-linear activation functions.
Chen et al. [77] utilized the additive homomorphic encryption
to boosting model, and proposed a lossless federated boosting
framework. Liu et al. [24] further combined HE and secret
sharing for neural networks in two-party computation with
almost lossless accuracy. Zhang et al. studied the federated
skyline analysis over vertical data federation [78], and
proposed an homomorhpic encryption based private set
emptiness protocol to accelerate the efficiency of skyline
analysis.

4.2 Accuracy optimization

In decentralized FL, the heterogenous data can significantly
affect the training efficiency of the model, leading to slow
convergence rates. This is because, in each round of model
training, the global model needs to aggregate parameters from
all data owners, and the distributed offset between the data
owners can have a significant impact on the convergence rate
of the federated model. The research of Li et al. [79] showed
that when there is a large deviation between the data
distribution of participants and the average distribution, the

convergence rate of existing federated learning methods will
decrease significantly.

In order to solve the above problems, Karimireddy et al.
[80] proposed SCAFFOLD, which can correct the client offset
phenomenon when processing non-IID data with the help of
control variables. They further proved theoretically that the
proposed stochastic controlled averaging for federated
learning method has a higher convergence rate. However, the
SCAFFOLD method only considers reducing the
communication cost, and the accuracy of the model cannot be
well guaranteed. Hamer et al. [81] proposed an efficient
FedBoost (Federated Boosting) method based on the idea of
ensemble learning, and theoretically analyzed the generalized
error bound of FedBoost for the specific task of density
estimation. Although the work of Rothchild et al. [82] and
Hamer et al. [81] has improved the model performance and
training efficiency. These methods increase the complexity of
the model to a certain extent and bring difficulties to the actual
deployment of the methods.

4.3 Efficiency improvement

In decentralized FL, the huge communication cost brought by
the transmission of the deep learning model has become the
bottleneck of federated learning. Model compression can
reduce the communication overhead caused by model
transmission and improve the efficiency of the federated
learning algorithm at the expense of certain model
performance. Suresh et al. [83] first proposed a
communication coding algorithm based on random rotation in
a distributed scenario, proved that the minimum mean square
error can be achieved without making any assumptions about
the data characteristics, and applied it to the distributed Lloyd
algorithm. The experimental results show that the proposed
algorithm can greatly reduce the communication cost while
maintaining the model’s accuracy. On the basis of
compressing the model, Caldas et al. [84] proposed the
federated dropout to select the subset of the global model, so
as to update the parameters. Compared with the existing work,
the communication cost is reduced to 1/14. Xu et al. [85]
aimed at the problem that a large number of redundant
parameters need to be updated in the federated learning
algorithm, proposed a federated trained ternary quantization
(FTTQ) algorithm to optimize the learning model in the client
through self-learning and proved the convergence of the
proposed algorithm. Hadadpour et al. [86] proposed periodic
compression algorithms for homogeneous and heterogeneous
federated learning, FedCOM and FedCOMGATE,
respectively. They further gave the convergence bounds of
these algorithms under different assumptions such as non-con-

Table 1 Summary of federated learning from a perspective of multi-party computation

Federated learning

Multi-party computation

Literature

Centrailized FL

Local differential privacy

Central differential privacy

[19], [20], [21], [22], [23], [46], [47]
[48], [49], [50], [51], [52], [55]
[9], [56], [58], [59], [60]

Decentralized FL

Garbled circuit and secret sharing
Homomorphic Encryption

[10], ’17], [24], [72], [73], [75]

Semi-centralized FL /

[
[24], [76], [77], [78]
[11], [12], [13], [88]
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vexity and strong convexity. On the basis of model
compression, Cui et al. [87] implemented the blockchain-
based federated learning algorithm, a compressed algorithm of
federated learning for content caching (CREAT), which
further protected the security of the client node data.

5 Semi-centralized FL

Semi-centralized FL is a novel way to organize the data
owners in federated learning. Since the centralized FL may
involve too many communication costs of server and the
decentralized FL suffers from the inefficiency of multi-party
computations, semi-centralized FL is proposed to mitigate
these two forms for better training performance. In semi-
centralized FL, several data owners are selected as agents for a
set of data owners. Each data owner communicates with its
assigned agent in a centralized manner. The agents then
communicate with each other using decentralized multi-party
computation techniques to aggregate the model updates and
obtain the global model. Table 1 lists a summary of
centralized, decentralized and semi-centralized federated
learning.

Cluster based solutions Ghosh et al. [11] has earlier studied
the federated learning algorithm in the multi-center group
structure scenario, which assumes that the model of all N
federated participants applies to K tasks, that is, there are K
cluster centers Cy,C,...,Cg. Cluster partitioning can avoid
mutual interference between unrelated federal participants and
improve the accuracy of the jointly constructed group model.
The federated learning framework based on clustering
includes two parts. The first is the centralized federated
learning module, which aggregates the models on K cluster
centers Cp,C3,...,Ck according to the gradient parameters
uploaded by each federated participant to obtain the global
model 0 =1{0;,0,,...,0k}. The second is the cluster iterative
division module. First, calculate the gradient of each global
model about the objective function, then calculate each
participant’s similarity, update the cluster division according
to each participant’s distance, and repeat the above process
until convergence.

Sattler et al. [12] proposed a similar federal learning
framework, which does not explicitly calculate the distance
(similarity) between participants, but determines which
category each federal participant belongs to by evaluating the
accuracy of the local model improved by different clusters.
Ouyang et al. [88] proposed a clustering-based federated
learning system that aims to improve the efficiency and
accuracy of human activity recognition applications. They
utilize a dynamic clustering algorithm to federated learning,
which can drop nodes that converge slower or have little
correlations with others in each cluster. This approach can
speed up convergence and reduce communication overhead,
leading to improved efficiency and accuracy.

Hierarchy based solutions In mobile networks, the high
communication cost resulting from direct data transmission
between federated participants and the central server due to
varying link distances can pose a challenge. To address this
issue, Abad et al. [13] proposed a hierarchical framework for
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federated learning to reduce communication latency. The
participants in hierarchical federated learning are divided into
three levels based on their geographical locations and latency
size: (1) data nodes (workers), which are federated learning
participants with local data; (2) intermediate nodes (cluster
heads), which are responsible for aggregating the training
results of some data nodes; and (3) model nodes (model
owners), which are responsible for aggregating the local
models of intermediate nodes and obtaining the final federated
model.

The training process of the hierarchical partition-based
federated learning model is similar to that of centralized
federated learning. Firstly, the local model M; is trained by the
data nodes at the bottom layer. Then, the intermediate nodes
aggregate the local models of their responsible regions to
obtain a new intermediate-level model M,,;;, which is
distributed to all data nodes for further training. After T
rounds of iteration, the intermediate-level models M,,;; are
uploaded to the model node for aggregation, and the new
model is distributed to all intermediate nodes. This iteration
continues until the converged federated learning model My.q
is obtained.

The hierarchical partition-based federated learning
framework effectively reduces communication costs in mobile
networks by partitioning levels and selecting regional centers
to lower communication latency.

6 Future directions
So far, some challenges still remain in the study of Federated
Learning, we’ve identified the new trends as three things:

Incentive mechanism One of the main challenges in
federated learning is incentivizing data owners to participate
in the training process. Incentive mechanisms aim to motivate
data owners to contribute their data and computing resources
to the federated learning model by providing them with some
form of reward or benefit. This is particularly important
because in federated learning, data owners are essentially
providing their data and computing resources to the model
without direct compensation [65]. The development of
incentive mechanisms could encourage more data owners to
participate in Federated Learning, which would in turn
improve the quality and diversity of the data used for model
training.

Personalization Personalization is a promising direction for
the development of federated learning. In federated learning,
the data held by multiple data owners is usually non-IID. And
these data owners may have different objectives for the
learning model. Thus, a personalization of federated learning
can dedicate to the objective of each data owner and thus can
lead to significant improvements in model performance and
user experience [89].

Legitimacy Another important challenge of federated learning
is ensuring the legitimacy of the models generated by the
training process. In the context of federated learning,
computational legitimacy can be used to ensure the legitimacy
of the models generated by the federated learning process.
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This involves the use of algorithms to verify that the models
generated by the participating devices are consistent with legal
and ethical requirements, such as data privacy regulations and
fairness constraints [90].

7 Conclusion

This paper provides an overview of federated learning from
the perspective of multi-party computation. According to
whether there is a centralized server to perform model
aggregation during multi-party training, we classify federated
learning into three categories: centralized, decentralized, and
semi-centralized. We explained how representative studies
trade-off among privacy, accuracy, and efficiency for each
category and pointed out a few future directions of federated
learning. We envision federated learning as a versatile enabler
for large-scale data sharing and circulation.
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